Algebraic-Geometric Code and its Soft-Decision Decoding Algorithm

Dr. Li Chen

- Lecturer, School of Information Science and Technology, Sun Yat-sen University
- BSc, MSc, PhD, MIEEE
- Website: <u>http://sist.sysu.edu.cn/~chenli</u>

Personal Background

- Education and employment
 - 2003, BSc in Applied Physics, Jinan University, China
 - 2004, MSc in Communications and Signal Processing, Newcastle University, UK
 - 2008, PhD in Mobile Communications, Newcastle University, Supervisor: Prof. R. A. Carrasco (IEE Fellow)
 - 2007 2010, Research Associate, Newcastle University, engaged with an EPSRC project.
 - 2010 -- .., Lecturer, Sun Yat-sen University
- Research Interests
 - Information theory and channel coding
 - Cooperative system

Outline

- Construction of AG codes: Hermitian Codes
- Overview of the algebraic decoding algorithm
- Algebraic soft-decision decoding of Hermitian codes
- Performance evaluation
- Future work

Construction of Hermitian Codes

• Hermitian Curve: $H_w(x, y, z) = x^{w+1} + y^w z + y z^w$

- Affine component: $H_w(x, y, 1) = x^{w+1} + y^w + y used$ for code construction!
- Size of GF (GF(q)) decides the degree of the curve: $w = \sqrt{q}$
- Genus of the curve: g = w(w-1)/2
- Designed distance of a (n, k) Hermitian code: $d^* = n k g + 1$
- Number of affine points $p_i = (x_i, y_i), |p_i| = w^3$
 - It decides the length of the code

Code parameters that we can achieve:

GF(q) Paras	GF(4)	GF(16)	GF(64)	GF(256)
deg	3	5	9	17
g	1	6	28	120
n	8	64	512	4096

Construction of Hermitian Codes

- Point of infinity p_{∞} : for points that we can find in $H_w(1, y, z)$, $H_w(x, 1, z)$ and $H_w(x, y, 1)$, the one with the form of $(x_i, y_i, 0)$.
 - □ Variables *x*, *y*, *z* have a pole order (or weights) at p_{∞} , *x w*, *y w*+1, *z* --? (depends on *k*).
- Affine points p_i : points on an affine component. E.g. for $H_w(x, y, 1)$, p_i satisfies $H_w(x_i, y_i, 1) = 0$.
- Pole basis L_w : a set of rational functions Φ_{α} with increasing pole orders
 - Curve H_2 has $L_2 = \{1, x, y, x^2, xy, y^2, x^2y, xy^2, y^3, x^2y^2, xy^3, y^4, ...\}$
 - Curve H_4 has $L_4 = \{1, x, y, x^2, xy, y^2, x^3, x^2y, xy^2, y^3, x^4, x^3y, x^2y^2, xy^3, y^4, x^4y, x^3y^2, x^2y^3, xy^4, y^5, ...\}$
- Zero basis $Z_{w,pi}$: a set of rational functions $\psi_{w,pi}$ with increasing zero orders at p_i .

Construction of Hermitian Codes

- For a Hermitian code defined on the curve H_w :
 - Find out *n* affine points on the curve decide the length of the code
 - Select the first *k* monomials in L_w decide the dimension of the code
 - □ With information symbols ($f_0, f_1, ..., f_{k-1}$) \in GF(q), the message polynomial can be written as:

$$f(x, y) = f_0 \Phi_0 + f_1 \Phi_1 + \dots + f_{k-1} \Phi_{k-1}$$

• And the code word is generated by:

$$(c_0, c_1, \ldots, c_{n-1}) = (f(p_0), f(p_1), \ldots, f(p_{n-1}))$$

- Example: Construct a (8, 4) Hermitian code
 - Curve: $H_2 = x^3 + y^2 + y$
 - Affine points $p_0 = (0, 0)$, $p_1 = (0, 1)$, $p_2 = (1, \sigma)$, $p_3 = (1, \sigma^2)$, $p_4 = (\sigma, \sigma)$, $p_5 = (\sigma, \sigma^2)$, $p_6 = (\sigma^2, \sigma)$, $p_7 = (\sigma^2, \sigma^2)$.
 - Information symbols 1, σ , 1, σ^2 , and message polynomial $f(x, y) = 1 + \sigma x + y + \sigma^2 x^2$.
 - $\Box \quad \text{Code word } (c_0, c_1, \dots, c_7) = (1, 0, \sigma, \sigma^2, \sigma, \sigma^2, \sigma^2, \sigma).$

A Comparison with RS Codes

Codes Properties	(<i>n</i> , <i>k</i>) RS code	(n, k) Hermitian code
Algebraic affine curves	<i>y</i> = 0	$x^{w+1} + y^w + y = 0$
Pole basis	1, <i>x</i> , <i>x</i> ² , <i>x</i> ³ ,	1, x, y, x^2 , xy, y^2 ,, $x^w y$, $x^{w-1}y^2$,, xy^w , y^{w+1} ,
Affine points (p)	$x_{0,} x_{1}, x_{2}, \dots, x_{n-1}$	$(x_0, y_0), (x_1, y_1), (x_2, y_2), \dots, (x_{n-1}, y_{n-1})$
Transmitted message polynomial (<i>f</i>)	$f(x) = f_0 + f_1 x + f_2 x^2 + \dots + f_{k-1} x^{k-1}$	$f(x, y) = f_0 + f_1\phi_1 + f_2\phi_2 + \dots + f_{k-1}\phi_{k-1}$
Code word (\overline{C})	$(c_0, c_1, \dots, c_{n-1}) = (f(x_0), f(x_1), \dots, f(x_{n-1}))$	$(c_0, c_1, \dots, c_{n-1}) = (f(p_0), f(p_1), \dots, f(p_{n-1}))$

A Comparison with RS codes

- Advantage of AG codes: larger codes can be constructed from the same finite field as RS codes, resulting better error-correction capability;
- Example, over GF(64)

Rate 0.3		Rate 0.56		
Herm (512, 153)	RS (63, 19)	Herm (512, 289)	RS (63, 35)	
d* = 332	d = 45	d* = 196	d = 29	
τ = 165	τ = 22	τ = 97	τ = 14	
990 bits	132 bits	582 bits	84 bits	

Disadvantage of AG codes: It is not a Maximum Distance Separable (MDS) code.

Overview of the algebraic decoding algorithm

Decoding philosophy evaluation

Overview of the list decoding algorithm

- Key processes: Interpolation (construct Q(x, y, z)) + Factorisation (find out f(x, y))
- From hard-decision decoding to soft-decision decoding

Hard-decision received word: $\overline{R} = (r_0, r_1, ..., r_{n-1})$ Interpolated points: $(p_0, r_0), (p_1, r_1), ..., (p_{n-1}, r_{n-1})$ With certain multiplicity value *m*, perform:

Interpolation Q(x, y, z)

Factorisation *f*(*x*, *y*)

Soft-decision reliability matrix $\Pi (\rightarrow M)$

$$\Pi = \begin{bmatrix} p_{0} & p_{1} & p_{2} & p_{3} & p_{4} & p_{5} & p_{6} & p_{7} \\ r_{0} & r_{1} & r_{2} & r_{3} & r_{4} & r_{5} & r_{6} & r_{7} \end{bmatrix}$$
where a multiplicity value m was assigned to the unit $0.00 & 0.02 & 0.00 & 0.53 & 0.90 & 0.03 & 0.00 & 0.01 \\ 0.00 & 0.02 & 0.00 & 0.53 & 0.90 & 0.03 & 0.00 & 0.01 \\ 0.03 & 0.74 & 0.03 & 0.01 & 0.10 & 0.02 & 0.28 & 0.99 \\ 0.01 & 0.03 & 0.94 & 0.00 & 0.00 & 0.95 & 0.03 & 0.00 \end{bmatrix} \sigma^{2}$

$$(p_{0}, 0) \quad (p_{1}, 0) \quad (p_{2}, \sigma^{2}) \quad (p_{3}, 0) \quad (p_{4}, 1) \quad (p_{5}, \sigma^{2}) \quad (p_{6}, \sigma) \quad (p_{7}, \sigma) \\ (p_{1}, \sigma) \quad (p_{3}, 1) \quad (p_{4}, \sigma) \quad (p_{6}, \sigma) \end{bmatrix}$$

Design of an algebraic soft-decision decoding algorithm

- Key Challenges:
 - How to process trivariate monomials (polynomials)
 - Define the interpolated zero conditions
 - Calculate the corresponding coefficients of a Hermitian curve
 - Prove the validity of the algorithm
 - Optimal performance bound
 - Complexity reduction methods

Trivariate monomials (Polynomials)

- For a code defined on the curve $H_w = x^{w+1} + y^w + y$,
 - □ monomial $x^i y^j z^k$, $0 \le i \le w$, $j \ge 0$ and $k \ge 0$
 - Decoding a (n, k) Hermitian codes, $\deg_w(z) = \deg_w(\varphi_{k-1})$
 - $\Box \quad \deg_w(x^i y^j z^k) = iw + j(w+1) + k \deg_w(z)$
 - For to monomials $x^{i1}y^{j1}z^{k1}$ and $x^{i2}y^{j2}z^{k2}$

$$x^{i1} y^{j1} z^{k1} < x^{i2} y^{j2} z^{k2}$$

if $\deg_w(x^{i1}y^{j1}z^{k1}) < \deg_w(x^{i2}y^{j2}z^{k2})$, or $\deg_w(x^{i1}y^{j1}z^{k1}) = \deg_w(x^{i2}y^{j2}z^{k2})$ and k1 < k2.

• A lexicographic order can be assigned to monomials.

• Polynomials
$$Q(x, y, z) = \sum_{a,b\in N} Q_{ab} \phi_a(x, y) z^b$$
, $Q_{ab} \in GF(q)$

Identify the maximal monomial in Q(x, y, z) as $\Phi_{a'}z^{b'}$, then $\deg_w(Q) = \deg_w(\Phi_{a'}z^{b'})$

- Leading order, $lod(Q) = ord(\Phi_{a'}z^{b'})$
- $N_w(\delta) = |\{\phi_a z^b : \deg_w(\phi_a z^b) \le \delta, (a, b, \delta) \in N\}|$ Define the nu

 $\Delta_{w}(v) = \min\{\delta : N_{w}(\delta) > v, v \in N\}$ Define the weighted degree of monomials

Define the number of monomials

Define the Interpolated Zero Conditions

- To interpolate unit (p_i, r_i) (or (x_i, y_i, r_i))
- Recall the zero basis $Z_{w,pi}$ with rational functions $\psi_{pi,\alpha}$ as:

$$\psi_{p_{i},\alpha} = \psi_{p_{i},\lambda+(w+1)\delta} = (x - x_{i})^{\lambda} [(y - y_{i}) - x_{i}^{w}(x - x_{i})]^{\delta}, (0 \le \lambda \le w, \delta \ge 0)$$

- Zero condition with multiplicity m for polynomial $Q(x, y, z) = \sum_{a,b\in N} Q_{ab} \phi_a(x, y) z^b$
 - It can be written as: $Q(x, y, z) = \sum_{\alpha, \beta \in N} Q_{\alpha\beta}^{(p_i, r_i)} \psi_{p_i, \alpha} (z r_i)^{\beta}$

$$\Box \quad Q_{\alpha\beta}^{(p_i,r_r)} = 0 \text{ for } \alpha + \beta < m.$$

• Since
$$\phi_a = \sum_{\alpha \in N} \gamma_{a, p_i, \alpha} \Psi_{p_i, \alpha}$$
 and $z^b = \sum_{\beta \leq b} {b \choose \beta} r_i^{b-\beta} (z-r_i)^{\beta}$
$$Q_{\alpha\beta}^{(p_i, r_i)} = \sum_{a, b \geq \beta} Q_{ab} {b \choose \beta} \gamma_{a, p_i, \alpha} r_i^{b-\beta}$$

A key parameter for determining the polynomial's zero condition!

Calculate the Corresponding Coefficients

• Fact:
$$\phi_a = \sum_{\alpha \in N} \gamma_{a, p_i, \alpha} \psi_{p_i, \alpha} \longleftrightarrow \psi_{p_i, \alpha} = \sum_{a \in N} \zeta_a \phi_a$$
 and $\psi_{p_i, \alpha} = \sum_{a \in N, a < L} \zeta_a \phi_a + \phi_L$.

Algorithm A: Determining the corresponding coefficients $\gamma_{a,p_{t},\alpha}$ between a pole basis monomial ϕ_{a} and zero basis functions $\psi_{p_{t},\alpha}$. Step 1: Initialise all corresponding coefficients $\gamma_{a,p_{t},\alpha} = 0$; Step 2: Find the zero basis function $\psi_{p_{t},\alpha}$ with $LM(\psi_{p_{t},\alpha}) = \phi_{a}$, and let $\gamma_{a,p_{t},\alpha} = 1$; Step 3: Initialise function $\hat{\psi} = \psi_{p_{t},\alpha}$; Step 4: While $(\hat{\psi} \neq \phi_{a})$ { Step 5: Find the second largest pole basis monomial ψ_{L-1} with coefficient ζ_{L-1} in $\hat{\psi}$; Step 6: In $Z_{w,p_{t}}$, find a zero basis function $\psi_{p_{t},\alpha}$ whose leading monomial $LM(\psi_{p_{t},\alpha}) = \phi_{L-1}$, and let the corresponding coefficient $\gamma_{a,p_{t},\alpha} = \zeta_{L-1}$; Step 7: Update $\hat{\psi} = \hat{\psi} + \gamma_{a,p_{t},\alpha}\psi_{p_{t},\alpha}$;

[ref] - , Complexity reducing interpolation for list decoding Hermitian codes, IEEE Trans. Wireless Commun, 2008.

Prove the Validity of the Algorithm

Condition 1: From the perspective of solving a linear equation group

• Condition 2: From the perspective of solving equation Q(x, y, f) = 0 $S_{M}(C) > \deg_{w}(Q(x, y, z))$ Total zero order of QPole order of Q

• An important Lemma 1: If $Q \in F_q[x, y, z]$ has a zero of multiplicity at least m over unit (p, ρ) (p is an affine point and $\rho \in$ GF(q), and there exists a polynomial h in the form of equation (2) such that $h(p) = \rho$, then Q(x, y, h) has a zero order $v_p(Q(x, y, h)) \ge m$ at affine point p, or alternatively $\psi_{p,m}|Q(x, y, h)$ [14].

Prove the Validity of the Algorithm

• Theorem 2: Given the multiplicity matrix **M** and the resulting interpolated polynomial Q(x, y, z), if the codeword score $S_M(_C)$ is large enough such that:

 $S_{M}(C) > \deg_{w}(Q(x, y, z))$

message polynomial *f* can be found out by factorising Q as: z - f | Q(x, y, z)or Q(x, y, f) = 0. \rightarrow This gives a tight condition of successful list decoding!!!

Since $f(p_j) = c_j$, according to Lemma 1, in matrix **M**, only values will contribute to the total code word score of Q(x, y, f). Those value as marked as $\hat{m}_{i,j}$

[ref] -, Soft-decision list decodign of Hermitian codes, IEEE Trans. Commun, 2009.

Prove the Validity of the Algorithm

 A corollary that can embrace both of the successful decoding conditions. Corollary 3: Message polynomial f can be found out by (z - f) | Q(x, y, z) if S_M(C) > Δ_w (C_M)

Since $\Delta_w(C_M)$ guarantees $N_w(\delta) > C_M$ (Condition 1 is met!)

Remark: Solving the linear polynomial group does not give a tight bound on successful list decoding, but solving the polynomial Q(x, y, f) = 0 does!

Optimal Performance Bound

• Corollary 4: Let $w_z = \deg_w(\Phi_{k-1})$, $N_w(\delta) > \delta(\delta - g)/2w_z$ given $\delta > 2g - 1$. And $N_w(\delta) = \delta^2/2w_z$ with $\delta \rightarrow \infty$.

 With / →∞, list decoding algorithm's asymptotic optimal performance can be achieved.

 $I \to \infty, C_{\mathsf{M}} \to \infty \text{ and } \Delta_w(C_M) \to \infty, \text{ it results } \Delta_w(C_M) \cong \sqrt{2w_z C_M}$

• Corollary 3 ($S_M(_C) > \Delta_w$ (CM)) can be interpreted as:

$$\sum_{j=0}^{n-1} \widehat{m}_{i,j} > \sqrt{w_z \sum_{i=0}^{q-1} \sum_{j=0}^{n-1} m_{i,j} (m_{i,j} + 1)}.$$

Optimal Performance Bound

• Asymptotic condition (when $C_{M} \rightarrow \infty$): $\frac{\pi_{i,j}}{n} = \frac{m_{i,j}}{s}$

• Note
$$\sum_{i,j} m_{i,j} = s$$
 and $\sum_{i,j} \pi_{i,j} = n$

We could further have

$$\frac{s}{n}\sum_{j=0}^{n-1}\widehat{\pi}_{i,j} > \frac{s}{n}\sqrt{w_z\sum_{i=0}^{q-1}\sum_{j=0}^{n-1}\pi_{i,j}(\pi_{i,j}+\frac{n}{s})}.$$

Since with $s \rightarrow \infty$, $n/s \rightarrow 0$ and

$$\sum_{j=0}^{n-1} \widehat{\pi}_{i,j} > \sqrt{w_z} \sum_{i=0}^{q-1} \sum_{j=0}^{n-1} \pi_{i,j}^2.$$

In KV decoding of RS codes, w_z

is replaced

by *k* - 1

Complexity Reduction Methods

- Modified reliability transform algorithm (introducing a stopping criterion)
- Pre-calculation of the corresponding coefficients
- Elimination of the unnecessary polynomials in the group

Complexity Reduction Methods

- Modified reliability transform algorithm
- Problem: In the original KV algorithm, the iterative $\Pi \rightarrow M$ transform process will stop once a pre-set value of $\mathbf{s} = \sum_{i,j} m_{i,j}$ is met. However, it will be a waste by just increasing the total multiplicity values, but NOT the actual output list size.

• The actual output list size
$$I_{M} = \deg_{z}(Q) = \begin{bmatrix} \deg_{w} Q(x, y, z) \\ w_{z} \end{bmatrix}$$

- Challenge: before the interpolation process, we do not know Q(x, y, z).
- However, $\deg_{w}(Q(x, y, z)) \leq \Delta_{w}(C_{M})$?
- Corollary: $\Delta_{W}(C_{M}) = \deg_{W}(\Phi_{a}z^{b} | \operatorname{ord}(\Phi_{a}z^{b}) = C_{M})$

•
$$I_{\rm M} = \left[\frac{\deg_w(\phi_a z^b \mid ord(\phi_a z^b) = C_M)}{W_z} \right] \rightarrow \text{ if } I_{\rm M} > I, \text{ then stop! Minimising s!}$$

In the end, the minimal polynomial Q in group G is chosen!

Complexity reducing interpolation

Arising Awareness

- Why Condition 1 ($N_w(\delta) > C_M$) is NOT a tight bound?
- Since $Iod(Q^*) \le C_M$, if $deg_w(Q^*) = \delta^*$, then

$$N_{\rm w}(\delta^*) \leq C_{\rm M} \iff N_{\rm w}(\delta) > C_{\rm M}$$

- $N_w(\delta) > C_M$ is the successful decoding criterion w.r.t. the polynomial group *G*. However, the minimal polynomial in *G* does not meet this condition.
- To access the decoding performance, only Condition 2 gives a tight bound: $S_{M}(C) > \deg_{w}(Q(x, y, z))$
- Without performing the interpolation process, the theoretical assessment (e.g. $S_M(_C) > \Delta_w(C_M)$) produces a relatively negative results.

Performance Evaluation

Hermitian code (512, 289) over AWGN channel

Hermitian code ~ RS code

Both codes are defined in GF(64), over AWGN channel

Codes Output size	Hermitian (512, 289)	RS (63, 35)	RS (255, 144)
l = 1	C = 892	C = 103	C = 430
l = 2	C = 1813	C = 204	C = 859
l = 5	C = 4602	C = 715	C = 3004

Hermitian code ~ RS code

Hermitian code is defined in GF(64) and RS code is defined in GF(256)

Codes Output size	Hermitian (512, 289)	RS (63, 35)	RS (255, 144)
l = 1	C = 892	C = 103	C = 430
l = 2	C = 1813	C = 204	$\rightarrow C = 859$
l = 5	C = 4602	C = 715	C = 3004

A rebound thinking

A common phenomenon:

Inspiration: Can we design a list decoder which can **SMARTLY ADAPT** its complexity according to the quality of the received word?

We can 'borrow' the idea of iterative decoding!

Coming soon

A rebound thinking

Iterative algebraic soft-decision decoding

l, designed output list size at each iteration; l_{max} , designed maximal output list size; *l'*, update step.

Current funding: Advanced coding technology for future storage devices, National Science Foundation of China (NSFC), 61001094, PI.

Conclusions

- Construction of a Hermitian code and some of its properties;
- Algebraic decoding system (hard \rightarrow soft)
- Algebraic soft-decision decoding of Hermitian codes
- Performance evaluation and comparison with RS codes
- Future research direction.