Progressive Algebraic Soft-Decision
Decoding of Reed-Solomon Codes

Li Chen ([¥%37) , PhD, MIEEE

Associate Professor, School of Information Science and Technology
Sun Yat-sen University, China

Joint work with Prof. Xiao Ma and Mrs. Siyun Tang

Hangzhou, China
5% Nov, 2011




Outline

Introduction

Progressive ASD (PASD) algorithm
Validity analysis

Complexity analysis
Error-correction performance

Conclusions



|. Introduction of list decoding
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\ |. Overview of Enc. & Decd.

=  Encoding
Given a message polynomial: u(x) = uy + ux + --- + u,_x*1 (u; EGF(q))

Generate the codeword of an (n, k) RS code
- Coop) = (U(ag), U(ary), ..., U(oy1))

a
a
c=(cy Cy, .-
=  Decoding
11 Reliab. Trans.

Y/
v

[m->M

(o €GF(a){0})

Interpolation

Q(x,y)

Factorization L
Q(X, p(x)) -

Computationally
expensive step!




Perf. of AHD and ASD

Algebraic hard-decision decoding (AHD) [Guruwammi99] (-GS Alg)
Algebraic soft-decision decoding (ASD) [Koetter03] (-KV Alg)
Advantage on error-correction performance

Performance of RS (63, 31) over AWGN channel
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\ |. Introduction

= Price to pay{decoding complexity

Decoding complexity of GS decoding of RS (63, 31) code
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1. Inspirations

The algebraic soft decoding is of high complexity. It is mainly due to the iterative
interpolation process;

= A modernized thinking — the decoding should be flexible (i.e., channel dependent).

= A E.qg.. the belief propagation algorithm
=2
= The current AHD/ASD system R —
— 5| Initialisation [«
\
g Horizontal step
g2 \
S Vertical step
Hard decision
E é No
> AHT — 07
bad good ch 0




=1

- | =2
_{CS’CG’C7’CQ’C10} |—3
1=4
=5

IL| - factorization output list size

— L={c,,c,.c,,Cy,Cp}

Enlarging the decoding radius progressively = Enlarging the factorization OLS progressively



Progressive
Interpolation

Progressive
reliab. trans.

Interpolation Factorization

O, y) L

Validated by
CRC code!

e Terminate

No decoding &
output u(x)

No

Terminate e

decoding &
declare failure

Update the iteration indexv=v + 1
Update the OLS [, =1, + [';

v — iteration index;

|, -- designed OLS at each iteration;

|, -- designed maximal OLS (~the maximal complexity that the system can tolerate);
[’— step size for updating the OLS, | ,, =1, + [,




I1. Progressive approach

Enlarge the decoding radius - Enlarge the OLS

Progressive decoding

Series of OLS: 1, I, ...... .

Series of M mtxs.: My, M,, ...... , My, M, ...... , My

T

Series of Q polys.: QW, Q@ ... ... , Qv QW ... , QM

Question: Can the solution of Q™ be found based on the knowledge of QV-1)?




[1. Incremental interpolation constraints

Multiplicity m;; ~ interpolated point (x;, o;)
Given a polynomial Q(x, y), m;; implies lm__ (m; +1) constraints of
2

Dr,s(_Q(Iey])|a‘=£J._y=mz = Z (T‘)( )Qa o b =0 (r+5<mij)

azrbh>s

Definition 1: Let A(m;;) denote a set of interpolation constraints (r, s); indicated by m;;, then
A(M) denotes a collection of all the sets A(m;;) defined by the entry m;; of M

AM) = {A(my;), ¥V my; € M}

=== A(M) = {(0, 0)go, (1, 0)gp, (0, 1)go, (0, 0)ys,
(O’ 0)12’ (O’ 0)20’ (O’ 0)21' (1’ 0)211
(O’ 1)21’ (O’ 0)32}

Example: M =

OFRr ON

ONRERO
R ORO




I1. Incremental Interp. Constr.

Definition 2: Let m;** and m;;¥ denote the entries of matrix M,.; and M,, the incremental
interpolation constraints introduced between the matrices are defined as a collection of all the
residual sets between A(m;') and A(m;"?) as:

A(AM,) = {A(M,) \ AM, 1) } = {A(m];) \ s“;{??i.;‘;l}, v m;; € M, and m’;}-‘l e My_1}
(2 0 O] 1 0O O]
. |01 1 0O 0 1
Example: M, = 1 2 0 M, = 1 1 0
0 0 1] 0O 0 1
A(Mg) =H(0, 0)go, (1, 0)go: (0, L)oo, A(M,) ={(0, 0)y, (0, 0),5,
(0, 0)11, (0, 0)2, (0, 0),, (0, 0) 5, (0, 0),4, (0, 0)3,}
(0, 0)21, (1, 0)21, (0, 1)z,
0,0 —_— _
(0, 0)z2 \ 5 constraints
10 constraints A(AMy) 3 {(1, )5, (0, D)o, (0, 0)y,

(1, 0),, (0, 1),,} 5 constraints




s AMyp) = A(AM;) UA(AM,) U--- U A(AM,) U --- U A(AMy).

= A(AM,) defines the interpolation task of iteration v.




11, Incremental Computations

= Review on the interpolation process — iterative polynomial construction
= Given M,, the interpolation constraints are A(M,)

= The polynomial group is: G, = {go, 9;, --., 9.}, (deg,9, = 1,)

= The iterative process _
J(r.)., defines the outcome of

For (r, s); EA(M,) the updated group.

f{r’s}‘ij — nlln{gt | D{r?"sjij (gt) 7& U} \

‘ For each g, € Gv

Gt if I){r.s}U (gt) =0

9t =\ [9t: fr,s)., ] if Dirs),, (90) # 0 and g¢ # firs),,

X [If{r,s}t_, ’ f["‘ﬁ}u]ﬂ! if f[T‘,S;I;J :

Finally, Q¥ = min{g, | 9, € G, }



[1. Incremental Computations

From iterationv-1tov ...

The progressive interpolation can be seen as a progressive polynomial
group expansion which consists of two successive stages.

Let Go1 = {30, 41,- ... g} be the outcome of iteration v-1.

During the generation of G,_: , a series of fi~«)., with (r, 5);; € AM,,) are
identified and stored.

Expansion I: expand the number of polynomials of the group
Polynomials of AG, perform interpolation w.r.t. constraints of A(M,,,);

Polynomials f...),, are re-used for the update of AG,,
Let AG, be the updated outcome of AG,and G. = G._1 U AG,.



11 Incremental Computations

= Expansion I1: expand the size of polynomials of the group G,

= Polynomials of G, will now perform interpolation w.r.t. the incremental
constraints A(AM,), yielding G, .

| Finally, Q{U}(:E, y) =min{g; | g € év}

= => Visualize the polynomial group expansion Expansion |
E.g.l,=5
91 92 93 94 95 Os 9: 92 93 91 95 O

)

|| uoisuedx3
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I1. Progressive Interpolation

The process of progressive interpolation
Ml’ Mz, M3, cee o MV-l’ MV’ ey MT-l’ MT

A(Mi) A(M\Z)! A}(M3)9 ) A(Mv-l) g(lvlv)a R A(MT 1)1 é(MT)
A(AM,) | A(AM) A(AM,) A(AMy)
Gl ICEZ G3 ...... GV_Il .GV GTl_l I GT
—r— — B -
AG, AG, AG, AG;
QW Q@  Q® Qu-1) QU QM

—io
If QW(x, u(x)) = 0, the decoding will be terminated.

Multiple factorizations are carried out in order to determine whether u(x) has been found!



111, Validity Analysis

= Forany two (ry, Sy)ij; and (ry, Sp)ipjp OF A(My):
(Fy Soigjn = (I, Sp)igj <==> (I, Sp)igje == (', S1)iajn

= The algorithm imposes a progressive interpolation order

A(My)

O The (r, s);; to be satisfied.
@ The satisfied (r, s);;.




[11. Validity Analysis

Decoding with an OLS of |, the solution Q(X, y) is seen as the minimal
candidate chosen from the cumulative kernel K¢y,

Keom) = {Q € Fla,y] | Du(Q) = 0¥ w e AM,), deg,Q <1,)
Q(z.y) = min{Q € Kcpm,) }
For both of the algorithms:
AM,) = AAM))UA(AM)U- - -UA(AM,)

the same set of constraints are defined for the cumulative kernel;

Consequently, they will offer the same solution of Q(X, y).



[11. Validity Analysis

In the end of Expansion |, G, = G,_,; UAG,
Can G,_, and AG, be found separately?

Recall the polynomial updating rules

F

_ o £
. if D[r:s]ﬁ'&gh’ =0

gt = 9 :-g.D lf D[T:S:lﬁ. I:I:.gf.':l % U and .gf.' ;é f';r:sjlij
\ :j:fl;T:S:lfj D'. if fl;r:sjli:; :

« The minimal polynomial f(~s);, defines the solution of one round of poly.

update w.r.t. (r, S);:

« If such a group expansion procedure does not change the identity of Jr9)ij
G,_; and AG, can indeed be found separately.




[11. Validity Analysis

Lemma 1: For all the polynomials f. .. with (r.s);; € A(M,_,), we have

lod(fr.s),,) < lod(y"= 7). = (fir,s);; < y1H)

Expansion |: update AG, to AG, w.r.t. constraint of A(M,_,)

— No update is required

{ L0 AS i -
For (r,s)iy; € A(M,_1) —< ~ f{r:sju IS INn memory,
Since fro)i; <g*(of AG))

f (r,s):;; Will be re-used

— Update is required—

- fur:s)u IS not in memory, it will be
picked up from AG,

The identity of the existing /s, is left unchanged. Consequently, the
solution of G remains intact.

v—1

Therefore, G, =G,_, UAG,



V. Complexity Analysis

Average decoding complexity — average number of finite field arithmetic
operation for decoding one codeword frame;

Py, --- the probability of the decoder is performing a successful decoding
with an OLS of |;

Oy, --- the decoding complexity with an OLS of |,;

The average decoding complexity is:

T T
Opasp = Z P, O, + (1 — Z P, ) O
-[r:l 'U:j.
\ | \ Y J
Decoding succ. Decoding fail.

Opasp is now channel dependent!



V. Complexity Analysis

® Theorem 2: The decoding complexity of running the PASD algorithm with an OLS of [, 1s:

Oy, = O(C*(M,)(1, + 1)).

—1n-1

A(M)] Z Z mj (1M +

1[]'_3

where C(M) =

=, consists of O and Of<
Off = O(C(M,)(C(M,) + 1) (I, + 1)) = O(C*(M,) (I, + 1))

Opc = O fLZ M,)+1)l,) < O(kv(C(M,) + 1)L,

=
since kv < C(M,)

Ofc < O

i geyint
O, =07




V. Complexity Analysis

w  Corollary 3: When [, 1s sufficiently large. the decoding complexity (J;, becomes:

(k —1)?
4

0. =0 @ +18)

= The decoding complexity increases exponentially with the OLS (dominant
exponential factor of 5);

= The decoding complexity is quadratic in the dimension of the code k. The decoding
complexity will be smaller for a low rate code.




V. Complexity Analysis

u  Theorem 4: The probability of the PASD algorithm performing a successful decoding
with an OLS of [, is given as:

rPIi, = PI[SMF(E) - &11;;_1(C(MU)) and SML-_l(E) i &1,;;_1((3(1\"_[1_-_1))]

= The probability that the algorithm terminates at iteration v.

lter. 1. S,,,(c) <A(C(M,))
lter. 2. S,,(C) <A(C(M,))

lter. v-1: S,,.4(c) < A(C(M..))
Iter.v:  §,,,(c) >A(C(M,)) == Exit!




V. Complexity Analysis

Determining a closed form expression of 7, turns out to be hard;

Motivation of the analysis: link 7, with IT (~channel SNR);

2+ vy :
' ' 2"‘;[1 — k — I(I)H (E)] ’ ' 1 I Sl'[ (E) ]

with OLS greater than the above threshold, successful decoding can be guaranteed.

We therefore interpret P, as:

Pi, = Pr[l, =min L]



V. Complexity Analysis

Study the possible quantization of the OLS threshold V &
29[1 — Vk — 1@ ()]

AWGN channel, we vary the SNR ...
In case of a ‘bad’ channel (e.g., SNR 2 -o0): 7;; = 1/q for all 7;; € II

Vi = 2 Sn@ =2 en(e) =,/

In case of a ‘good’ channel (e.g., SNR 2|t 0): m; = 1 if 7 = ¢;. and m; = 0
otherwise

VZ:J ij = \/ﬁ SHISE) =n (I)H(E) = #

By refinin L-::<1> () < !
y g \/ﬁ I1 . ,—k —1 ,
we can see the OLS threshold is a decreasing function of SNR.
2+ VT
VZ‘ L
Recall P, = Pr[l, = min L], f,:{f.'g} J }
[ I'[ ] | 2(_\{[1 - v_fk—_ 1(1)1_1 (Ejl]

Pr, will be in favor of smaller |, values by increasing SNR!



V. Complexity Analysis

= Recall the average decoding complexity definition:

T T
Opasp = Z P, O, + (1 — Z Pr,) O

v=1 v=1
In a sufficiently ‘good’ channel: In a ‘bad’ enough channel:

P, = land Opasp = Oy, P, P, ... > 0and Opasp = Oy,




V. Simulation Statistics

Fi, ~ SNR for the (63, 47) RS code withI; =1,/’=1and I, =5
AWGN channel

P 8) SNR(AB) |5 | 5 4 5 6 7 8
P, 0.00 | 0.00 | 3.71 | 32.54 | 78.55 | 97.13 | 99.87
P, 0.00 | 1.51 | 2847 | 56.30 | 21.25 | 2.87 | 0.13
P, 0.00 | 1.61 | 1592 | 6.59 | 0.17 | 0.00 | 0.00
P, 0.00 | 1.23 | 968 | 1.95 | 0.02 | 0.00 | 0.00
P 0.00 | 1.22 | 554 | 0.77 | 0.00 | 0.00 | 0.00




\ V. Simulation Results

» Opasp ~ SNR for the (63, 47) RS code with 1. =3, 5, 7.
= AWGN channel
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\ V. Simulation Results

» Opasp ~ SNR for the (15, 11) and (15, 5) RS codes with |, =1, 3, 5, 10
= AWGN channel
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‘ V. Error-Correction Performance

= PASD ~ ASD with same decoding parameter I;

= For PASD, decoding output is validated by CRC code;

= For ASD, decoding output is validated by the ML criterion;
= Forthe (63, 47) RS code, over AWGN channel:

LE+00

——AHD (m—5 =) |
——ASD ([, — =9
—&-ASD(L=2)
—A—PASD ([, =2)
—©-ASD( [ =4)
—o—PASD ([ =4)
—2-ASD ([, =T)
—6-PASD ([, =T) |

1.E-01

1LE-04

LLE-05

1.E-D6

4 45 5 5.5 6 6.5 7
SNE (dB})




V1. Conclusions

A progressive algebraic soft-decision decoding approach;

Two key steps of PASD: progressive reliability transform & progressive
interpolation;

Enables the complexity dominant interpolation process to be performed in
an iterative manner, and the incremental computation between iterations is
possible;

The average decoding complexity of the PASD algorithm is channel
dependent and hence it has been optimized according to the needs;

Error-correction performance is also preserved.

A larger system memory is required.
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