Progressive Algebraic Soft-Decision Decoding of Reed-Solomon Codes

- Li Chen (陈立), PhD, MIEEE
- Associate Professor, School of Information Science and Technology
- Sun Yat-sen University, China
- Joint work with Prof. Xiao Ma and Mrs. Siyun Tang
- Hangzhou, China
- **5**th, Nov, 2011

Outline

- Introduction
- Progressive ASD (PASD) algorithm
- Validity analysis
- Complexity analysis
- Error-correction performance
- Conclusions

I. Overview of Enc. & Decd.

- Encoding
 - Given a message polynomial: $u(x) = u_0 + u_1 x + \dots + u_{k-1} x^{k-1}$ $(u_i \in GF(q))$
 - Generate the codeword of an (n, k) RS code

$$\mathbf{c} = (c_0, c_1, \dots, c_{n-1}) = (u(\alpha_0), u(\alpha_1), \dots, u(\alpha_{n-1})) \qquad (\alpha_i \in GF(q) \setminus \{0\})$$

Decoding

I. Perf. of AHD and ASD

- Algebraic hard-decision decoding (AHD) [Guruwammi99] (-GS Alg)
- Algebraic soft-decision decoding (ASD) [Koetter03] (-KV Alg)
- Advantage on error-correction performance

Performance of RS (63, 31) over AWGN channel

Decoding complexity of GS decoding of RS (63, 31) code

I. Inspirations

- The algebraic soft decoding is of high complexity. It is mainly due to the iterative interpolation process;
- A modernized thinking the decoding should be *flexible* (i.e., channel dependent).

II. A Graphical Introduction \rightarrow **PASD** ($l = 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5$) ASD(l=5)C3● \mathbf{c}_{2} **C**3 \mathbf{c}_2 **C**7 C6 r 🍐 **c**₁₀ **C**8 **C**9 Co **C**10 **C**8 $l=1 \rightarrow L = \{c_6\}$ $l=2 \rightarrow L = \{c_6, c_9\}$ $L = \{c_5, c_6, c_7, c_9, c_{10}\}$

Enlarging the decoding radius progressively \rightarrow Enlarging the factorization OLS progressively

|L| - factorization output list size

 $l = 3 \rightarrow L = \{c_6, c_9, c_{10}\}$

 $l = 4 \rightarrow L = \{c_5, c_6, c_9, c_{10}\}$

 $l = 5 \rightarrow L = \{c_5, c_6, c_7, c_9, c_{10}\}$

- v iteration index;
- l_v -- designed OLS at each iteration;
- l_T -- designed maximal OLS (~the maximal complexity that the system can tolerate);
- *l'* step size for updating the OLS, $l_{v+1} = l_v + l'$;

II. Progressive approach

- Enlarge the decoding radius \rightarrow Enlarge the OLS
- Progressive decoding

Question: Can the solution of $Q^{(v)}$ be found based on the knowledge of $Q^{(v-1)}$?

II. Incremental interpolation constraints

- Multiplicity m_{ij} ~ interpolated point (x_j, α_i)
- Given a polynomial Q(x, y), m_{ij} implies $\frac{1}{2}m_{ij}(m_{ij} + 1)$ constraints of

$$\mathcal{D}_{r,s}(Q(x,y))|_{x=x_j,y=\alpha_i} = \sum_{a \ge r,b \ge s} \binom{a}{r} \binom{b}{s} Q_{ab} x_j^{a-r} \alpha_i^{b-s} = 0 \qquad (r+s < m_{ij})$$

• **Definition 1:** Let $\Lambda(m_{ij})$ denote a set of interpolation constraints $(r, s)_{ij}$ indicated by m_{ij} , then $\Lambda(M)$ denotes a collection of all the sets $\Lambda(m_{ij})$ defined by the entry m_{ij} of M

$$\Lambda(\mathbf{M}) = \{\Lambda(m_{ij}), \ \forall \ m_{ij} \in \mathbf{M}\}\$$

• Example: M =
$$\begin{bmatrix} 2 & O & O \\ O & 1 & 1 \\ 1 & 2 & O \\ O & O & 1 \end{bmatrix} \longrightarrow \Lambda(M) = \{(0, 0)_{00}, (1, 0)_{00}, (0, 1)_{00}, (0, 0)_{11}, (0, 0)_{12}, (0, 0)_{20}, (0, 0)_{21}, (1, 0)_{21}, (0, 1)_{21}, (0, 1)_{21}, (0, 0)_{32}\}$$

II. Incremental Interp. Constr.

• **Definition 2:** Let $m_{ij}^{\nu-1}$ and m_{ij}^{ν} denote the entries of matrix $M_{\nu-1}$ and M_{ν} , the incremental interpolation constraints introduced between the matrices are defined as a collection of all the residual sets between $\Lambda(m_{ij}^{\nu})$ and $\Lambda(m_{ij}^{\nu-1})$ as:

$$\Lambda(\Delta \mathbf{M}_v) = \{\Lambda(\mathbf{M}_v) \setminus \Lambda(\mathbf{M}_{v-1})\} = \{\Lambda(m_{ij}^v) \setminus \Lambda(m_{ij}^{v-1}), \ \forall \ m_{ij}^v \in \mathbf{M}_v \text{ and } m_{ij}^{v-1} \in \mathbf{M}_{v-1}\}$$

II. Progressive Interpolation

• A big chunk of interpolation task $\Lambda(M_T)$ can be sliced into smaller pieces.

 $\Lambda(\mathbf{M}_T) = \Lambda(\Delta \mathbf{M}_1) \cup \Lambda(\Delta \mathbf{M}_2) \cup \cdots \cup \Lambda(\Delta \mathbf{M}_v) \cup \cdots \cup \Lambda(\Delta \mathbf{M}_T).$

• $\Lambda(\Delta M_v)$ defines the interpolation task of iteration v.

II. Incremental Computations

- *Review* on the interpolation process iterative polynomial construction
- Given M_v , the interpolation constraints are $\Lambda(M_v)$
- The polynomial group is: $\mathbf{G}_v = \{g_0, g_1, \dots, g_v\}, (\deg_y g_v = l_v)$

Finally, $Q^{(v)} = \min\{g_t \mid g_t \in \mathbf{G}_v\}$

II. Incremental Computations

- From iteration *v*-1 to *v* ...
- The progressive interpolation can be seen as a *progressive polynomial group expansion* which consists of two successive stages.
- Let $\widetilde{\mathbf{G}}_{v-1} = \{ \widetilde{g}_0, \widetilde{g}_1, \dots, \widetilde{g}_{l_{v-1}} \}$ be the outcome of iteration *v*-1.
- During the generation of $\widetilde{\mathbf{G}}_{v-1}$, a series of $f_{(r,s)_{ij}}$ with $(r, s)_{ij} \in \Lambda(\mathbf{M}_{v-1})$ are identified and stored.
- *Expansion I:* expand the *number* of polynomials of the group

$$\Delta \mathbf{G}_{v} = \{g_{l_{v-1}+1}, \dots, g_{l_{v}}\} = \{y^{l_{v-1}+1}, \dots, y^{l_{v}}\}$$

- Polynomials of ΔG_{ν} perform interpolation w.r.t. constraints of $\Lambda(M_{\nu-1})$;
- Polynomials $f_{(r,s)_{ij}}$ are re-used for the update of $\Delta \mathbf{G}_{v}$.
- Let $\Delta \widetilde{\mathbf{G}}_v$ be the updated outcome of $\Delta \mathbf{G}_v$ and $\mathbf{G}_v = \widetilde{\mathbf{G}}_{v-1} \cup \Delta \widetilde{\mathbf{G}}_v$.

II. Incremental Computations

- **Expansion II:** expand the *size* of polynomials of the group G_v
- Polynomials of \mathbf{G}_{v} will now perform interpolation w.r.t. the incremental constraints $\Lambda(\Delta M_{v})$, yielding $\tilde{\mathbf{G}}_{v}$.
- Finally, $Q^{(v)}(x,y) = \min\{\tilde{g}_t \mid \tilde{g}_t \in \widetilde{\mathbf{G}}_v\}$

II. Progressive Interpolation

• Multiple factorizations are carried out in order to determine whether u(x) has been found!

- For any two $(r_1, s_1)_{i1j1}$ and $(r_2, s_2)_{i2j2}$ of $\Lambda(M_T)$: $(r_1, s_1)_{i1j1} \longrightarrow (r_2, s_2)_{i2j2} <==> (r_2, s_2)_{i2j2} \longrightarrow (r_1, s_1)_{i1j1}$
- The algorithm imposes a <u>progressive interpolation order</u>

• Decoding with an OLS of l_v , the solution Q(x, y) is seen as the minimal candidate chosen from the cumulative kernel $\overline{\mathcal{K}_{\mathcal{C}(M_v)}}$

$$\overline{\mathcal{K}_{\mathcal{C}(\mathcal{M}_v)}} = \{ Q \in \mathbb{F}_q[x, y] \mid \mathcal{D}_w(Q) = 0 \ \forall \ w \in \Lambda(\mathcal{M}_v), \ \deg_y Q \le l_v \}$$

 $Q(x,y) = \min\{Q \in \overline{\mathcal{K}_{\mathcal{C}(\mathcal{M}_v)}}\}$

• For both of the algorithms:

 $\Lambda(M_v) = \Lambda(\Delta M_1) \cup \Lambda(\Delta M_2) \cup \dots \cup \Lambda(\Delta M_v)$

the same set of constraints are defined for the cumulative kernel;

• Consequently, they will offer the same solution of Q(x, y).

- In the end of *Expansion I*, $\mathbf{G}_v = \widetilde{\mathbf{G}}_{v-1} \cup \Delta \widetilde{\mathbf{G}}_v$
- Can $\tilde{\mathbf{G}}_{v-1}$ and $\Delta \tilde{\mathbf{G}}_v$ be found separately?
- Recall the polynomial updating rules

$$g_{t} = \begin{cases} g_{t}, & \text{if } \mathcal{D}_{(r,s)_{ij}}(g_{t}) = 0\\ [g_{t}, f_{(r,s)_{ij}}]_{D}, & \text{if } \mathcal{D}_{(r,s)_{ij}}(g_{t}) \neq 0 \text{ and } g_{t} \neq f_{(r,s)_{ij}}\\ [xf_{(r,s)_{ij}}(f_{(r,s)_{ij}}]_{D}, & \text{if } f_{(r,s)_{ij}}, \end{cases}$$

- The minimal polynomial $f_{(r,s)_{ij}}$ defines the solution of one round of poly. update w.r.t. $(r, s)_{ij}$.
- If such a group expansion procedure does not change the identity of $f_{(r,s)_{ij}}$, $\widetilde{\mathbf{G}}_{v-1}$ and $\Delta \widetilde{\mathbf{G}}_v$ can indeed be found separately.

Lemma 1: For all the polynomials $f_{(r,s)_{ij}}$ with $(r,s)_{ij} \in \Lambda(M_{v-1})$, we have

 $\log(f_{(r,s)_{ij}}) < \log(y^{l_{v-1}+1}). \implies (f_{(r,s)_{ij}} < y^{l_{v-1}+1})$

- The identity of the existing $f_{(r,s)_{ij}}$ is left unchanged. Consequently, the solution of $\tilde{\mathbf{G}}_{v-1}$ remains intact.
- Therefore, $\mathbf{G}_{v} = \widetilde{\mathbf{G}}_{v-1} \cup \Delta \widetilde{\mathbf{G}}_{v}$

- Average decoding complexity average number of finite field arithmetic operation for decoding one codeword frame;
- \mathcal{P}_{l_v} --- the probability of the decoder is performing a successful decoding with an OLS of l_v ;

 \mathcal{O}_{l_v} --- the decoding complexity with an OLS of l_v ;

• The average decoding complexity is:

• \mathcal{O}_{PASD} is now channel dependent!

• Theorem 2: The decoding complexity of running the PASD algorithm with an OLS of l_v is:

$$\mathcal{O}_{l_v} = O(\mathcal{C}^2(\mathbf{M}_v)(l_v+1)).$$

where
$$C(M) = |\Lambda(M)| = \frac{1}{2} \sum_{i=0}^{q-1} \sum_{j=0}^{n-1} m_{ij}(m_{ij}+1)$$

• \mathcal{O}_{l_v} consists of $\mathcal{O}_{l_v}^{\text{int}}$ and $\mathcal{O}_{l_v}^{\text{fac}}$

$$\mathcal{O}_{l_v}^{\text{int}} = O(\mathcal{C}(\mathbf{M}_v)(\mathcal{C}(\mathbf{M}_v) + 1)(l_v + 1)) \cong O(\mathcal{C}^2(\mathbf{M}_v)(l_v + 1))$$
$$\mathcal{O}_{l_v}^{\text{fac}} = O(k \sum_{\eta=1}^v (\mathcal{C}(\mathbf{M}_\eta) + 1)l_\eta) < O(kv(\mathcal{C}(\mathbf{M}_v) + 1)l_v)$$

since $kv \ll C(M_v)$

$$\mathcal{O}_{l_v}^{ ext{fac}} \ll \mathcal{O}_{l_v}^{ ext{int}}$$
 $\mathcal{O}_{l_v} \cong \mathcal{O}_{l_v}^{ ext{int}}$

• Corollary 3: When l_v is sufficiently large, the decoding complexity \mathcal{O}_{l_v} becomes:

$$\mathcal{O}_{l_v} = O\left(\frac{(k-1)^2}{4}(l_v^5 + l_v^4)\right)$$

- The decoding complexity increases exponentially with the OLS (dominant exponential factor of 5);
- The decoding complexity is quadratic in the dimension of the code *k*. The decoding complexity will be smaller for a low rate code.

 Theorem 4: The probability of the PASD algorithm performing a successful decoding with an OLS of l_v is given as:

$$\mathcal{P}_{l_v} = \Pr[S_{M_v}(\bar{c}) > \Delta_{1,k-1}(\mathcal{C}(M_v)) \text{ and } S_{M_{v-1}}(\bar{c}) \le \Delta_{1,k-1}(\mathcal{C}(M_{v-1}))]$$

• The probability that the algorithm terminates at iteration *v*.

- Determining a closed form expression of \mathcal{P}_{l_v} turns out to be *hard*;
- Motivation of the analysis: link \mathcal{P}_{l_v} with Π (~channel SNR);

$$\quad \text{Define } \mathcal{L} = \left\{ l \mid l > \frac{2 + \frac{\sqrt{n\gamma}}{\sqrt{\sum_{i,j} \pi_{ij}^2}}}{2\gamma[1 - \sqrt{k - 1}\Phi_{\Pi}(\bar{c})]} \right\} \text{ , where } \gamma = \frac{k - 1}{n} \text{ and } \Phi_{\Pi}(\bar{c}) = \frac{\sqrt{\sum_{i,j} \pi_{ij}^2}}{S_{\Pi}(\bar{c})}$$

with OLS greater than the above threshold, successful decoding can be guaranteed.

• We therefore interpret \mathcal{P}_{l_v} as:

$$\mathcal{P}_{l_v} \cong \Pr[l_v = \min \mathcal{L}].$$

- Study the possible quantization of the OLS threshold
- AWGN channel, we vary the SNR ... In case of a 'bad' channel (e.g., SNR → -∞): π_{ij} ≅ 1/q for all π_{ij} ∈ Π. √∑_{i,j}π²_{ij} ≅ √ⁿ/_q. S_Π(c̄) ≅ ⁿ/_q Φ_Π(c̄) ≅ √^q/_n In case of a 'good' channel (e.g., SNR → +∞): π_{ij} ≅ 1 if i = i_j, and π_{ij} ≅ 0 otherwise √∑_{i,j}π²_{ij} ≅ √n. S_Π(c̄) ≅ n Φ_Π(c̄) ≅ ¹/_{√n}
 By refining ¹/_{√n} ≤ Φ_Π(c̄) < ¹/_{√k-1},

we can see the OLS threshold is a decreasing function of SNR.

$$Recall \quad \mathcal{P}_{l_v} \cong \Pr[l_v = \min \mathcal{L}], \quad \mathcal{L} = \left\{ l \mid l > \frac{2 + \frac{\sqrt{n\gamma}}{\sqrt{\sum_{i,j} \pi_{ij}^2}}}{2\gamma[1 - \sqrt{k - 1}\Phi_{\Pi}(\bar{c})]} \right\}$$

 \mathcal{P}_{l_v} will be in favor of smaller l_v values by increasing SNR!

• *Recall* the average decoding complexity definition:

IV. Simulation Statistics

- $\mathcal{P}_{l_v} \sim \text{SNR}$ for the (63, 47) RS code with $l_1 = 1$, l' = 1 and $l_T = 5$
- AWGN channel

\mathcal{P}_{l_v} (%) SNR (dB)	2	3	4	5	6	7	8
\mathcal{P}_{l_1}	0.00	0.00	3.71	32.54	78.55	97.13	99.87
\mathcal{P}_{l_2}	0.00	1.51	28.47	56.30	21.25	2.87	0.13
\mathcal{P}_{l_3}	0.00	1.61	15.92	6.59	0.17	0.00	0.00
\mathcal{P}_{l_4}	0.00	1.23	9.68	1.95	0.02	0.00	0.00
\mathcal{P}_{l_5}	0.00	1.22	5.54	0.77	0.00	0.00	0.00

IV. Simulation Results

- \mathcal{O}_{PASD} ~ SNR for the (63, 47) RS code with $l_T = 3, 5, 7$.
- AWGN channel

IV. Simulation Results

\$\mathcal{O}_{PASD}\$ ~ SNR for the (15, 11) and (15, 5) RS codes with \$l_T = 1, 3, 5, 10\$
 AWGN channel

V. Error-Correction Performance

- PASD ~ ASD with same decoding parameter l_T ;
- For PASD, decoding output is validated by CRC code;
- For ASD, decoding output is validated by the ML criterion;
- For the (63, 47) RS code, over AWGN channel:

VI. Conclusions

- A progressive algebraic soft-decision decoding approach;
- Two key steps of PASD: progressive reliability transform & progressive interpolation;
- Enables the complexity dominant interpolation process to be performed in an iterative manner, and the incremental computation between iterations is possible;
- The average decoding complexity of the PASD algorithm is channel dependent and hence it has been optimized according to the needs;
- Error-correction performance is also preserved.
- A larger system memory is required.

Acknowledgement

Project: Advanced coding technology for future storage devices; ID: 61001094; From 2011. 1 to 2013. 12.

Also funded by the Guangdong Natural Science Foundation (GNSF).
 Project: Research on adaptable list decoding system;
 ID: 10451027501005078; From 2010. 10 to 2012. 10.