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I. Introduction of list decoding 
 Decoding philosophy evolution of an (n, k) RS code 
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I. Overview of Enc. & Decd. 

 Encoding 

 Given a message polynomial: u(x) = u0 + u1x + ··· + uk-1x
k-1

 

 Generate the codeword of an (n, k) RS code 

   c = (c0, c1, …, cn-1) = (u(α0), u(α1), …, u(αn-1)) 

 

 Decoding 

 

 

 Interpolation 

Q(x, y) 

Factorization 

Q(x, p(x)) 
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Computationally 

expensive step! 
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I. Perf. of AHD and ASD 
 Algebraic hard-decision decoding (AHD) [Guruwammi99] (-GS Alg) 

 Algebraic soft-decision decoding (ASD) [Koetter03] (-KV Alg) 

 Advantage on error-correction performance 



I. Introduction 
 Price to pay: decoding complexity 



I. Inspirations 
 The algebraic soft decoding is of high complexity. It is mainly due to the iterative 

interpolation process; 

 A modernized thinking – the decoding should be flexible (i.e., channel dependent).  
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 E.g.,  the belief propagation algorithm 

 
The current AHD/ASD system 
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No  

Iterative proc. Incremental comp. Continues validat. 



II. A Graphical Introduction 
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Ⅱ. Decoding architecture 

v – iteration index; 

lv -- designed OLS at each iteration; 

lT -- designed maximal OLS (~the maximal complexity that the system can tolerate); 

l’–  step size for updating the OLS, lv+1 = lv + l’; 

Progressive 

reliab. trans. 

Progressive 

Interpolation 

Validated by 

CRC code! 



II. Progressive approach 

 Enlarge the decoding radius  Enlarge the OLS 

 

 Progressive decoding 

Π 

Series  of OLS:   l1,    l2, ……,     lv-1,    lv, ……,    lT    

Series  of M mtxs.:  M1,  M2, ……,   Mv-1,  Mv, ……, MT    

Series  of Q polys.:  Q(1), Q(2), ……,  Q(v-1), Q(v), ……, Q(T)    

Question: Can the solution of Q(v) be found based on the knowledge of Q(v-1)? 



II. Incremental interpolation constraints 

 Multiplicity mij ~ interpolated point (xj, αi) 

 Given a polynomial Q(x, y), mij implies                         constraints of   

 

 

 

 Definition 1: Let Λ(mij) denote a set of interpolation constraints (r, s)ij indicated by mij, then 

Λ(M) denotes a collection of all the sets Λ(mij) defined by the entry mij of M 
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 Definition 2: Let mij
v-1 and mij

v denote the entries of matrix Mv-1 and Mv, the incremental 

interpolation constraints introduced between the matrices are defined as a collection of all the 

residual sets between Λ(mij
v) and Λ(mij

v-1) as: 

 

 

 

 

 Example: 

   

 

 

 

II. Incremental Interp. Constr. 
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II. Progressive Interpolation 

 A big chunk of interpolation task Λ(ΜT) can be sliced into smaller pieces. 
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 Λ(ΔΜv) defines the interpolation task of iteration v. 

 

 

Λ(ΜT) 

Λ(ΔΜ1) 

Λ(ΔΜ2) 

Λ(ΔΜ3) 

Λ(ΔΜT) 

Λ(ΔΜv) 

... 
... 



II. Incremental Computations 

 Review on the interpolation process – iterative polynomial construction  

 Given Mv, the interpolation constraints are Λ(Μv) 

 The polynomial group is: Gv = {g0, g1, …, gv}, (degygv = lv) 

 

 The iterative process 

 
For (r, s)ij ∈Λ(Μv) 

For each gt ∈ Gv  

Finally, Q(v) = min{gt | gt ∈ Gv}  

          defines the outcome of 

the updated group. 



II. Incremental Computations 

 From iteration v-1 to v … 

 The progressive interpolation can be seen as a progressive polynomial 

group expansion which consists of two successive stages. 

 Let                                         be the outcome of iteration v-1. 

 During the generation of           , a series of           with (r, s)ij∈Λ(Μv-1) are 

identified and stored. 

 

 Expansion I: expand the number of polynomials of the group 

 

 

 Polynomials of ΔGv perform interpolation w.r.t. constraints of  Λ(Μv-1); 

 Polynomials            are re-used for the update of ΔGv. 

 Let          be the updated outcome of ΔGv and 

 

 

 

 

 

 



II. Incremental Computations 

 Expansion II: expand the size of polynomials of the group 

 Polynomials of         will now perform interpolation w.r.t. the incremental 

constraints Λ(ΔΜv), yielding       . 

 Finally,  

 

  Visualize the polynomial group expansion Expansion I 
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II. Progressive Interpolation 
 The process of progressive interpolation 

 M1,       M2,       M3,  … ,   Mv-1,     Mv,   …,    MT-1,      MT 

  

 Λ(M1), Λ(M2), Λ(M3), …, Λ(Mv-1), Λ(Mv), …, Λ(MT-1), Λ(MT) 

 

 

   G1        G2         G3   ……  Gv-1       Gv                  GT-1        GT 

 

 

  

 

 

 

 Multiple factorizations are carried out in order to determine whether u(x) has been found!  

Λ(ΔM2) Λ(ΔM3) Λ(ΔMv) 
Λ(ΔMT) 

ΔG2 
ΔG3 ΔGv ΔGT 

Q(1) Q(2) Q(3) Q(v) Q(T-1) Q(T) Q(v-1) 

If Q(v)(x, u(x)) = 0, the decoding will be terminated. 



III. Validity Analysis 

 For any two (r1, s1)i1j1 and (r2, s2)i2j2 of Λ(ΜT): 

 (r1, s1)i1j1            (r2, s2)i2j2 <==> (r2, s2)i2j2           (r1, s1)i1j1  

      

 The algorithm imposes a progressive interpolation order 

Λ(ΜT) 

Λ(ΔΜ1) 

Λ(ΔΜ2) 

Λ(ΔΜ3) 

Λ(ΔΜT) 

Λ(ΔΜv) 

... 
... 

The (r, s)ij to be satisfied. 

The satisfied (r, s)ij. 



III. Validity Analysis 

 Decoding with an OLS of lv, the solution Q(x, y) is seen as the minimal 

candidate chosen from the cumulative kernel 

 

 

 

 For both of the algorithms:  

 

  

 the same set of constraints are defined for the cumulative kernel; 

 

 Consequently, they will offer the same solution of Q(x, y).  



III. Validity Analysis 

 In the end of Expansion I, 

 

 Can           and          be found separately?  

 

 Recall the polynomial updating rules 

• The minimal polynomial                defines the solution of one round of poly.    

update w.r.t. (r, s)ij. 

• If such a group expansion procedure does not change the identity of             ,  

            and               can indeed be found separately. 

 



III. Validity Analysis 

   

 

 

 Expansion I: update          to         w.r.t. constraint of  

 

 

 

 

 

 

 

 The identity of the existing              is left unchanged. Consequently, the 

solution of              remains intact. 

 

 Therefore,  

For 

No update is required 

Update is required 

is in memory,  

Since              < g*(of ΔGv) 

     

   

is not in memory, it will be 

picked up from ΔGv. 

will be re-used 

(             <                ) 



IV. Complexity Analysis 

 Average decoding complexity – average number of finite field arithmetic 

operation for decoding one codeword frame; 

 

        --- the probability of the decoder is performing a successful decoding 

with an OLS of lv; 

        --- the decoding complexity with an OLS of lv; 

 

 The average decoding complexity is: 

 

 

 

 

             is now channel dependent! 

 

Decoding succ. Decoding fail. 



IV. Complexity Analysis 

   

 

 

     where 

 

       consists of        and 

 

 

 

 since   



IV. Complexity Analysis 

   

 

 

 

 The decoding  complexity increases exponentially with the OLS (dominant 

exponential factor of 5); 

 

 The decoding complexity is quadratic in the dimension of the code k. The decoding 

complexity will be smaller for a low rate code. 



IV. Complexity Analysis 

   

 

 

 

 The probability that the algorithm terminates at iteration v.   

SM1(c) ≤ Δ(C(M1)) 

SM2(c) ≤ Δ(C(M2)) 

 

 

SMv-1(c) ≤ Δ(C(Mv-1)) 

SMv(c) > Δ(C(Mv)) 

…
…

 
…
…

 

Exit! 

Iter. 1: 

Iter. 2: 

 

 

Iter. v-1: 

Iter. v: 

…
…

 



IV. Complexity Analysis 

 Determining a closed form expression of         turns out to be hard; 

 

 Motivation of the analysis: link         with Π (~channel SNR); 

 

 

 Define                                                              , where                  and                                 ,                               

 

 with OLS greater than the above threshold, successful decoding can be guaranteed. 

 

 We therefore interpret           as:            



IV. Complexity Analysis 

 Study the possible quantization of the OLS threshold  

 

 AWGN channel, we vary the SNR … 

 In case of a ‘bad’ channel (e.g., SNR  -∞): 

 

 

 In case of a ‘good’ channel (e.g., SNR  + ∞): 

 

 

 

 By refining                                           , 

 

 we  can see the OLS threshold is a decreasing function of SNR. 

 

  Recall                                       , 

 

           will be in favor of smaller lv values by increasing SNR! 



IV. Complexity Analysis 

  Recall the average decoding complexity definition: 

In a sufficiently ‘good’ channel: 

 

          1 and  

  

In a ‘bad’ enough channel: 

 

              …   0 and 

  



IV. Simulation Statistics 

       ~ SNR for the (63, 47) RS code with l1 = 1, l’= 1 and lT = 5 

 AWGN channel 



IV. Simulation Results 

             ~ SNR for the (63, 47) RS code with lT = 3, 5, 7. 

 AWGN channel 

 



IV. Simulation Results 

            ~ SNR for the (15, 11) and (15, 5) RS codes with lT = 1, 3, 5, 10 

 AWGN channel 

 



V. Error-Correction Performance 

 PASD ~ ASD with same decoding parameter lT; 

 For PASD, decoding output is validated by CRC code; 

 For ASD, decoding output is validated by the ML criterion; 

 For the (63, 47) RS code, over AWGN channel: 



VI. Conclusions 
 A progressive algebraic soft-decision decoding approach; 

 

 Two key steps of PASD: progressive reliability transform & progressive 

interpolation; 

 

 Enables the complexity dominant interpolation process to be performed in 

an iterative manner, and the incremental computation between iterations is 

possible; 

 

 The average decoding complexity of the PASD algorithm is channel 

dependent and hence it has been optimized according to the needs; 

 

 Error-correction performance is also preserved. 

 

 A larger system memory is required. 
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