
Progressive Algebraic Soft-Decision

Decoding of Reed-Solomon Codes

 Li Chen （陈立）, PhD, MIEEE

 Associate Professor, School of Information Science and Technology

 Sun Yat-sen University, China

 Joint work with Prof. Xiao Ma and Mrs. Siyun Tang

 Hangzhou, China

 5th, Nov, 2011

Outline

 Introduction

 Progressive ASD (PASD) algorithm

 Validity analysis

 Complexity analysis

 Error-correction performance

 Conclusions

I. Introduction of list decoding
 Decoding philosophy evolution of an (n, k) RS code

Unique decoding List decoding








 


2

kn
unique   1)1( knnlist

I. Overview of Enc. & Decd.

 Encoding

 Given a message polynomial: u(x) = u0 + u1x + ··· + uk-1x
k-1

 Generate the codeword of an (n, k) RS code

 c = (c0, c1, …, cn-1) = (u(α0), u(α1), …, u(αn-1))

 Decoding

 Interpolation

Q(x, y)

Factorization

Q(x, p(x))

L Reliab. Trans.

Π  M

Π M

Computationally

expensive step!

(ui ∈GF(q))

(αi ∈GF(q)\{0})

I. Perf. of AHD and ASD
 Algebraic hard-decision decoding (AHD) [Guruwammi99] (-GS Alg)

 Algebraic soft-decision decoding (ASD) [Koetter03] (-KV Alg)

 Advantage on error-correction performance

I. Introduction
 Price to pay: decoding complexity

I. Inspirations
 The algebraic soft decoding is of high complexity. It is mainly due to the iterative

interpolation process;

 A modernized thinking – the decoding should be flexible (i.e., channel dependent).

Quality of the received word

C
o

m
p

le
x

it
y

bad good

lo
w

h

ig
h

 E.g., the belief propagation algorithm

The current AHD/ASD system 

Initialisation

Horizontal step

Vertical step

Hard decision

ĉ
?0ˆ THc

Yes, ĉ

No

Iterative proc. Incremental comp. Continues validat.

II. A Graphical Introduction

ASD () 5l  PASD () 1 2 3 4 5l     

c1 c2 c3

c4 c5 c6 c7

c8 c9 c10

r

c1 c2 c3

c4 c5 c6 c7

c8 c9 c10

r

5 6 7 9 10{ , , , , }L c c c c c

6

6 9

6 9 10

5 6 9 10

5 6 7 9 10

1 { }

2 { , }

3 { , , }

4 { , , , }

5 { , , , , }

l L c

l L c c

l L c c c

l L c c c c

l L c c c c c

  

  

  

  

  

Enlarging the decoding radius progressively  Enlarging the factorization OLS progressively

|L| - factorization output list size

Ⅱ. Decoding architecture

v – iteration index;

lv -- designed OLS at each iteration;

lT -- designed maximal OLS (~the maximal complexity that the system can tolerate);

l’– step size for updating the OLS, lv+1 = lv + l’;

Progressive

reliab. trans.

Progressive

Interpolation

Validated by

CRC code!

II. Progressive approach

 Enlarge the decoding radius  Enlarge the OLS

 Progressive decoding

Π

Series of OLS: l1, l2, ……, lv-1, lv, ……, lT

Series of M mtxs.: M1, M2, ……, Mv-1, Mv, ……, MT

Series of Q polys.: Q(1), Q(2), ……, Q(v-1), Q(v), ……, Q(T)

Question: Can the solution of Q(v) be found based on the knowledge of Q(v-1)?

II. Incremental interpolation constraints

 Multiplicity mij ~ interpolated point (xj, αi)

 Given a polynomial Q(x, y), mij implies constraints of

 Definition 1: Let Λ(mij) denote a set of interpolation constraints (r, s)ij indicated by mij, then

Λ(M) denotes a collection of all the sets Λ(mij) defined by the entry mij of M

 Example:

 



















100

021

110

002

M Λ(M) = {(0, 0)00, (1, 0)00, (0, 1)00, (0, 0)11,

 (0, 0)12, (0, 0)20, (0, 0)21, (1, 0)21,

 (0, 1)21, (0, 0)32}

(r + s < mij)

)1+(
2

1
ijij mm

M

 Definition 2: Let mij
v-1 and mij

v denote the entries of matrix Mv-1 and Mv, the incremental

interpolation constraints introduced between the matrices are defined as a collection of all the

residual sets between Λ(mij
v) and Λ(mij

v-1) as:

 Example:

II. Incremental Interp. Constr.





















100

011

100

001

1M

Λ(M2) = {(0, 0)00, (1, 0)00, (0, 1)00,

 (0, 0)11, (0, 0)12, (0, 0)20,

 (0, 0)21, (1, 0)21, (0, 1)21,

 (0, 0)32}





















100

021

110

002

2M

Λ(M1) = {(0, 0)00, (0, 0)12,
 (0, 0) 20, (0, 0)21, (0, 0)32}

Λ(ΔM2) = {(1, 0)00, (0, 1)00, (0, 0)11,

 (1, 0)21, (0, 1)21}

10 constraints

5 constraints

5 constraints

M2 M1

II. Progressive Interpolation

 A big chunk of interpolation task Λ(ΜT) can be sliced into smaller pieces.



 Λ(ΔΜv) defines the interpolation task of iteration v.

Λ(ΜT)

Λ(ΔΜ1)

Λ(ΔΜ2)

Λ(ΔΜ3)

Λ(ΔΜT)

Λ(ΔΜv)

...
...

II. Incremental Computations

 Review on the interpolation process – iterative polynomial construction

 Given Mv, the interpolation constraints are Λ(Μv)

 The polynomial group is: Gv = {g0, g1, …, gv}, (degygv = lv)

 The iterative process

For (r, s)ij ∈Λ(Μv)

For each gt ∈ Gv

Finally, Q(v) = min{gt | gt ∈ Gv}

 defines the outcome of

the updated group.

II. Incremental Computations

 From iteration v-1 to v …

 The progressive interpolation can be seen as a progressive polynomial

group expansion which consists of two successive stages.

 Let be the outcome of iteration v-1.

 During the generation of , a series of with (r, s)ij∈Λ(Μv-1) are

identified and stored.

 Expansion I: expand the number of polynomials of the group

 Polynomials of ΔGv perform interpolation w.r.t. constraints of Λ(Μv-1);

 Polynomials are re-used for the update of ΔGv.

 Let be the updated outcome of ΔGv and

II. Incremental Computations

 Expansion II: expand the size of polynomials of the group

 Polynomials of will now perform interpolation w.r.t. the incremental

constraints Λ(ΔΜv), yielding .

 Finally,

  Visualize the polynomial group expansion Expansion I

E
xp

a
n
sio

n
 II

g1 g2 g3 g4 g5 g6 g1 g2 g3 g4 g5 g6

ASD PASD

E.g., lv = 5

II. Progressive Interpolation
 The process of progressive interpolation

 M1, M2, M3, … , Mv-1, Mv, …, MT-1, MT

 Λ(M1), Λ(M2), Λ(M3), …, Λ(Mv-1), Λ(Mv), …, Λ(MT-1), Λ(MT)

 G1 G2 G3 …… Gv-1 Gv GT-1 GT

 Multiple factorizations are carried out in order to determine whether u(x) has been found!

Λ(ΔM2) Λ(ΔM3) Λ(ΔMv)
Λ(ΔMT)

ΔG2
ΔG3 ΔGv ΔGT

Q(1) Q(2) Q(3) Q(v) Q(T-1) Q(T) Q(v-1)

If Q(v)(x, u(x)) = 0, the decoding will be terminated.

III. Validity Analysis

 For any two (r1, s1)i1j1 and (r2, s2)i2j2 of Λ(ΜT):

 (r1, s1)i1j1 (r2, s2)i2j2 <==> (r2, s2)i2j2 (r1, s1)i1j1

 The algorithm imposes a progressive interpolation order

Λ(ΜT)

Λ(ΔΜ1)

Λ(ΔΜ2)

Λ(ΔΜ3)

Λ(ΔΜT)

Λ(ΔΜv)

...
...

The (r, s)ij to be satisfied.

The satisfied (r, s)ij.

III. Validity Analysis

 Decoding with an OLS of lv, the solution Q(x, y) is seen as the minimal

candidate chosen from the cumulative kernel

 For both of the algorithms:

 the same set of constraints are defined for the cumulative kernel;

 Consequently, they will offer the same solution of Q(x, y).

III. Validity Analysis

 In the end of Expansion I,

 Can and be found separately?

 Recall the polynomial updating rules

• The minimal polynomial defines the solution of one round of poly.

update w.r.t. (r, s)ij.

• If such a group expansion procedure does not change the identity of ,

 and can indeed be found separately.

III. Validity Analysis



 Expansion I: update to w.r.t. constraint of

 The identity of the existing is left unchanged. Consequently, the

solution of remains intact.

 Therefore,

For

No update is required

Update is required

is in memory,

Since < g*(of ΔGv)

is not in memory, it will be

picked up from ΔGv.

will be re-used

(<)

IV. Complexity Analysis

 Average decoding complexity – average number of finite field arithmetic

operation for decoding one codeword frame;

 --- the probability of the decoder is performing a successful decoding

with an OLS of lv;

 --- the decoding complexity with an OLS of lv;

 The average decoding complexity is:

 is now channel dependent!

Decoding succ. Decoding fail.

IV. Complexity Analysis



 where

 consists of and

 since

IV. Complexity Analysis



 The decoding complexity increases exponentially with the OLS (dominant

exponential factor of 5);

 The decoding complexity is quadratic in the dimension of the code k. The decoding

complexity will be smaller for a low rate code.

IV. Complexity Analysis



 The probability that the algorithm terminates at iteration v.

SM1(c) ≤ Δ(C(M1))

SM2(c) ≤ Δ(C(M2))

SMv-1(c) ≤ Δ(C(Mv-1))

SMv(c) > Δ(C(Mv))

…
…

…
…

Exit!

Iter. 1:

Iter. 2:

Iter. v-1:

Iter. v:

…
…

IV. Complexity Analysis

 Determining a closed form expression of turns out to be hard;

 Motivation of the analysis: link with Π (~channel SNR);

 Define , where and ,

 with OLS greater than the above threshold, successful decoding can be guaranteed.

 We therefore interpret as:

IV. Complexity Analysis

 Study the possible quantization of the OLS threshold

 AWGN channel, we vary the SNR …

 In case of a ‘bad’ channel (e.g., SNR  -∞):

 In case of a ‘good’ channel (e.g., SNR  + ∞):

 By refining ,

 we can see the OLS threshold is a decreasing function of SNR.

 Recall ,

 will be in favor of smaller lv values by increasing SNR!

IV. Complexity Analysis

 Recall the average decoding complexity definition:

In a sufficiently ‘good’ channel:

  1 and

In a ‘bad’ enough channel:

 …  0 and

IV. Simulation Statistics

 ~ SNR for the (63, 47) RS code with l1 = 1, l’= 1 and lT = 5

 AWGN channel

IV. Simulation Results

 ~ SNR for the (63, 47) RS code with lT = 3, 5, 7.

 AWGN channel

IV. Simulation Results

 ~ SNR for the (15, 11) and (15, 5) RS codes with lT = 1, 3, 5, 10

 AWGN channel

V. Error-Correction Performance

 PASD ~ ASD with same decoding parameter lT;

 For PASD, decoding output is validated by CRC code;

 For ASD, decoding output is validated by the ML criterion;

 For the (63, 47) RS code, over AWGN channel:

VI. Conclusions
 A progressive algebraic soft-decision decoding approach;

 Two key steps of PASD: progressive reliability transform & progressive

interpolation;

 Enables the complexity dominant interpolation process to be performed in

an iterative manner, and the incremental computation between iterations is

possible;

 The average decoding complexity of the PASD algorithm is channel

dependent and hence it has been optimized according to the needs;

 Error-correction performance is also preserved.

 A larger system memory is required.

Acknowledgement



 Project: Advanced coding technology for future storage devices;

 ID: 61001094; From 2011. 1 to 2013. 12.

 Also funded by the Guangdong Natural Science Foundation (GNSF).

 Project: Research on adaptable list decoding system;

 ID: 10451027501005078; From 2010. 10 to 2012. 10.

