
Progressive Algebraic Soft-Decision

Decoding of Reed-Solomon Codes

 Li Chen （陈立）, PhD, MIEEE

 Associate Professor, School of Information Science and Technology

 Sun Yat-sen University, China

 Joint work with Prof. Xiao Ma and Mrs. Siyun Tang

 Hangzhou, China

 5th, Nov, 2011

Outline

 Introduction

 Progressive ASD (PASD) algorithm

 Validity analysis

 Complexity analysis

 Error-correction performance

 Conclusions

I. Introduction of list decoding
 Decoding philosophy evolution of an (n, k) RS code

Unique decoding List decoding

2

kn
unique 1)1(knnlist

I. Overview of Enc. & Decd.

 Encoding

 Given a message polynomial: u(x) = u0 + u1x + ··· + uk-1x
k-1

 Generate the codeword of an (n, k) RS code

 c = (c0, c1, …, cn-1) = (u(α0), u(α1), …, u(αn-1))

 Decoding

 Interpolation

Q(x, y)

Factorization

Q(x, p(x))

L Reliab. Trans.

Π M

Π M

Computationally

expensive step!

(ui ∈GF(q))

(αi ∈GF(q)\{0})

I. Perf. of AHD and ASD
 Algebraic hard-decision decoding (AHD) [Guruwammi99] (-GS Alg)

 Algebraic soft-decision decoding (ASD) [Koetter03] (-KV Alg)

 Advantage on error-correction performance

I. Introduction
 Price to pay: decoding complexity

I. Inspirations
 The algebraic soft decoding is of high complexity. It is mainly due to the iterative

interpolation process;

 A modernized thinking – the decoding should be flexible (i.e., channel dependent).

Quality of the received word

C
o

m
p

le
x

it
y

bad good

lo
w

h

ig
h

 E.g., the belief propagation algorithm

The current AHD/ASD system

Initialisation

Horizontal step

Vertical step

Hard decision

ĉ
?0ˆ THc

Yes, ĉ

No

Iterative proc. Incremental comp. Continues validat.

II. A Graphical Introduction

ASD () 5l PASD () 1 2 3 4 5l

c1 c2 c3

c4 c5 c6 c7

c8 c9 c10

r

c1 c2 c3

c4 c5 c6 c7

c8 c9 c10

r

5 6 7 9 10{ , , , , }L c c c c c

6

6 9

6 9 10

5 6 9 10

5 6 7 9 10

1 { }

2 { , }

3 { , , }

4 { , , , }

5 { , , , , }

l L c

l L c c

l L c c c

l L c c c c

l L c c c c c

Enlarging the decoding radius progressively Enlarging the factorization OLS progressively

|L| - factorization output list size

Ⅱ. Decoding architecture

v – iteration index;

lv -- designed OLS at each iteration;

lT -- designed maximal OLS (~the maximal complexity that the system can tolerate);

l’– step size for updating the OLS, lv+1 = lv + l’;

Progressive

reliab. trans.

Progressive

Interpolation

Validated by

CRC code!

II. Progressive approach

 Enlarge the decoding radius Enlarge the OLS

 Progressive decoding

Π

Series of OLS: l1, l2, ……, lv-1, lv, ……, lT

Series of M mtxs.: M1, M2, ……, Mv-1, Mv, ……, MT

Series of Q polys.: Q(1), Q(2), ……, Q(v-1), Q(v), ……, Q(T)

Question: Can the solution of Q(v) be found based on the knowledge of Q(v-1)?

II. Incremental interpolation constraints

 Multiplicity mij ~ interpolated point (xj, αi)

 Given a polynomial Q(x, y), mij implies constraints of

 Definition 1: Let Λ(mij) denote a set of interpolation constraints (r, s)ij indicated by mij, then

Λ(M) denotes a collection of all the sets Λ(mij) defined by the entry mij of M

 Example:

100

021

110

002

M Λ(M) = {(0, 0)00, (1, 0)00, (0, 1)00, (0, 0)11,

 (0, 0)12, (0, 0)20, (0, 0)21, (1, 0)21,

 (0, 1)21, (0, 0)32}

(r + s < mij)

)1+(
2

1
ijij mm

M

 Definition 2: Let mij
v-1 and mij

v denote the entries of matrix Mv-1 and Mv, the incremental

interpolation constraints introduced between the matrices are defined as a collection of all the

residual sets between Λ(mij
v) and Λ(mij

v-1) as:

 Example:

II. Incremental Interp. Constr.

100

011

100

001

1M

Λ(M2) = {(0, 0)00, (1, 0)00, (0, 1)00,

 (0, 0)11, (0, 0)12, (0, 0)20,

 (0, 0)21, (1, 0)21, (0, 1)21,

 (0, 0)32}

100

021

110

002

2M

Λ(M1) = {(0, 0)00, (0, 0)12,
 (0, 0) 20, (0, 0)21, (0, 0)32}

Λ(ΔM2) = {(1, 0)00, (0, 1)00, (0, 0)11,

 (1, 0)21, (0, 1)21}

10 constraints

5 constraints

5 constraints

M2 M1

II. Progressive Interpolation

 A big chunk of interpolation task Λ(ΜT) can be sliced into smaller pieces.

 Λ(ΔΜv) defines the interpolation task of iteration v.

Λ(ΜT)

Λ(ΔΜ1)

Λ(ΔΜ2)

Λ(ΔΜ3)

Λ(ΔΜT)

Λ(ΔΜv)

...
...

II. Incremental Computations

 Review on the interpolation process – iterative polynomial construction

 Given Mv, the interpolation constraints are Λ(Μv)

 The polynomial group is: Gv = {g0, g1, …, gv}, (degygv = lv)

 The iterative process

For (r, s)ij ∈Λ(Μv)

For each gt ∈ Gv

Finally, Q(v) = min{gt | gt ∈ Gv}

 defines the outcome of

the updated group.

II. Incremental Computations

 From iteration v-1 to v …

 The progressive interpolation can be seen as a progressive polynomial

group expansion which consists of two successive stages.

 Let be the outcome of iteration v-1.

 During the generation of , a series of with (r, s)ij∈Λ(Μv-1) are

identified and stored.

 Expansion I: expand the number of polynomials of the group

 Polynomials of ΔGv perform interpolation w.r.t. constraints of Λ(Μv-1);

 Polynomials are re-used for the update of ΔGv.

 Let be the updated outcome of ΔGv and

II. Incremental Computations

 Expansion II: expand the size of polynomials of the group

 Polynomials of will now perform interpolation w.r.t. the incremental

constraints Λ(ΔΜv), yielding .

 Finally,

 Visualize the polynomial group expansion Expansion I

E
xp

a
n
sio

n
 II

g1 g2 g3 g4 g5 g6 g1 g2 g3 g4 g5 g6

ASD PASD

E.g., lv = 5

II. Progressive Interpolation
 The process of progressive interpolation

 M1, M2, M3, … , Mv-1, Mv, …, MT-1, MT

 Λ(M1), Λ(M2), Λ(M3), …, Λ(Mv-1), Λ(Mv), …, Λ(MT-1), Λ(MT)

 G1 G2 G3 …… Gv-1 Gv GT-1 GT

 Multiple factorizations are carried out in order to determine whether u(x) has been found!

Λ(ΔM2) Λ(ΔM3) Λ(ΔMv)
Λ(ΔMT)

ΔG2
ΔG3 ΔGv ΔGT

Q(1) Q(2) Q(3) Q(v) Q(T-1) Q(T) Q(v-1)

If Q(v)(x, u(x)) = 0, the decoding will be terminated.

III. Validity Analysis

 For any two (r1, s1)i1j1 and (r2, s2)i2j2 of Λ(ΜT):

 (r1, s1)i1j1 (r2, s2)i2j2 <==> (r2, s2)i2j2 (r1, s1)i1j1

 The algorithm imposes a progressive interpolation order

Λ(ΜT)

Λ(ΔΜ1)

Λ(ΔΜ2)

Λ(ΔΜ3)

Λ(ΔΜT)

Λ(ΔΜv)

...
...

The (r, s)ij to be satisfied.

The satisfied (r, s)ij.

III. Validity Analysis

 Decoding with an OLS of lv, the solution Q(x, y) is seen as the minimal

candidate chosen from the cumulative kernel

 For both of the algorithms:

 the same set of constraints are defined for the cumulative kernel;

 Consequently, they will offer the same solution of Q(x, y).

III. Validity Analysis

 In the end of Expansion I,

 Can and be found separately?

 Recall the polynomial updating rules

• The minimal polynomial defines the solution of one round of poly.

update w.r.t. (r, s)ij.

• If such a group expansion procedure does not change the identity of ,

 and can indeed be found separately.

III. Validity Analysis

 Expansion I: update to w.r.t. constraint of

 The identity of the existing is left unchanged. Consequently, the

solution of remains intact.

 Therefore,

For

No update is required

Update is required

is in memory,

Since < g*(of ΔGv)

is not in memory, it will be

picked up from ΔGv.

will be re-used

(<)

IV. Complexity Analysis

 Average decoding complexity – average number of finite field arithmetic

operation for decoding one codeword frame;

 --- the probability of the decoder is performing a successful decoding

with an OLS of lv;

 --- the decoding complexity with an OLS of lv;

 The average decoding complexity is:

 is now channel dependent!

Decoding succ. Decoding fail.

IV. Complexity Analysis

 where

 consists of and

 since

IV. Complexity Analysis

 The decoding complexity increases exponentially with the OLS (dominant

exponential factor of 5);

 The decoding complexity is quadratic in the dimension of the code k. The decoding

complexity will be smaller for a low rate code.

IV. Complexity Analysis

 The probability that the algorithm terminates at iteration v.

SM1(c) ≤ Δ(C(M1))

SM2(c) ≤ Δ(C(M2))

SMv-1(c) ≤ Δ(C(Mv-1))

SMv(c) > Δ(C(Mv))

…
…

…
…

Exit!

Iter. 1:

Iter. 2:

Iter. v-1:

Iter. v:

…
…

IV. Complexity Analysis

 Determining a closed form expression of turns out to be hard;

 Motivation of the analysis: link with Π (~channel SNR);

 Define , where and ,

 with OLS greater than the above threshold, successful decoding can be guaranteed.

 We therefore interpret as:

IV. Complexity Analysis

 Study the possible quantization of the OLS threshold

 AWGN channel, we vary the SNR …

 In case of a ‘bad’ channel (e.g., SNR -∞):

 In case of a ‘good’ channel (e.g., SNR + ∞):

 By refining ,

 we can see the OLS threshold is a decreasing function of SNR.

 Recall ,

 will be in favor of smaller lv values by increasing SNR!

IV. Complexity Analysis

 Recall the average decoding complexity definition:

In a sufficiently ‘good’ channel:

 1 and

In a ‘bad’ enough channel:

 … 0 and

IV. Simulation Statistics

 ~ SNR for the (63, 47) RS code with l1 = 1, l’= 1 and lT = 5

 AWGN channel

IV. Simulation Results

 ~ SNR for the (63, 47) RS code with lT = 3, 5, 7.

 AWGN channel

IV. Simulation Results

 ~ SNR for the (15, 11) and (15, 5) RS codes with lT = 1, 3, 5, 10

 AWGN channel

V. Error-Correction Performance

 PASD ~ ASD with same decoding parameter lT;

 For PASD, decoding output is validated by CRC code;

 For ASD, decoding output is validated by the ML criterion;

 For the (63, 47) RS code, over AWGN channel:

VI. Conclusions
 A progressive algebraic soft-decision decoding approach;

 Two key steps of PASD: progressive reliability transform & progressive

interpolation;

 Enables the complexity dominant interpolation process to be performed in

an iterative manner, and the incremental computation between iterations is

possible;

 The average decoding complexity of the PASD algorithm is channel

dependent and hence it has been optimized according to the needs;

 Error-correction performance is also preserved.

 A larger system memory is required.

Acknowledgement

 Project: Advanced coding technology for future storage devices;

 ID: 61001094; From 2011. 1 to 2013. 12.

 Also funded by the Guangdong Natural Science Foundation (GNSF).

 Project: Research on adaptable list decoding system;

 ID: 10451027501005078; From 2010. 10 to 2012. 10.

