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I. Introduction of list decoding 
 Decoding philosophy evolution of an (n, k) RS code 
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I. Overview of Enc. & Decd. 

 Encoding 

 Given a message polynomial: u(x) = u0 + u1x + ··· + uk-1x
k-1

 

 Generate the codeword of an (n, k) RS code 

   c = (c0, c1, …, cn-1) = (u(α0), u(α1), …, u(αn-1)) 

 

 Decoding 

 

 

 Interpolation 

Q(x, y) 

Factorization 

Q(x, p(x)) 

L Reliab. Trans. 

Π  M 

Π M 

Computationally 

expensive step! 

(ui ∈GF(q)) 

(αi ∈GF(q)\{0}) 



I. Perf. of AHD and ASD 
 Algebraic hard-decision decoding (AHD) [Guruwammi99] (-GS Alg) 

 Algebraic soft-decision decoding (ASD) [Koetter03] (-KV Alg) 

 Advantage on error-correction performance 



I. Introduction 
 Price to pay: decoding complexity 



I. Inspirations 
 The algebraic soft decoding is of high complexity. It is mainly due to the iterative 

interpolation process; 

 A modernized thinking – the decoding should be flexible (i.e., channel dependent).  
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 E.g.,  the belief propagation algorithm 

 
The current AHD/ASD system 

Initialisation 

Horizontal step  

Vertical step 

Hard decision 
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Iterative proc. Incremental comp. Continues validat. 



II. A Graphical Introduction 
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Enlarging the decoding radius progressively  Enlarging the factorization OLS progressively 

|L| - factorization output list size 



Ⅱ. Decoding architecture 

v – iteration index; 

lv -- designed OLS at each iteration; 

lT -- designed maximal OLS (~the maximal complexity that the system can tolerate); 

l’–  step size for updating the OLS, lv+1 = lv + l’; 

Progressive 

reliab. trans. 

Progressive 

Interpolation 

Validated by 

CRC code! 



II. Progressive approach 

 Enlarge the decoding radius  Enlarge the OLS 

 

 Progressive decoding 

Π 

Series  of OLS:   l1,    l2, ……,     lv-1,    lv, ……,    lT    

Series  of M mtxs.:  M1,  M2, ……,   Mv-1,  Mv, ……, MT    

Series  of Q polys.:  Q(1), Q(2), ……,  Q(v-1), Q(v), ……, Q(T)    

Question: Can the solution of Q(v) be found based on the knowledge of Q(v-1)? 



II. Incremental interpolation constraints 

 Multiplicity mij ~ interpolated point (xj, αi) 

 Given a polynomial Q(x, y), mij implies                         constraints of   

 

 

 

 Definition 1: Let Λ(mij) denote a set of interpolation constraints (r, s)ij indicated by mij, then 

Λ(M) denotes a collection of all the sets Λ(mij) defined by the entry mij of M 

     

 

 

 

 Example:  
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 (0, 0)12,  (0, 0)20, (0, 0)21, (1, 0)21,  
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 Definition 2: Let mij
v-1 and mij

v denote the entries of matrix Mv-1 and Mv, the incremental 

interpolation constraints introduced between the matrices are defined as a collection of all the 

residual sets between Λ(mij
v) and Λ(mij

v-1) as: 

 

 

 

 

 Example: 

   

 

 

 

II. Incremental Interp. Constr. 
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Λ(M2) = {(0, 0)00, (1, 0)00, (0, 1)00, 

 (0, 0)11, (0, 0)12, (0, 0)20, 

 (0, 0)21, (1, 0)21, (0, 1)21, 

 (0, 0)32} 
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Λ(M1) = {(0,  0)00, (0, 0)12, 
 (0, 0) 20, (0, 0)21, (0, 0)32} 

Λ(ΔM2) = {(1, 0)00, (0, 1)00, (0, 0)11,  

   (1, 0)21, (0, 1)21} 

10 constraints 

5 constraints 

5 constraints 

M2 M1 



II. Progressive Interpolation 

 A big chunk of interpolation task Λ(ΜT) can be sliced into smaller pieces. 

 

 

 

 

 

 

 

 

 

   

 

 Λ(ΔΜv) defines the interpolation task of iteration v. 

 

 

Λ(ΜT) 

Λ(ΔΜ1) 

Λ(ΔΜ2) 

Λ(ΔΜ3) 

Λ(ΔΜT) 

Λ(ΔΜv) 

... 
... 



II. Incremental Computations 

 Review on the interpolation process – iterative polynomial construction  

 Given Mv, the interpolation constraints are Λ(Μv) 

 The polynomial group is: Gv = {g0, g1, …, gv}, (degygv = lv) 

 

 The iterative process 

 
For (r, s)ij ∈Λ(Μv) 

For each gt ∈ Gv  

Finally, Q(v) = min{gt | gt ∈ Gv}  

          defines the outcome of 

the updated group. 



II. Incremental Computations 

 From iteration v-1 to v … 

 The progressive interpolation can be seen as a progressive polynomial 

group expansion which consists of two successive stages. 

 Let                                         be the outcome of iteration v-1. 

 During the generation of           , a series of           with (r, s)ij∈Λ(Μv-1) are 

identified and stored. 

 

 Expansion I: expand the number of polynomials of the group 

 

 

 Polynomials of ΔGv perform interpolation w.r.t. constraints of  Λ(Μv-1); 

 Polynomials            are re-used for the update of ΔGv. 

 Let          be the updated outcome of ΔGv and 

 

 

 

 

 

 



II. Incremental Computations 

 Expansion II: expand the size of polynomials of the group 

 Polynomials of         will now perform interpolation w.r.t. the incremental 

constraints Λ(ΔΜv), yielding       . 

 Finally,  

 

  Visualize the polynomial group expansion Expansion I 
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ASD PASD 

E.g., lv = 5 



II. Progressive Interpolation 
 The process of progressive interpolation 

 M1,       M2,       M3,  … ,   Mv-1,     Mv,   …,    MT-1,      MT 

  

 Λ(M1), Λ(M2), Λ(M3), …, Λ(Mv-1), Λ(Mv), …, Λ(MT-1), Λ(MT) 

 

 

   G1        G2         G3   ……  Gv-1       Gv                  GT-1        GT 

 

 

  

 

 

 

 Multiple factorizations are carried out in order to determine whether u(x) has been found!  

Λ(ΔM2) Λ(ΔM3) Λ(ΔMv) 
Λ(ΔMT) 

ΔG2 
ΔG3 ΔGv ΔGT 

Q(1) Q(2) Q(3) Q(v) Q(T-1) Q(T) Q(v-1) 

If Q(v)(x, u(x)) = 0, the decoding will be terminated. 



III. Validity Analysis 

 For any two (r1, s1)i1j1 and (r2, s2)i2j2 of Λ(ΜT): 

 (r1, s1)i1j1            (r2, s2)i2j2 <==> (r2, s2)i2j2           (r1, s1)i1j1  

      

 The algorithm imposes a progressive interpolation order 

Λ(ΜT) 

Λ(ΔΜ1) 

Λ(ΔΜ2) 

Λ(ΔΜ3) 

Λ(ΔΜT) 

Λ(ΔΜv) 

... 
... 

The (r, s)ij to be satisfied. 

The satisfied (r, s)ij. 



III. Validity Analysis 

 Decoding with an OLS of lv, the solution Q(x, y) is seen as the minimal 

candidate chosen from the cumulative kernel 

 

 

 

 For both of the algorithms:  

 

  

 the same set of constraints are defined for the cumulative kernel; 

 

 Consequently, they will offer the same solution of Q(x, y).  



III. Validity Analysis 

 In the end of Expansion I, 

 

 Can           and          be found separately?  

 

 Recall the polynomial updating rules 

• The minimal polynomial                defines the solution of one round of poly.    

update w.r.t. (r, s)ij. 

• If such a group expansion procedure does not change the identity of             ,  

            and               can indeed be found separately. 

 



III. Validity Analysis 

   

 

 

 Expansion I: update          to         w.r.t. constraint of  

 

 

 

 

 

 

 

 The identity of the existing              is left unchanged. Consequently, the 

solution of              remains intact. 

 

 Therefore,  

For 

No update is required 

Update is required 

is in memory,  

Since              < g*(of ΔGv) 

     

   

is not in memory, it will be 

picked up from ΔGv. 

will be re-used 

(             <                ) 



IV. Complexity Analysis 

 Average decoding complexity – average number of finite field arithmetic 

operation for decoding one codeword frame; 

 

        --- the probability of the decoder is performing a successful decoding 

with an OLS of lv; 

        --- the decoding complexity with an OLS of lv; 

 

 The average decoding complexity is: 

 

 

 

 

             is now channel dependent! 

 

Decoding succ. Decoding fail. 



IV. Complexity Analysis 

   

 

 

     where 

 

       consists of        and 

 

 

 

 since   



IV. Complexity Analysis 

   

 

 

 

 The decoding  complexity increases exponentially with the OLS (dominant 

exponential factor of 5); 

 

 The decoding complexity is quadratic in the dimension of the code k. The decoding 

complexity will be smaller for a low rate code. 



IV. Complexity Analysis 

   

 

 

 

 The probability that the algorithm terminates at iteration v.   

SM1(c) ≤ Δ(C(M1)) 

SM2(c) ≤ Δ(C(M2)) 

 

 

SMv-1(c) ≤ Δ(C(Mv-1)) 

SMv(c) > Δ(C(Mv)) 

…
…

 
…
…

 

Exit! 

Iter. 1: 

Iter. 2: 

 

 

Iter. v-1: 

Iter. v: 

…
…

 



IV. Complexity Analysis 

 Determining a closed form expression of         turns out to be hard; 

 

 Motivation of the analysis: link         with Π (~channel SNR); 

 

 

 Define                                                              , where                  and                                 ,                               

 

 with OLS greater than the above threshold, successful decoding can be guaranteed. 

 

 We therefore interpret           as:            



IV. Complexity Analysis 

 Study the possible quantization of the OLS threshold  

 

 AWGN channel, we vary the SNR … 

 In case of a ‘bad’ channel (e.g., SNR  -∞): 

 

 

 In case of a ‘good’ channel (e.g., SNR  + ∞): 

 

 

 

 By refining                                           , 

 

 we  can see the OLS threshold is a decreasing function of SNR. 

 

  Recall                                       , 

 

           will be in favor of smaller lv values by increasing SNR! 



IV. Complexity Analysis 

  Recall the average decoding complexity definition: 

In a sufficiently ‘good’ channel: 

 

          1 and  

  

In a ‘bad’ enough channel: 

 

              …   0 and 

  



IV. Simulation Statistics 

       ~ SNR for the (63, 47) RS code with l1 = 1, l’= 1 and lT = 5 

 AWGN channel 



IV. Simulation Results 

             ~ SNR for the (63, 47) RS code with lT = 3, 5, 7. 

 AWGN channel 

 



IV. Simulation Results 

            ~ SNR for the (15, 11) and (15, 5) RS codes with lT = 1, 3, 5, 10 

 AWGN channel 

 



V. Error-Correction Performance 

 PASD ~ ASD with same decoding parameter lT; 

 For PASD, decoding output is validated by CRC code; 

 For ASD, decoding output is validated by the ML criterion; 

 For the (63, 47) RS code, over AWGN channel: 



VI. Conclusions 
 A progressive algebraic soft-decision decoding approach; 

 

 Two key steps of PASD: progressive reliability transform & progressive 

interpolation; 

 

 Enables the complexity dominant interpolation process to be performed in 

an iterative manner, and the incremental computation between iterations is 

possible; 

 

 The average decoding complexity of the PASD algorithm is channel 

dependent and hence it has been optimized according to the needs; 

 

 Error-correction performance is also preserved. 

 

 A larger system memory is required. 
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