
Table of Contents

 1

Title: Design of An Efficient List Decoding System for Reed-Solomon and

Algebraic-Geometric Codes

Table of Contents:

Abstract ...4

Chapter 1 Introduction ..5

1.1 Introduction ...6

1.2 Motivation and Challenges ...7

1.3 Aims and Objectives ...8

1.4 Statement of Originality..9

1.5 Organisation of the Thesis ..10

1.6 Publications Arising From This Project ..10

Chapter 2 Literature Survey ...12

2.1 Introduction ...13

2.2 Construction of Reed-Solomon Codes and Algebraic-Geometric Codes13

2.3 Unique Decoding Algorithms ...14

2.4 List Decoding Algorithms ...16

2.5 Conclusion ..18

Chapter 3 Theoretical Background ..19

3.1 Introduction ...20

3.2 Algebraic-Geometric Codes ..20

3.2.1 Projective and Affine Curves ...20

3.2.2 Points on an Affine Curve ..21

3.2.3 Rational Functions on the Curves ..23

3.2.4 Construction of Algebraic-Geometric Codes ...25

3.3 Reed-Solomon Codes ...26

3.3.1 Example: Construct a (15, 9) Reed-Solomon Code Defined in GF(16)28

3.3.2 Pole Basis and Zero Basis ..28

3.4 Hermitian Codes ...29

3.4.1 Example: Construct a (8, 4) Hermitian Code Defined in GF(4)31

3.4.2 Pole Basis and Zero Basis ..31

3.5 List Decoding ..34

3.5.1 The Idea of List Decoding ..34

3.5.2 List Decoding of Low Rate Reed-Solomon and Algebraic-Geometric Codes

Table of Contents

 2

 ...35

3.5.3 The Guruswami-Sudan Algorithm ...36

3.5.4 The Koetter-Vardy Algorithm ..39

3.6 Conclusions ...39

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes.........................41

4.1 Introduction ...42

4.2 Overview of the GS Algorithm ...42

4.2.1 Interpolation and Factorisation...43

4.2.2 Decoding Parameters ..43

4.3. Interpolation ...47

4.3.1. Interpolation Theorem ...47

4.3.2. Iterative Polynomial Construction ..49

4.3.3. Complexity Reduced Modification ...52

4.4 Factorisation ...58

4.4.1 Factorisation Theorem ..58

4.4.2 Recursive Coefficient Search ...59

4.5 Complexity Analysis ...62

4.6 Simulation Results ..68

4.7 Conclusion ..71

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes72

5.1 Introduction ...73

5.2 Prerequisite Knowledge ..74

5.3 Reliability Information ...76

5.4 From Reliability Values to Multiplicity Values ..81

5.5 Soft-Decision Solution ..85

5.6 Complexity reduction Interpolation and Factorisation89

5.7 Simulation Results Discussion ...91

5.8 Conclusion ..96

Chapter 6 Hard-Decision List Decoding of Hermitian Codes97

6.1 Introduction ...98

6.2 Prerequisite Knowledge ..99

6.3 GS Decoding of Hermitian Codes ..102

6.4 Determining the Corresponding Coefficients ...107

6.5 Complexity reduction Interpolation .. 111

Table of Contents

 3

6.6 General Factorisation ..120

6.7 Simulation Results Discussion ...127

6.7.1 Comparison with Unique Decoding Algorithm ...128

6.7.2 Comparison with Reed-Solomon Codes ..136

6.8 Conclusion ..141

Chapter 7 Soft-Decision List Decoding of Hermitian Codes143

7.1 Introduction ...144

7.2 Prerequisite Knowledge ..145

7.3 Review of GS Decoding Hermitian Codes ...147

7.4 Soft-Decision List Decoding ..148

7.4.1 Reliability Information ...149

7.4.2 System Solution..150

7.5 Complexity reduction Interpolation and Factorisation154

7.6 Simulation Results Discussion ...156

7.6.1 Complexity Based Comparison with Hard-Decision157

7.6.2 Performance Assessment with a Large Length of Output List164

7.6.3 Asymptotically Optimal Performance Assessment165

7.7 Conclusion ..166

Chapter 8 Conclusion and Future Work ..168

8.1 Conclusion of the Thesis ...169

8.2 Future Work ..170

Reference:..172

List of Symbols ...178

List of Abbreviations ..181

List of Figures ...182

List of Tables ...184

Appendix A: Finite Field Calculation of GF(4) ...186

Appendix B: Finite Field Calculation of GF(8) ...188

Appendix C: Finite Field Calculation of GF(16) ...190

Appendix D: Hard-Decision List Decoding Parameters of Some Hermitian Codes

 ..193

Abstract

 4

Abstract

This thesis presents an efficient list decoding system for Reed-Solomon codes and

algebraic-geometric codes. Reed-Solomon codes are non-binary block codes, which

are widely used in communication and storage systems. However, the availability of

the codes and their performance are limited by the code length which can not exceed

the size of finite field. Compared with Reed-Solomon codes which are defined in the

same finite field, algebraic-geometric codes are usually longer and there are more

available codes. Their longer code length results larger designed minimum distance

which enables the code to correct more errors in a code word frame. Therefore,

algebraic-geometric codes tend to be a suitable replacement for Reed-Solomon codes

in future applications.

The list decoding system can correct errors beyond the half distance boundary which

is the capability bottleneck for the conventional unique decoding algorithm. This

project’s research produces three main contributions to the list decoding system with

respect to its decoding efficiency and wider application to algebraic-geometric codes.

First, a general complexity reduction scheme for the complexity dominant

interpolation process is proposed. The scheme can be applied list decoding of Reed-

Solomon and algebraic-geometric codes, as well as hard and soft decision decoding

systems. Second, the list decoding process of Hermitian code has been engineered

with a clear mathematical framework. The first simulation results for list decoding of

Hermitian codes are presented, showing significant coding gains can be achieved over

the unique decoding algorithm. For improving the efficiency of list decoding of

Hermitian codes, a supported algorithm for calculating the key parameters (the

corresponding coefficients between a Hermitian curve’s pole basis monomials and

zero basis functions) is proposed. Third, the first soft-decision list decoder for

Hermitian codes has been developed, in which a priori process that obtains the

received information’s reliability values and converts them into interpolation

multiplicity values is introduced. During this conversion, a practical stopping rule

based on the designed length of output list is proposed. The obtained simulation

results show that further improvement can be achieved with over the hard-decision

decoding scheme, but with only small increase in decoding complexity.

Chapter 1 Introduction

 5

Chapter 1

Introduction

Chapter 1 Introduction

 6

1.1 Introduction

Algebraic-geometric codes were first introduced by Goppa [1], showing error-

correction codes can be constructed from algebraic curves. Among them, Reed-

Solomon codes [2] which were introduced in the 1960s are in fact the simplest

algebraic-geometric codes and are constructed from a straight line. Today, Reed-

Solomon codes are widely used in both communications and storage systems.

Compared with Reed-Solomon codes, general algebraic-geometric codes that are

constructed from the same finite field have longer code lengths, resulting in a larger

minimum distance of the code and hence more errors can be corrected in a code word

frame. Therefore, algebraic-geometry codes are suitable to replace Reed-Solomon

codes in future advanced applications.

To apply algebraic-geometric and Reed-Solomon codes, developing a decoding

algorithm with good error-correction capability and low decoding complexity is

important. For algebraic-geometric and Reed-Solomon codes, the most conventional

and efficient decoding algorithms are called unique decoding algorithms. Specifically,

for Reed-Solomon codes, the best unique decoding algorithm is the Berlekamp-

Massey algorithm [3, 4], while for algebraic-geometric codes, the best unique

decoding algorithm is the Sakata algorithm [5] with Feng and Rao’s majority voting

[6]. The unique decoding algorithm determines syndromes from the received word.

Then based on the syndromes, error locations and magnitudes are calculated in order

to recover the correct transmitted code word. The main limitation of the unique

decoding algorithms is their error-correction which cannot exceed the half distance

bound 




 −

2

1d
, where d indicates the minimum Hamming distance of the code.

To achieve better error-correction capability for algebraic-geometric and Reed-

Solomon codes, the list decoding algorithm is an alternative choice. An improved list

decoding scheme which can correct errors beyond the half distance bound for both

algebraic-geometric and Reed-Solomon codes was introduced by Guruswami and

Sudan [7] in 1999. This decoding algorithm can provide better performance than the

conventional unique decoding algorithms. Based on Guruswami-Sudan’s list decoding

Chapter 1 Introduction

 7

scheme, further improvements can be achieved by the soft-decision list decoding

algorithm, which was introduced by Koetter and Vardy [8] in 2003 for Reed-Solomon

codes.

1.2 Motivation and Challenges

Reed-Solomon codes are widely applied by the communication and storage industry,

such as deep-space satellite communications, high-speed modems, compact disc (CD),

hard drive, digital versatile disc (DVD) etc. As they are constructed from the affine

points on a straight line, the size of Reed-Solomon codes cannot exceed the size of the

finite field over which it is defined. Therefore, for more advanced applications, long

codes with better error-correction capability are required. To achieve this, Reed-

Solomon codes must be defined over a larger finite field. But as a consequence, the

decoding complexity will be increased exponentially. Another solution is to use more

advanced coding schemes – algebraic-geometric codes. Compared with Reed-

Solomon codes defined over the same finite field, algebraic-geometric codes are

longer as they are constructed from the affine points of an algebraic curve rather than

a straight line, resulting in greater errors can be corrected in a code word frame.

Therefore, more powerful algebraic-geometric codes can be constructed from a

moderate size of finite field.

Before 1999, the best known decoding algorithms for Reed-Solomon and algebraic-

geometric codes could only correct errors up to the half distance bound, limiting these

codes’ performance over deeply corrupted scenarios. In 1999, Guruswami and

Sudan’s list decoding scheme [7] exceeded this bound for both Reed-Solomon and

algebraic-geometric codes. The general idea of Guruswami-Sudan’s list decoding

scheme is to reconstruct a list of most likely transmitted code words based on a given

received word. This code word reconstruction is performed by two processes:

interpolation and factorisation. Building on the work of Guruswami and Sudan,

Høholdt and Nielsen [9] presented a mathematical framework for the list decoding of

one of the best performing algebraic-geometric codes – Hermitian codes. Koetter and

Vardy [8] showed that further list decoding improvements for Reed-Solomon codes

can be achieved by a soft-decision scheme. It is also realised that this performance

Chapter 1 Introduction

 8

improvement only introduces a small increase in complexity compared with

Guruswami-Sudan’s hard-decision list decoding scheme.

Although the list decoding algorithm can produce better performance, it is at the

expense of higher decoding complexity compared to the conventional unique

decoding algorithms. So far, few papers in the literature have addressed this problem

as it is still a new decoding algorithm which is not well known by many researchers.

The only performance evaluation on soft-decision and hard-decision list decoding of

Reed-Solomon codes appeared in Koetter and Vardy’s paper [8], but there is still a

lack of analysis on how decoding complexity changes with regards to the critical

decoding parameter – interpolation multiplicity. For list decoding of algebraic-

geometric codes, a soft-decision scheme is yet to be developed and there is no

performance evaluation with regards to any type of algebraic-geometric code. This is

mainly due to the algorithm’s high decoding complexity and the mathematical

explanation of the algorithm being not well defined. For example, to list decode of

Hermitian codes, some parameters (corresponding coefficients of the code) of the

codes are necessary for efficient implementation of the interpolation process.

However, there is no suggested method on how to determine these parameters.

1.3 Aims and Objectives

This thesis aims to design an efficient decoding algorithm for both Reed-Solomon and

algebraic-geometric codes and develop a software platform using the C programming

language to evaluate the decoder’s performance over both additive white Gaussian

noise (AWGN) and Rayleigh fading channels. List decoding for algebraic-geometric

codes is a new algorithm with better error-correction potential. In this thesis, both the

hard-decision and soft-decision list decoding algorithms will be investigated for Reed-

Solomon and algebraic-geometric codes. The achieved simulation results will be

compared with the conventional unique decoding algorithms to show how much

improvement can be gained.

The objectives of this research are:

Chapter 1 Introduction

 9

• Reduce the decoding complexity for both hard-decision and soft-decision list

decoding algorithms.

• Develop a soft-decision list decoding algorithm for algebraic-geometric codes.

• Develop a software platform for the efficient list decoder to evaluate its

performance for both Reed-Solomon and algebraic-geometric codes.

1.4 Statement of Originality

This research project has investigated a complexity reduction scheme for the hard-

decision list decoding of Reed-Solomon codes. This scheme reduces decoding

complexity based on identifying and eliminating some unnecessary polynomials

during the interpolation process. In fact, this is a general scheme which can also be

applied to both soft-decision and hard-decision list decoding of Reed-Solomon and

algebraic-geometric codes. Decoding complexity can be reduced by up to

approximately 40%.

Further developing the mathematical framework for list decoding of Hermitian codes

[9], this project produced the following modifications to it in order to obtain the first

simulation results: First, an algorithm is proposed to determine the important

parameters – corresponding coefficients of Hermitian codes. With the knowledge of

these corresponding coefficients, the interpolation process can be efficiently

implemented. Second, the developed complexity reduction scheme for interpolation is

applied. Finally, based on the work of [10-12], a general factorisation algorithm is

proposed, which can be efficiently implemented for both Reed-Solomon and

algebraic-geometric codes.

This research project has also developed the first soft-decision list decoding algorithm

for one of the best performing algebraic-geometric codes – Hermitian codes. It is

shown that significant coding gains can be further achieved over the hard-decision list

decoding scheme.

Chapter 1 Introduction

 10

1.5 Organisation of the Thesis

The following chapters of the thesis are organised as follows: Chapter 2 will give a

literature survey on the construction of algebraic-geometric codes, the conventional

unique decoding algorithms and the list decoding algorithms which will be the main

content of the thesis. Chapter 3 presents a theoretical background of this thesis,

including some important parameters for constructing an algebraic-geometric code

and the corresponding list decoding algorithm. Chapter 4 presents a hard-decision list

decoding algorithm for Reed-Solomon codes introducing an original complexity

reduction scheme while Chapter 5 presents a soft-decision list decoding algorithm for

Reed-Solomon codes. Chapter 6 presents a hard-decision list decoding algorithm for

Hermitian codes suggesting complexity reduction modifications while Chapter 7

presents the soft-decision list decoding algorithm for Hermitian codes. The

conclusions of this thesis and some future research suggestions are presented in

Chapter 8.

1.6 Publications Arising From This Project

So far, this project has resulted in 1 IET proceeding paper, 1 IET electronic letter and

3 conference papers being published. In addition, there is 1 IEEE transaction paper

being accepted for publication and 1 IEEE transaction paper being submitted for

review. These accepted and submitted publications are listed below as:

• L. Chen, R. A. Carrasco, and E. G. Chester, "Performance of Reed-Solomon

codes using the Guruswami-Sudan algorithm with improved interpolation

efficiency," IET Commun, vol. 1, pp. 241 - 250, 2007.

• L. Chen, R. A. Carrasco, and M. Johnston, "List decoding performance of

algebraic geometric codes," IET Electronic Letters, vol. 42, 2006.

• L. Chen, R. A. Carrasco, M. Johnston, and E. G. Chester, "Efficient

factorisation algorithm for list decoding algebraic-geometric and Reed-

Solomon codes," presented at International Conference of Communications

(ICC) 2007, Glasgow, UK, 2007.

• L. Chen, R. A. Carrasco, and E. G. Chester, "Decoding Reed-Solomon codes

using the Guruswami-Sudan algorithm," presented at Communication Systems,

Chapter 1 Introduction

 11

Networks, and Digital Signal Processing (CSNDSP) 2006, Patras Greece,

2006.

• L. Chen and R. A. Carrasco, "Efficient list decoder for algebraic-geometric

codes," presented at 9th International Symposium on Communication Theory

and Application (ISCTA'07), Ambleside, Lake district, UK, 2007.

• L. Chen, R. A. Carrasco, and M. Johnston, "Reduced complexity interpolation

for list decoding Hermitian codes," IEEE Trans. Wireless Commmun, accepted

for publication.

• L. Chen, R. A. Carrasco, and M. Johnston, "Soft-decision list decoding of

Hermitian codes," IEEE Trans. Commun, Submitted for publication.

Chapter 2 Literature Survey

 12

Chapter 2

Literature Survey

Chapter 2 Literature Survey

 13

2.1 Introduction

This chapter presents a literature survey for the thesis. It starts from the construction

of Reed-Solomon codes and general algebraic-geometric codes. Most of the important

papers in the literature which give construction methods for general algebraic-

geometric codes will be summarised in this chapter. Following that, the decoding

methods for Reed-Solomon and algebraic-geometric codes will be briefly reviewed.

There are mainly two types of decoding methods: unique decoding algorithms and list

decoding algorithms. The unique decoding algorithms are conventional methods

which are well developed and widely used nowadays. List decoding algorithms were

only rediscovered in 1990s for their use with Reed-Solomon and algebraic-geometric

codes. This type of algorithms tends to have greater performance than the unique

decoding algorithms but with a higher complexity.

2.2 Construction of Reed-Solomon Codes and Algebraic-Geometric

Codes

Reed-Solomon codes were introduced in the 1960s by Reed and Solomon [2]. They

are non-binary block codes constructed from a generator polynomial defined over a

finite field [13]. Reed-Solomon codes are widely used in wireless communication and

storage systems and are still considered to be one of the most powerful error-

correction codes. Goppa [1] introduced algebraic-geometric codes in the 1980s.

Algebraic-geometric codes are constructed from an algebraic curve defined over a

finite field. In fact, Reed-Solomon codes can be considered as a special case of

algebraic-geometric codes constructed from a straight line.

The Gilbert-Varshamov bound [3, 13] defines a lower bound for a code’s code rate r

= k/n and its relative minimum distance rate κ = d/n, where k, n and d are positive

integers, and they are the dimension, length and minimum distance of the code

respectively. Any code with parameters meeting this bound is said to be

asymptotically good. Tsfasman, Vladut and Zink [14] presented method to construct

asymptotically good algebraic-geometric codes from modular curves that exceed the

Gilbert-Varshamov bound.

Chapter 2 Literature Survey

 14

Justesen et al [15] presented a construction method for a class of algebraic-geometric

codes which require simple algebraic geometry knowledge. Feng and Rao [16] later

also presented a simple approach for construction of algebraic-geometric codes from

affine plane curve. Following on, Xing et al [17] presented two constructions of linear

codes from a local expansion of functions at a fixed rational point. They showed that

their constructed codes have the same bound on their parameters as Goppa’s geometry

codes. Additionally, they showed linear codes constructed from the maximal curves

can have better parameters than Goppa’s geometry codes constructed from maximal

curves. Heegard et al [18] showed how to construct systematic algebraic-geometric

codes based on using the cyclic properties of automorphisms of the points on the

curve. Blake et al [19] reviewed how to construct different algebraic-geometric codes

constructed from different classes of curves, such as Klein quartic curve, elliptic curve,

hyperelliptic curves and Hermitian curves.

2.3 Unique Decoding Algorithms

The conventional decoding algorithms for Reed-Solomon and algebraic-geometric

codes result in one unique decoded message, the so-called unique decoding

algorithms. The unique decoding algorithms are well developed and efficient in terms

of running time. However, these unique decoding algorithms’ error-correction

capability is limited by the half-distance boundary 




 −

2

1d
.

For Reed-Solomon codes, the most important unique decoding algorithms include: the

Berlekamp-Massey decoding algorithm [3, 4], Euclid’s decoding algorithm [20, 21],

and the Peterson-Gorenstein-Zierler decoding algorithm [22, 23]. These algorithms

first calculate the syndromes based on the received information. Then, error locations

and error magnitudes are to be calculated in order to recover the corrected transmitted

code word.

For algebraic-geometric codes, Justesen et al [15] gave the first decoding algorithm

for codes derived from algebraic plane curve. This algorithm is a generalisation of

Chapter 2 Literature Survey

 15

Peterson’s algorithm [22]. However, the error-correction capability of the algorithm

of [15] cannot reach the half designed distance bound. Skorobogatov and Vladut [24]

generalised [15] for decoding codes arising from arbitrary algebraic curves. Especially

for codes derived from elliptic and hyperelliptic curves, [24] can correct errors up to

the half designed distance. Based on the Berlekamp-Massey algorithm [3, 4], Sakata

[25] extended it to determine the error location using a two-dimensional array of

syndromes which is suitable for applying to algebraic-geometric codes. Sakata later

[26] extended [25] for higher dimensional arrays. Following on, Justesen et al [27]

improved [25] for codes from an arbitrary regular plane curve. The improvement in

[27] reduced the algorithm complexity to O(n
7/3

). However, the above decoding

algorithms still cannot reach the half designed distance bound for most algebraic-

geometric codes.

Feng and Rao [6] presented a generalisation of the Peterson’s algorithm [22] for

algebraic-geometric codes. A majority voting scheme was introduced to determine the

unknown syndromes so that the half designed distance bound is reached. The

decoding complexity of Feng and Rao’s algorithm is O(n
3
). Using Feng and Rao’s

majority voting scheme [6] and Sakata’s generalisation [25] of the Berlekamp-Massey

algorithm, Sakata [5] later presented a more efficient decoding algorithm, with

complexity reduced to O(n
7/3

). Based on the above work, given a received word with

the number of errors not greater than the half designed distance bound, the error

locations can be successfully determined. To determine the error magnitudes, Liu [28]

presented a modified affine Fourier transform. Building upon the above literature,

Johnston [29-31] investigated Hermitian code performance on the additive white

Gaussian noise (AWGN) and fading channels, as well developing a clearer

mathematical framework to make construction and decoding of algebraic-geometric

codes more accessible. In [29] Hermitian codes can outperform similar code rate

Reed-Solomon codes which are defined in the same finite field. Further, a basic soft-

decision unique decoding algorithm for algebraic-geometric codes is presented in [32,

33] which introduced a fast erasure-and-error decoding algorithm. This algorithm’s

performance is later investigated by [34] showing further improvement can be

achieved.

Chapter 2 Literature Survey

 16

2.4 List Decoding Algorithms

The list decoding algorithm was first defined by Elias [35, 36] and Wozencraft [37]

independently in the 1950s. The idea of the decoding algorithm is as follows: Given a

received word R, reconstruct a list of code words with distance τ to R. Some later

developments of the list decoding algorithm showed that τ can be greater than the half

distance bound for both Reed-Solomon and algebraic-geometric codes, indicating

better performance can be offered by the algorithm.

Building upon the work of Ar et al [38], Sudan [39, 40] proposed the first list

decoding algorithm for Reed-Solomon codes which can correct errors beyond the half

distance bound, provided the rate of the code is not greater than 1/3. Sudan’s

algorithm constructs an interpolated polynomial which passes through a set of points

obtained from the received word and finds the transmitted message from the

interpolated polynomial. In fact, the output transmitted message polynomial is the

root of the interpolated polynomial. These two processes are called interpolation and

factorisation respectively. Later, Roth and Ruckenstein [10] presented an efficient

version of Sudan’s algorithm, by which the same number of errors can be corrected

and the complexity is reduced to O(n
2
log

2
n). Another more important contribution of

Roth and Ruckenstein’s work [10] is an efficient method to implement the

factorisation process of Sudan’s algorithm, the recursive coefficient search method.

Shokrollahi and Wasserman [41, 42] extended Sudan’s algorithm to decode low rate

algebraic-geometric codes. Also, they designed a factorisation algorithm that reduced

the factorisation of polynomials defined over a larger finite field to the factorisation of

polynomials defined over a smaller finite field.

The above list decoding algorithms for Reed-Solomon and algebraic-geometric codes

can only correct errors beyond the half distance bound for low rate codes. In 1999,

Guruswami and Sudan [7, 43] proposed an improved list decoding algorithm

developed from the work of [39, 40]. The main contribution of Guruswami and

Sudan’s work is the definition of the interpolated polynomials as a polynomial that

intersects a certain number of times over the set of points obtained from the received

word R. As a result, the degree of the interpolated polynomials can be increased and

Chapter 2 Literature Survey

 17

so does the number of factorised outputs. By using Guruswami and Sudan’s list

decoding algorithm, almost all code rate Reed-Solomon codes and algebraic-

geometric codes can be decoded beyond the half distance boundary. For

implementing the interpolation process, an iterative polynomial construction

algorithm [9, 44-47] can be applied. In fact, this process’s complexity dominates the

total list decoder complexity. Compared to interpolation, factorisation complexity is

marginal. For implementation of factorisation, the most popular and efficient

algorithm is the recursive coefficient search algorithm [10], which is later extended to

factorise polynomials defined over the pole basis of an algebraic plane curve by [11,

12, 48]. Also, there are other alternatives, such as Shokrollahi and Wasserman [41]’s

suggested method mentioned above, and Høholdt and Nielsen [9]’s suggested method

that transfers the problem into factorising a univariate polynomial defined over a

larger finite field.

To list decode one of the best performing algebraic-geometric codes – Hermitian

codes, Høholdt and Nielsen [9, 44, 49] have presented a mathematical framework in

terms of defining the zero condition of a polynomial defined over the pole basis of a

Hermitian curve. However in the literature, there is still lack of knowledge on how to

use Guruswami and Sudan’s algorithm to decode other classes of algebraic-geometric

codes.

One major development of Guruswami and Sudan’s list decoding algorithm was

achieved by Koetter and Vardy [8]. In [8], a soft-decision list decoding algorithm is

presented for Reed-Solomon codes and its extension to algebraic-geometric codes

seems obvious. Building upon the interpolation and factorisation processes, a priori

process that converts the soft received information into interpolation information

(multiplicity) is introduced. It is shown that this soft-decision scheme can offer

significant coding gain compared to Guruswami and Sudan’s hard-decision scheme.

Even though the list decoding algorithm can offer better performance than the

conventional unique decoding algorithm, however, its complexity is higher and this

probably is the reason why it is still not adopted in industrial applications. Therefore,

Chapter 2 Literature Survey

 18

any efficiency improved modification will be valuable in future research. One of the

few suggestions was given by Koetter and Vardy [50] in which a transformation for

the interpolation process was proposed.

2.5 Conclusion

This chapter has briefly reviewed the construction of Reed-Solomon and algebraic-

geometric codes, as well as their decoding algorithms. For the decoding algorithms, it

can be seen that the list decoding algorithm can offer better performance than the

conventional and well developed unique decoding algorithm. List decoding

algorithms could be the alternative choice for future industrial applications. One of the

big challenges that lie ahead is on improving this decoding algorithm’s efficiency. In

the literature, there is still a lack of knowledge on how the list decoding algorithm

performs for algebraic-geometric codes in different communication and storage

environments. Therefore, further performance investigations seem to be valuable.

Also, a soft-decision list decoding algorithm was only developed for Reed-Solomon

codes. It is believed that greater performance improvement can be achieved by

developing a soft-decision list decoding algorithm for algebraic-geometric codes.

Chapter 3 Theoretical Background

 19

Chapter 3

Theoretical Background

Chapter 3 Theoretical Background

 20

3.1 Introduction

This chapter presents the theoretical background of the thesis. It starts with a general

description of algebraic-geometric codes. An algebraic-geometric code is constructed

from an irreducible affine smooth curve. To define an algebraic-geometric code, we

need to define the affine curve as well as the affine points and rational functions

associated with the curve. Following that, two kinds of algebraic-geometric codes,

Reed-Solomon codes and Hermitian codes, will be introduced as they are being

investigated in the list decoding system which is described in the thesis. To clearly

demonstrate the code construction process, two worked examples will be presented.

For the purpose of supporting the list decoding system description, the pole basis and

zero basis relating to these two codes will also be introduced. At the end of this

chapter, a brief description of the list decoding algorithm and its application to Reed-

Solomon codes and general algebraic-geometric codes will be presented.

3.2 Algebraic-Geometric Codes

An Algebraic-geometric code is constructed from an irreducible affine smooth curve

[13, 19]. The construction of an algebraic-geometric code requires a set of points that

satisfy the irreducible affine curve and a set of rational functions defined on the curve.

3.2.1 Projective and Affine Curves

A projective curve is a (n + 1) dimensional curve, where n is a natural number,

defined by projective points. Associated with this projective curve, there are n + 1

affine curves defined in different coordinate systems. For example, χ(x, y, z) is a 3

dimensional projective curve. Associated with it, there are χ(x, y, 1), χ(x, 1, z) and χ(1,

y, z) affine curves.

If a curve cannot be expressed as a product of curves with lower degree, it is an

irreducible curve. For example, χ(x, y) = x
3
 + y

3
 is irreducible over GF(2). (Note:

GF(q) denotes a Galois field with size q which is a prime number of a power of the

prime number, its q elements can be written as: 0, 1, σ1
, σ2

, …, σq-1
, where σ is a

Chapter 3 Theoretical Background

 21

primitive element of the field.) A point is non-singular if not all partial derivatives of

the curve vanish at this point. A curve is said to be smooth if all points on the curve

are non-singular. One important class of irreducible smooth curves is the Hermitian

curve. A Hermitian curve defined over GF(w
2
) (w = 2

µ
, µ is a positive integer) can be

written as:

χ(x, y, z) = x
w+1

 + y
w
z + yz

w
 (3.1)

It is irreducible and it is smooth because partial derivatives
x

zyx

∂

∂),,(χ
 = (w + 1)x

w
 =

x
w
,

y

zyx

∂

∂),,(χ
 = wy

w-1
z + z

w
 = z

w
, and

z

zyx

∂

∂),,(χ
 = y

w
+ wyz

w-1
 = y

w
. The only point

that makes all the three derivatives vanish is (0, 0, 0). However, (0, 0, 0) does not

exist in projective space [13]. Therefore, all points are non-singular and the curve is

smooth.

3.2.2 Points on an Affine Curve

The points (α, β, θ) that satisfies the projective curve χ(x, y, z) = 0 are called

projective points, where α, β, θ ∈ GF(q). For construction of an algebraic-geometric

code, an affine point of the form pi = (α, β, 1) and a point at infinity of the form p∞ =

(α, β, 0) are needed. Codes constructed from curves with one point at infinity are

called one-point algebraic-geometric codes or Goppa codes [13]. Reed-Solomon

codes and Hermitian codes which are investigated in this thesis are classified as these

codes. To find the affine points and the point at infinity, we need to define different

affine components of the projective curve.

The Hasse-Weil bound [19] defines the number of points N (affine points and points

at infinity) that satisfy a curve defined over GF(q) as:

|N| ≤ (r - 1)(r - 2) q + 1 + q (3.2)

where r is the degree of the curve. Curves that meet this bound are called maximal

curves.

Chapter 3 Theoretical Background

 22

Here two case studies are shown to find affine points and the point at infinity.

Case study 1: Find the points on the straight line y = 0 defined over GF(4).

σ is a primitive element in GF(4) that satisfies σ2
 + σ + 1 = 0. Addition and

multiplication table of GF(4) is shown in Appendix A.

In the (x, y, 1) system, projective points are:

p0 = (0, 0, 1) p1 = (1, 0, 1) p2 = (σ, 0, 1) p3 = (σ2
, 0, 1)

Table 3.1 projective points on y = 0 in the (x, y, 1) system

In the (x, 1, y) system, there is no projective points as y = 0.

In the (1, y, z) system, the projective points are:

p0 = (1, 0, 0) p1 = (1, 0, 1) p2 = (1, 0, σ) p3 = (1, 0, σ2
)

Table 3.2 projective points on y = 0 in the (1, y, z) system

Therefore, on line y = 0, there are 4 affine points as: p0 = (0, 0, 1), p1 = (1, 0, 1), p2 =

(σ, 0, 1), p3 = (σ2
, 0, 1), and 1 point at infinity as: p∞ = (1, 0, 0). For the straight line y

= 0 defined over GF(4), Hasse-Weil bound is |N| ≤ 1+ 4 = 5. Therefore, line y = 0 is a

maximal curve.

Case study 2: Find the points on Hermitian curve x
3
 + y

2
z + yz

2
 = 0 define over GF(4).

In the (x, y, 1) system, projective points are:

p0 = (0, 0, 1) p1 = (0, 1, 1) p2 = (1, σ, 1) p3 = (1, σ2
, 1)

p4 = (σ, σ, 1) p5 = (σ, σ2
, 1) p6 = (σ2

, σ, 1) p7 = (σ2
, σ2

, 1)

Table 3.3 projective points on x
3
 + y

2
z + yz

2
 = 0 in the (x, y, 1) system

In the (x, 1, z) system, projective points are:

p0 = (0, 1, 0) p1 = (0, 1, 1) p2 = (1, 1, σ) p3 = (1, 1, σ2
)

p4 = (σ, 1, σ) p5 = (σ, 1, σ2
) p6 = (σ2

, 1, σ) p7 = (σ2
, 1, σ2

)

Table 3.4 projective points on x
3
 + y

2
z + yz

2
 = 0 in the (x, 1, z) system

Chapter 3 Theoretical Background

 23

In the (1, y, z) system, projective points are:

p0 = (1, σ, 1) p1 = (1, σ, σ2
) p2 = (1, σ2

, 1) p3 = (1, σ2
, σ)

Table 3.5 projective points on x
3
 + y

2
z + yz

2
 = 0 in the (1, y, z) system

Therefore, on curve x
3
 + y

2
z + yz

2
 = 0, there are 8 affine points as: p0 = (0, 0, 1), p1 =

(0, 1, 1), p2 = (1, σ, 1), p3 = (1, σ2
, 1), p4 = (σ, σ, 1), p5 = (σ, σ2

, 1), p6 = (σ2
, σ, 1), p7

= (σ2
, σ2

, 1), and 1 point at infinity p∞ = (0, 1, 0). For this Hermitian curve, the Hasse-

Weil bound is: |N| ≤ (3 - 1)(3 - 2) 4 + 1 + 4 = 9 and it is a maximal curve.

The above two case studies illustrate that over the same Galois field, there are more

points on a Hermitian curve than on a straight line. This enables Hermitian codes to

have longer code lengths than the Reed-Solomon codes which are constructed from a

straight line.

3.2.3 Rational Functions on the Curves

Rational functions are a quotient of two other functions both of which have the same

degree as: f(x, y, z) =
),,(

),,(

zyxh

zyxg
. The order of rational function f(x, y, z) (denoted as

v(f(x, y, z))) at a point is a sum of its zero orders and pole orders [13]. To construct an

algebraic-geometric code, each rational function is evaluated at the set of affine points

to form a row of the generator matrix, which will be described in later of this chapter.

These rational functions should have a pole at the point of infinity but not other affine

points. Again, here gives two case studies to define that rational functions on the

straight line y = 0 and Hermitian curve x
w+1

 + y
w
z + yz

w
 = 0.

Case study 3: Define the rational functions on straight line y = 0.

The set of rational functions defined on y = 0 can be written as:








i

i

z

x
, i ≥ 0. Based on

case study 1, the point at infinity on y = 0 is p∞ = (1, 0, 0),
i

i

z

x
 has pole at p∞ as z = 0.

Chapter 3 Theoretical Background

 24

However, as all the affine points has z = 1,
i

i

z

x
 has not pole at all the affine points. It

is easy to realise that
i

i

z

x
 has no zero orders at p∞ since x = 1, but pole order i.

Therefore, rational functions
i

i

z

x
 have increasing orders at p∞ as: v(

i

i

z

x
) = i.

Case study 4: Define rational functions on Hermitian curve x
w+1

 + y
w
z + yz

w
 = 0.

The set of rational functions defined on the Hermitian curve can be generally written

as:
ji

ji

z

yx
+

, 0 ≤ i ≤ w and j ≥ 0 [19, 51]. Based on case study 2, the point at infinity on

this Hermitian curve is p∞ = (0, 1, 0). Rational function
ji

ji

z

yx
+

 has pole at p∞ as z = 0

but not other affine points as for other affine points z = 1. To define functions
ji

ji

z

yx
+

’s

order at p∞, it is important to realise that:

w

ww

x

yzy

z

x 1−+
= and

1

121

+

−+ +
=

w

ww

x

zyy

z

y

As for p∞, x = 0 and y = 1,
z

x
 has no zero order at p∞, but has pole order w, while

z

y

has no zero order at p∞, but has pole order w + 1. Therefore, at p∞, v(
z

x
) = w and v(

z

y
)

= w + 1. Therefore, given a general rational function
ji

ji

z

yx
+

, its order at p∞ is: v(
ji

ji

z

yx
+

)

= iw + j(w + 1).

A devisor of a curve assigns an integer value to every point on the curve. An

algebraic-geometric code is defined by two kinds of devisor: divisors D and G.

Devisor D assigns a value D(pi) = 1 to every affine point and is a sum of all the affine

points [19]:

D = ∑
−

=

1

0

)(
n

i

ipD pi = ∑
−

=

1

0

n

i

ip (3.3)

Chapter 3 Theoretical Background

 25

∑
−

=

1

0

)(
n

i

ipD is the degree of D, denoted as d(D). Devisor G assigns an integer value

D(p∞) to the point at infinity p∞. For curves with one point at infinity:

G = d(G) p∞ (3.4)

where d(G) = D(p∞). Therefore, L(G) defines the sequence of rational functions with

order at p∞ not greater than d(G). Take the rational functions shown by case study 4 as

an example, if d(G) = 13, then

L(G) = L(13 p∞) =








5

32

4

4

4

3

4

22

3

3

3

2

3

2

2

2

22

2

0
,,,,,,,,,,,,

1

z

yx

z

y

z

xy

z

yx

z

y

z

xy

z

yx

z

y

z

xy

z

x

z

y

z

x

z
.

3.2.4 Construction of Algebraic-Geometric Codes

Based on the above study, it is sufficient to define an algebraic-geometric code’s

parameters and its construction method.

The Riemann-Roch theorem [13] defines the number of rational functions in L(G)

with order at p∞ not greater than d(G), and therefore defines the dimension of the code,

l(G). Based on the Riemann-Roch theorem, there exists a nonnegative integer g that:

l(G) – d(G) = 1 – g (3.5)

given d(G) > 2g – 2. The nonnegative integer g is called the genus of the curve,

defined as:

g =
2

)2)(1(−− rr
 (3.6)

where r is the degree of the curve. The nonnegative integers that match the order

numbers of rational functions in L(G) are called nongaps. Otherwise, they are gaps.

The maximal number of gaps is g.

For constructing an (n, k) algebraic-geometric code, the message length k is the

dimension of L(G). Based on (3.5),

Chapter 3 Theoretical Background

 26

k = l(G) = d(G) + 1 – g (3.7)

The code word length n is decided by the number of affine points n. This code has

designed minimal distance d
*
:

d
*
 = n – k – g + 1 (3.8)

When g = 0, d
*
 becomes the optimal Hamming distance:

d = n – k + 1 (3.9)

Reed-Solomon codes have optimal Hamming distance as it is constructed from a

straight line with genus g = 0. Compared with it, Hermitian codes suffer from genus

penalty. However, Hermitian codes have larger designed minimal distance as there are

more affine points on a Hermitian curve than on a straight line.

A k × n generator matrix is formed to construct a (n, k) algebraic-geometric codes. In

the generator matrix, k rows are formed by evaluating the k rational function in L(G)

(d(G) = k – 1 + g) over the n affine points. Then, a code word vector with length n is

generated by multiplying a message vector with length k to the generator matrix. The

construction of Reed-Solomon codes and Hermitian codes will be described in the

following sections 3.3 and 3.4 respectively.

3.3 Reed-Solomon Codes

As a special kind of algebraic-geometric codes, Reed-Solomon codes are constructed

from a straight line y = 0 [2]. Based on case study 1, the affine points pi(x, y, z) on a

straight line has y = 0 and z = 1, and they can be distinctively denoted by their x-

coordinates (finite field elements). The rational functions
i

i

z

x
 (i ≥ 0) introduced in

case study 3 can be simplified as: x
i
 (i ≥ 0). Therefore, the sequence of rational

functions for Reed-Solomon codes can be defined as:

L(∞p∞) = {1, x, x
2
, x

3
, x

4
, ……} (3.10)

L(Sp∞) is a subset of L(∞p∞) with order of functions in L(∞p∞) not greater than the

nonnegative integer S. For construction of a (n, k) (k < n) Reed-Solomon code defined

Chapter 3 Theoretical Background

 27

over GF(q) (n = q - 1), the generator matrix GRS can be formed by evaluating the first

k functions of (3.10) at n finite field elements x0, x1, …, xn-1 ∈ GF(q)\{0} as:

GRS =



















−

−

−−

−

1

1

1

1

1

0

110

111

k

n

kk

n

xxx

xxx

L

OM

L

L

 (3.11)

Then the message vector f = (f0, f1, …, fk-1) ∈ GF(q) is multiplied to GRS to generate

a code word as:

c = (c0, c1, …, cn-1) = f × GRS (3.12)

The encoding process can also be equivalently described in a polynomial evaluation

manner. Defining the message polynomial f(x) as:

f(x) = f0 ⋅ 1 + f1 ⋅ x + ⋅⋅⋅ + fk-1 ⋅ x
k-1

 (3.13)

where coefficients f0, f1, …, fk-1 ∈ GF(q) are message symbols and 1, x, …, x
k-1

 are the

rational functions in L((k – 1)p∞). Code word c is generated by evaluating f(x) over

the n finite field elements as:

c = (c0, c1, …, cn-1) = (f(x0), f(x1), …, f(xn-1)) (3.14)

In the list decoding system, this encoding manner is used and so as in the following

description of the thesis.

Based on (3.9), a (n, k) Reed-Solomon code has Hamming distance d = n – k + 1. This

code has error-correction capability:

τ = 




 −

2

1d
 (3.15)

This is the error-correction bound applied to the conventional unique decoding

algorithms [3, 4, 20-22] for Reed-Solomon codes. However, in later of this thesis, the

list decoding algorithm can perform beyond this bound.

Chapter 3 Theoretical Background

 28

3.3.1 Example: Construct a (15, 9) Reed-Solomon Code Defined in GF(16)

σ is a primitive element in GF(16) that satisfies σ4
 + σ + 1 = 0. Addition and

multiplication table of GF(16) is shown in Appendix C.

Given the message polynomial f(x) as:

f(x) = σ + σ4
x + σ4

x
2
 + σ2

x
3
 + σ7

x
4
 + σ13

x
5
 + σ6

x
6
 + 1 x

7
 + σ6

x
8

The 15 finite field elements in GF(16)\{0} are:

(x0, x1, …, x14) = (1, σ, σ4
, σ2

, σ8
, σ5

, σ10
, σ3

, σ14
, σ9

, σ7
, σ6

, σ13
, σ11

, σ12
).

Evaluate them in f(x), we have:

c0 = f(x0) = f(1) = 1, c1 = f(x1) = f(σ) = σ8
, c2 = f(x2) = f(σ4

) = σ8
, c3 = f(x3) = f(σ2

) = 0,

c4 = f(x4) = f(σ8
) = σ14

, c5 = f(x5) = f(σ5
) = σ10

, c6 = f(x6) = f(σ10
) = σ6

,

c7 = f(x7) = f(σ3
) = σ14

, c8 = f(x8) = f(σ14
) = σ4

, c9 = f(x9) = f(σ9
) = σ6

,

c10 = f(x10) = f(σ7
) = 0, c11 = f(x11) = f(σ6

) = σ2
, c12 = f(x12) = f(σ13

) = σ5
,

c13 = f(x13) = f(σ11
) = σ9

, c14 = f(x14) = f(σ12
) = σ12.

.

Therefore, the code word c = (1, σ8
, σ8

, 0, σ14
, σ10

, σ6
, σ14

, σ4
, σ6

, 0, σ2
, σ5

, σ9
, σ12

).

The error-correction bound for this code is τ = 3.

3.3.2 Pole Basis and Zero Basis

Pole basis contains a set of monomials with increasing pole orders at the point of

infinity p∞. Based on the above description, the pole basis is defined by the sequence

of rational functions L(∞p∞) (3.10). Pole basis is introduced because it defines the

polynomials associated with the corresponding algebraic curves when performing

Guruswami-Sudan’s list decoding algorithm [7, 43]. For Reed-Solomon codes,

polynomials introduced in the algorithm can generally be written as: f(x, y) =

∑
Ν∈ba

ba

ab yxf
,

, where fab ∈ GF(q).

Chapter 3 Theoretical Background

 29

With respect to every finite field element, there also exists a basis of functions ψ with

increasing zero orders at pi,)(ψ
ipv .)(ψ

ipv can be evaluated by dividing ψ by (x - xi)

until a unit (a function which evaluates to a non-zero value at xi) is obtained. The zero

order is equal to the number of division in order to obtain the unit. In general, with

respect to xi, ψ can be written as:

ψ = (x - xi)
α
 (α ∈ N) (3.16)

It is easy to realise that,)(ψ
ipv = α as unit (evaluation value equals to 1) can be

obtained after α divisions.

Pole basis and zero basis functions are introduced because they are used to define a

polynomial’s zero conditions (the singularity of the interpolated unit) in the list

decoding algorithm.

3.4 Hermitian Codes

Hermitian codes are constructed from Hermitian curves x
w+1

 + y
w
 + y = 0. Based on

case study 2, the affine points have z-coordinate equals to 1 and they can be

distinctively denotes as: p0 = (x0, y0), p1 = (x1, y1), …, and pn-1 = (xn-1, yn-1), where n =

w
3
. From case study 4, we also know that the rational functions for Hermitian codes

can be simply denoted as: x
i
y

j
 (0 ≤ i ≤ w and j ≥ 0). Therefore, the sequence L(∞p∞)

for Hermitian codes can be written as:

L(∞p∞) = {φ(x, y) | φ(x, y) = 1, x, y, …, x
i
y

j
, …, 0 ≤ i ≤ w and j ≥ 0} (3.17)

In order to distinguish different rational functions sequence associated with different

Hermitian curve, we denote the rational functions sequence associated with curve x
w+1

+ y
w
 + y = 0 as Lw(∞p∞). Here gives two examples showing difference rational

functions sequences derived from different Hermitian curves.

Example 3.1 For Hermitian curve x
3
 + y

2
 + y = 0, w = 2 and L2(∞p∞) = {1, x, y, x

2
, xy,

y
2
, x

2
y, xy

2
, y

3
, x

2
y

2
, xy

3
, y

4
, …}.

Chapter 3 Theoretical Background

 30

Example 3.2 For Hermitian curve x
5
 + y

4
 + y =0, w = 4 and L4(∞p∞) = {1, x, y, x

2
, xy,

y
2
, x

3
, x

2
y, xy

2
, y

3
, x

4
, x

3
y, x

2
y

2
, xy

3
, y

4
, x

4
y, x

3
y

2
, x

2
y

3
, xy

4
, y

5
, …}.

Lw(Sp∞) is a subset of Lw(∞p∞) with order of functions in L(∞p∞) not greater than the

nonnegative integer S. For example, L2(9p∞) = {1, x, y, x
2
, xy, y

2
, x

2
y, xy

2
, y

3
}.

For the construction of a (n, k) Hermitian code from curve x
w+1

 + y
w
 + y = 0, the k

rational functions in Lw(l p∞) (given l > 2g – 1, k = l – g + 1) are evaluated over the n

affine points to form a k × n generator matrix as:

GHerm =



















−−−−

−

−

)()()(

)()()(

)()()(

111101

111101

101000

nkkk

n

n

ppp

ppp

ppp

φφφ

φφφ

φφφ

L

OM

L

L

 (3.18)

Then the message vector f = (f0, f1, …, fk-1) ∈ GF(q) is multiplied to GHerm to

generate a code word as:

c = (c0, c1, …, cn-1) = f × GHerm (3.19)

To describe the encoding process in a polynomial evaluation manner, we have the

message polynomial f written as:

f(x, y) = f0 ⋅ φ0 + f1 ⋅ φ1 + ⋅⋅⋅ + fk-1 ⋅ φk-1 (3.20)

and the code word is generated as:

c = (c0, c1, …, cn-1) = (f(p0), f(p1), …, f(pn-1)) (3.21)

Based on (3.8), this Hermitian code has designed minimal distance d
*
 = n – k – g + 1

and its error-correction capability for the conventional unique decoding algorithm [5,

6, 25] is defined as:

τ = 






 −

2

1*d
 (3.22)

Chapter 3 Theoretical Background

 31

Do notice that for high rate Hermitian codes, their minimal distance is greater than the

designed distance and therefore (3.22) is not a tight bound for those codes.

3.4.1 Example: Construct a (8, 4) Hermitian Code Defined in GF(4)

The Hermitian curve defined in GF(4) and its associated rational functions are given

in example 3.1. On this curve, the 8 affine points are: p0 = (0, 0), p1 = (0, 1), p2 = (1,

σ), p3 = (1, σ2
), p4 = (σ, σ), p5 = (σ, σ2

), p6 = (σ2
, σ) and p7 = (σ2

, σ2
).

The message polynomial is given as: f(x, y) = 1 + σx + y + σ2
x

2
.

Evaluating f(x, y) over the 8 affine points, we have:

c0 = f(p0) = f(0, 0) = 1, c1 = f(p1) = f(0, 1) = 0, c2 = f(p2) = f(1, σ) = σ,

c3 = f(p3) = f(1, σ2
) = σ2

, c4 = f(p4) = f(σ, σ) = σ, c5 = f(p5) = f(σ, σ2
) = σ2

,

c6 = f(p6) = f(σ2
, σ) = σ2

, and c7 = f(p7) = f(σ2
, σ2

) = σ.

Therefore, the code word c = (1, 0, σ, σ2
, σ, σ2

, σ2
, σ).

The designed minimal distance for the code is d
*
 = 4 and its error-correction

capability is τ = 1.

3.4.2 Pole Basis and Zero Basis

The sequence of rational functions Lw(∞p∞) defines the pole basis monomials

associated with Hermitian curve x
w+1

 + y
w
 + y = 0. These pole basis monomials have

increasing pole order at the point of infinity p∞ as:

Lw(∞p∞) = {φa(x, y) |
∞pv (φa

-1
) <

∞pv (φa+1
-1

), a ∈ N} (3.23)

When applying the Guruswami-Sudan list decoding algorithm [7, 43], polynomials

can be generally written as: f(x, y, z) = ∑
Ν∈ba

b

aab zyxf
,

),(φ , where fab ∈ GF(q).

With respect to every affine point pi = (xi, yi), there also exists a zero basis which

contains rational functions with increasing zero orders at pi as [9]:

Chapter 3 Theoretical Background

 32

ipwZ , = { αψ ,ip (x, y) |
ipv (αψ ,ip) <

ipv (1, +αψ
ip), α ∈ N} (3.24)

function αψ ,ip has zero order
ipv (αψ ,ip) = α at pi. To evaluate the zero order, αψ ,ip is

divided by (x - xi) until a unit has been obtained. Again, the zero order is equal to the

number of divisions. In general, αψ ,ip can be written as [44]:

αψ ,ip (x, y) =),()1(, yxwpi δλψ ++ = (x – xi)
λ
[(y – yi) – xi

w
(x – xi)]

δ
 (3.25)

where λ, δ ∈ N, 0 ≤

λ ≤ w and δ ≥ 0. In the following, example 3.3 lists some zero

basis functions with respect to an affine point. Example 3.4 illustrates how to evaluate

the zero order of functions in (3.25).

Example 3.3 Given pi = (1, σ) as an affine point on curve x
3
 + y

2
 + y = 0, list the first

8 zero basis functions with respect to this point.

Based on (3.25), αψ ,ip (x, y) =),(3, yx
ip δλψ + = (x – 1)

λ
[(y – σ) – 1

2
(x – 1)]

δ
, where λ, δ

∈ N, 0 ≤ λ ≤ 2 and δ ≥ 0. Therefore,

0,ipψ (x, y) = (x – 1)
0
[(y – σ) – 1

2
(x – 1)]

0
 = 1

1,ipψ (x, y) = (x – 1)
1
[(y – σ) – 1

2
(x – 1)]

0
 = 1 + x

2,ipψ (x, y) = (x – 1)
2
[(y – σ) – 1

2
(x – 1)]

0
 = 1 + x

2

3,ipψ (x, y) = (x – 1)
0
[(y – σ) – 1

2
(x – 1)]

1
 = σ2

 + x + y

4,ipψ (x, y) = (x – 1)
1
[(y – σ) – 1

2
(x – 1)]

1
 = σ2

 + σx + y + x
2
 + xy

5,ipψ (x, y) = (x – 1)
2
[(y – σ) – 1

2
(x – 1)]

1
 = σ2

 + x + σ2
x

2
 + y

2
 + x

2
y

6,ipψ (x, y) = (x – 1)
0
[(y – σ) – 1

2
(x – 1)]

2
 = σ + x

2
 + y

2

7,ipψ (x, y) = (x – 1)
1
[(y – σ) – 1

2
(x – 1)]

2
 = σ + σx + y + x

2
 + xy

2
.

Example 3.4 Based on the example 3.3, justify zero basis function 3,ipψ has zero

order 3 at pi.

Chapter 3 Theoretical Background

 33

To evaluate a function’s zero order at an affine point of Hermitian curve x
w+1

 + y
w
 + y

= 0, it is important to notice the following equation associated with the curve [9]:

i

i

xx

yy

−

−
 =

e

xxxxxx
w

i

w

ii

w

i +−+− −1)()(
 (3.26)

where e = (y - yi)
w-1

 + 1. It can be seen that e(pi) = (yi – yi)
w-1

 + 1 = 1.

From example 3.3, it can be seen that 3,ipψ (x, y) = (y – σ) – (x – 1) and e = (y - σ) + 1.

Initialise ψ(0)
(x, y) = 3,ipψ (x, y) = (y – σ) – (x – 1).

The 1st division: ψ(1)
(x, y) =

1

),()0(

−x

yxψ
 =

1−

−

x

y σ
 - 1 =

e

xx 1)1()1(2 +−+−
 - 1

=
e

yxx 1)(1)1()1(2 −−−+−+− σ
 = (x - 1)e

-1
 + (y - σ)e

-1
 + (x - 1)

2
e

-1
.

We have ψ(1)
(pi) = (1 - 1)⋅1 + (σ - σ)⋅1 + (1 - 1)

2⋅1 = 0.

The 2nd division: ψ(2)
(x, y) =

1

),()1(

−x

yxψ
 = e

-1
 -

1−

−

x

y σ
e

-1
 + (x - 1)e

-1
 = e

-1
 – [(x - 1)

2
 +

(x - 1) + 1]e
-2

 + (x - 1)e
-1

 = (e
-1

 – e
-2

) – (x - 1)(e
-2

 – e
-1

) – (x - 1)
2
e

-2
.

We have ψ(2)
(pi) = (1 – 1) – (1 - 1)⋅(1 – 1) – (1 - 1)

2⋅1 = 0.

The 3rd division: ψ(3)
(x, y) =

1

),()2(

−x

yxψ
 =

1

21

−

− −−

x

ee
 - (e

-2
 – e

-1
) – (x - 1)e

-2
 =

2)1(

1

ex

e

−

−
 - (e

-2
 – e

-1
) – (x - 1)e

-2
 = 2

1

−

−

−
e

x

y σ
- (e

-2
 – e

-1
) – (x - 1)e

-2
 = [(x - 1)

2
 + (x - 1)

+ 1]e
-3

 – (e
-2

 – e
-1

) – (x - 1)e
-2

 = (e
-3

 – e
-2

 + e
-1

) + (x - 1)(e
-3

 – e
-2

) + (x - 1)
2
e

-3
.

We have ψ(3)
(pi) = (1 – 1 + 1) + (1 - 1)⋅(1 – 1) + (1 - 1)

2⋅1 = 1 ≠ 0.

There are 3 divisions in order obtain a unit. Therefore, the zero order of 3,ipψ at pi is 3

as:
ipv (3,ipψ) = 3. 3,ipψ can also be written as: 3,ipψ = (x - 1)

3
[(e

-3
 – e

-2
 + e

-1
) + (x -

1)(e
-3

 – e
-2

) + (x - 1)
2
e

-3
]. A general algorithm for evaluating the zero basis functions

is presented in [9].

Chapter 3 Theoretical Background

 34

3.5 List Decoding

The conventional unique decoding algorithms for Algebraic-geometric and Reed-

Solomon codes are efficient in terms of running time, but with error-correction

capability limited by the half distance boundary τ which is defined by (3.15) for Reed-

Solomon codes and (3.22) for algebraic-geometric codes. As introduced in Chapter 2,

the list decoding algorithm is a newly rediscovered method which can correct errors

beyond the half distance boundary. This section gives a brief introduction to the list

decoding algorithm. In this section, the unique decoding algorithm’s bound τ is

denoted as τunique in order to avoid conflicting notation when we introduce the error-

correction bound for list decoding.

3.5.1 The Idea of List Decoding

Elias [35, 36] and Wozencraft [37] first introduced the idea of list decoding which

leads to the later solution of decoding Reed-Solomon and algebraic-geometric codes

beyond boundary τunique. Their idea can be described as: given a received word R,

reconstruct a list of all code words with a distance τ to the received word R, in which

τ can be greater than τunique. This idea can be illustrated by Fig 3.1. In Fig 3.1, c1, c2,

and c3 are 3 independent code words with distance d to each other (for algebraic-

geometric codes, d is the designed minimal distance (3.8). For Reed-Solomon codes,

d is the Hamming distance (3.9)). For received word r1 which has distance less than






 −

2

1d
 to code word c1, it can be decoded by the unique decoding algorithm which

results in c1. However, for received word r2 which has distance greater than 




 −

2

1d

to any of the code word, the unique decoding algorithm will fail to decode it.

However, using the list decoding algorithm, a list of possible transmitted code word

will be produced. For example, decoded output list {c1, c2, c3} is produced by the

decoder. Then, the code word that has the minimal distance to r2 is chosen from the

list and decoding is completed.

Chapter 3 Theoretical Background

 35

Figure 3.1 Idea of list decoding

3.5.2 List Decoding of Low Rate Reed-Solomon and Algebraic-Geometric

Codes

Sudan [39, 40] introduced the first list decoding algorithm for low rate (k/n < 1/3)

Reed-Solomon codes. For a (n, k) Reed-Solomon code, given the received word R =

(r0, r1, …, rn-1) (ri ∈ GF(q), i = 0, 1, …, n - 1), n interpolated units can be formed by

combining received symbol ri with the respective finite field element xi used in

encoding (3.14) as: {(x0, r0), (x1, r1), …, (xn-1, rn-1)}. The first step of the algorithm is

to find polynomial Q(x, y) that passes through these n interpolated units as: Q(xi, yi) =

0. The second step of the algorithm is to find polynomials f(x) with degree less than k

and f(xi) = ri for at least n - τ values. y - f(x) is a factor of Q(x, y) as: y – f(x) | Q(x, y)

or Q(x, f(x)) = 0. If f(x) is the transmitted message polynomial (3.13), then τ errors in

received word R can be corrected. This process can be geometrically illustrated by Fig

3.2. For a (5, 2) Reed-Solomon code, 5 interpolated units are geometrically presented

in the figure. The polynomial to be found in the first step is Q(x, y) = y
2
 – x

2
. As Q(x,

y) = y
2
 – x

2
 = (y + x)(y - x). Therefore, in the second step, the output polynomial f(x) =

-x or f(x) = x. From Fig 3.2, it can be seen that f(x) = x satisfies f(xi) = ri for (x1, r1), (x2,

r2), and (x3, r3), while f(x) = -x satisfies f(xi) = ri for (x0, r0), (x2, r2) and (x4, r4). The

algorithm corrects τ = 2 errors.

d






 −

2

1d

c1

c2 c3

r1

r2

Chapter 3 Theoretical Background

 36

Figure 3.2 Geometric illustration of list decoding

Shokrollahi and Wasserman [41, 42] extended Sudan’s work [39, 40] for list decoding

of low rate algebraic-geometric codes. For a (n, k) algebraic-geometric code, given

received word R, n interpolated units can be formed by combining each received

symbol ri with the respective affine point pi used in encoding: {(p0, r0), (p1, r1), …,

(pn-1, rn-1)}. The first step is the find polynomial Q(x, y, z) that passes through (pi, ri)

(where pi = (xi, yi)) as: Q(xi, yi, ri) = 0. The second step is find polynomial f(x, y)

defined in L(l p∞) (l = k + g – 1 and p∞ is a point at infinity on the corresponding

algebraic curve) for which f(pi) = ri at least n - τ values. Again, if f(x) is the

transmitted message polynomial, τ errors in the received R has been corrected.

3.5.3 The Guruswami-Sudan Algorithm

Guruswami and Sudan [7, 43] later improved their work to list decode of Reed-

Solomon and algebraic-geometric codes with nearly all rate beyond boundary τunique,

called the Guruswami-Sudan (GS) algorithm.

For Reed-Solomon codes, improvement is made based on defining (xi, ri) as a

“singularity” of polynomial Q(x, y). It means Q(x, y) does not only pass point (xi, ri),

but also intersects it by a number of times. The number of intersection is defined as

Chapter 3 Theoretical Background

 37

multiplicity m (m is a positive integer). As mentioned in section 3.3.2, the general

polynomial for GS decoding Reed-Solomon codes can be written as:

Q(x, y) = ba

ba

ab yxQ∑
Ν∈,

 (3.27)

where Qab ∈ GF(q). It can be seen that Q(0, 0) = 0 and (0, 0) is a point at Q(x, y). If

there is no term x
a
y

b
 with total degree a + b less than m as: Qab = 0 for a + b < m, Q(x,

y) has a zero of multiplicity m at (0, 0). (0, 0) is a singularity of polynomial Q(x, y).

Geometrically, Q(x, y) intersects (0, 0) m times. In general, to define point (xi, ri) as a

singularity of a polynomial Q(x, y) (3.27), Q(x, y) shall be able to be written as:

Q
(i)

(x, y) = βα

βα
αβ)()(

,

)(

ii

i ryxxQ −−∑
Ν∈

 (3.28)

where)(iQαβ ∈ GF(q). It can be easily observed that (xi, ri) is a point of Q
(i)

(x, y) as

Q
(i)

(xi, ri) = 0. If)(iQαβ = 0 for α + β < m, Q
(i)

(x, y) has a zero of multiplicity m at (xi, ri)

and (xi, ri) is a singularity of Q
(i)

(x, y). Therefore, for a general polynomial Q(x, y),

determine the relationship between its coefficient Qab and Q
(i)

(x, y)’s coefficients)(iQαβ

is critical to define point (xi, ri) as a singularity. This will be further demonstrated in

Chapter 4 which presents GS decoding Reed-Solomon codes. Referring to section

3.3.2, (x - xi)
α
 is the zero basis function with respect to xi. Similarly, (y - ri)

β
 is also the

zero basis function with respect to ri. They are introduced in section 3.3.2 on the

purpose of defining a point as a singularity of a polynomial.

Therefore, the first step of the GS algorithm can be described as: to construct a

polynomial Q(x, y) which has a zero of multiplicity at least m at units (x0, r0), (x1,

r1), …, (xn-1, rn-1). This step is called interpolation. The second step of the GS

algorithm is the same as described in section 3.5.2, called factorisation. Using the GS

algorithm to decode a (n, k) Reed-Solomon code, the algorithm can correct up to [7]:

τGS = n -  )(dnn − - 1 (3.29)

errors. As Hamming distance d = n – k + 1, τGS will be increased as code rate k/n

decreases, indicating the GS algorithm has greater error-correction potential for low

rate codes.

Chapter 3 Theoretical Background

 38

Similarly, for algebraic-geometric codes, polynomials operated in the GS algorithm

can generally be written as:

Q(x, y, z) = ∑
Ν∈ba

b

aab zQ
,

φ (3.30)

where φa is the rational function defined in L(∞p∞), where p∞ is the point at infinity on

the corresponding algebraic curve. To define interpolated unit (pi, ri) as a singularity

of Q(x, y, z), the zero basis functions with respect to affine point pi and received word

ri are needed to be known. As described above, the zero basis function with respective

to ri can be written as: (z - ri)
β
. However, the zero basis functions with respect to the

affine points on most of the algebraic curves are still unknown. In the literature, only

the zero basis functions of the affine points on Hermitian curves have been developed

[44], which is described in section 3.4.2. Hence, it is only feasible to apply the GS

algorithm for Hermitian codes. For Hermitian codes, to define (pi, ri) as a singularity

of Q(x, y, z) (3.30), Q(x, y, z) can be written as:

Q
(i)

(x, y, z) = ∑
Ν∈

−
βα

β
αβψ

,

,

)()(iap

i rzQ
i

 (3.31)

Based on αψ ,ip ’s definition (3.25), it is not difficult to realise that Q
(i)

(pi, ri) = 0. In

(3.31), if)(iQαβ = 0 for α + β < m, then (pi, ri) is a singularity of Q
(i)

(x, y, z) and Q
(i)

(x, y,

z) has a zero of multiplicity at least m at (pi, ri). The relationship between Q(x, y, z)’s

coefficients Qab and Q
(i)

(x, y, z)’s coefficients)(iQαβ is further demonstrated in Chapter

6 which presents GS decoding Hermitian codes.

Therefore, decoding Hermitian codes using the GS algorithm, interpolation is to find

the polynomial Q(x, y, z) which has a zero of multiplicity at least m at interpolation

units: (p0, r0), (p1, r1), …, (pn-1, rn-1). Then factorisation is to find the transmitted

message polynomial f(x, y) defined in Lw(l p∞) (l = k + g – 1 and p∞ is a point at

infinity on Hermitian curve x
w+1

 + y
w
 + y = 0). GS decoding Hermitian codes can

correct errors up to:

τGS = n -  )(*dnn − - 1 (3.32)

Chapter 3 Theoretical Background

 39

where designed minimal distance d
*
 = n – k – g + 1. Again, indicated by (3.32), the

GS algorithm has more error-correction potential for low rate codes.

3.5.4 The Koetter-Vardy Algorithm

In [7], it is demonstrated that further extension of the GS algorithm can be done by

assigning a non-negative integer weight wi to interpolated unit (xi, ri) such that

∑ = ii rxpi iw
)(:

 > ∑
−

=
⋅

1

0

2n

i iwk . The extension idea gives two releases to the GS

algorithm: first, the number of interpolated units can be greater than n. Second, with

respect to different interpolated unit (xi, ri), different multiplicity value mi can be

assigned. This idea is later developed by Koetter and Vardy [8] who presented a soft-

decision list decoding algorithm for Reed-Solomon codes, called the Koetter-Vardy

(KV) algorithm.

In the KV algorithm, before interpolation and factorisation, an extra step that converts

the received information’s posteriori transition probability values to multiplicity

values is performed. As a result of that, the number of interpolated units operated in

interpolation is increased and each of them is assigned with a rational multiplicity

value. It is shown that the KV’s algorithm can easily perform beyond τGS (3.29) for

Reed-Solomon codes. Details of decoding Reed-Solomon codes with the KV

algorithm are presented in Chapter 5. Based on the KV algorithm, this project has also

developed a soft-decision list decoding algorithm for Hermitian codes. It is also

shown that soft-decision list decode Hermitian codes can easily perform beyond

boundary τGS (3.32). Details of soft-decision list decoding of Hermitian codes are

presented in Chapter 7.

3.6 Conclusions

The chapter presented the fundamental knowledge of algebraic-geometric codes,

including algebraic curves, affine points on the curve and the rational functions

associated with the curve. Based on this knowledge, a general description of encoding

Chapter 3 Theoretical Background

 40

an algebraic-geometric code is given. Two classes of important algebraic-geometric

codes are introduced in the chapter: Reed-Solomon codes and Hermitian codes. Their

encoding processes are described with worked examples. To demonstrate the list

decoding system, the pole basis and zero basis of these two kinds of codes are also

introduced. At the end, a brief introduction to the list decoding system was given

presenting chronological history of its development, from list decoding of low rate

codes to list decoding of all rate codes and extending to soft-decision list decoding. It

has been demonstrated that how list decoding can correct errors beyond the half

distance boundary. This prerequisite knowledge lays a foundation to explain the list

decoding of Reed-Solomon codes and Hermitian codes using hard decisions and soft

decisions later in the thesis.

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 41

Chapter 4

Hard-Decision List

Decoding of Reed-

Solomon Codes

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 42

4.1 Introduction

This chapter presents a hard-decision list decoding algorithm for Reed-Solomon codes,

the so-called the Guruswami-Sudan (GS) algorithm. The algorithm consists of

interpolation and factorisation, which can be implemented by an iterative polynomial

construction algorithm and a recursive coefficient search algorithm respectively. The

algorithm’s high decoding complexity is mainly dominated by the iterative

interpolation process. Therefore, a novel complexity reduction modification scheme

for the interpolation process has been developed in order to improve the algorithm’s

efficiency. The modification scheme is based on identifying any unnecessary

polynomials during the iterative process and eliminating them. A worked example of

this modification scheme is shown in the chapter for clarification. An algebraic-

geometric explanation of the GS algorithm with the complexity reduction

modification is presented with simulation results of Reed-Solomon codes for different

list decoding parameters over the additive white Gaussian noise (AWGN) and

Rayleigh fading channels. A complexity analysis is also shown comparing the GS

algorithm with our modified GS algorithm, showing the modification can reduce

complexity significantly in low error weight situations. This work is published in two

papers by the author [52, 53].

4.2 Overview of the GS Algorithm

We first denote some commonly used symbols in this chapter:

• Fq[x] – the ring of polynomials with coefficients from GF(q) and variable x, which

can be generally written as: f(x) = ∑
Ν∈a

a

a xf , fa ∈ GF(q).

• Fq[x
w
] – the subset of Fq[x] with x degree ≤ w

• Fq[x, y] – the ring of bivariate polynomials with coefficients from GF(q) and

variables x and y, which can be generally written as: f(x, y) = ∑
Ν∈ba

ba

ab yxf
,

, fab ∈ GF(q).

The generation of a (n, k) Reed-Solomon code is defined by equations (3.13) and

(3.14) in Chapter 3.

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 43

4.2.1 Interpolation and Factorisation

Interpolation: If the received word is R = (r0, r1, …, rn-1) (ri ∈ GF(q), i = 0, 1, …, n -

1), then combining with the finite field elements used in encoding (x0, x1, …, xn-1) ∈

GF(q)\{0} , n interpolated points can be formed as: (x0, r0), (x1, r1), …, (xn-1, rn-1). The

task of interpolation is to construct a bivariate polynomial: ∑
Ν∈

=
ba

ba

ab yxQyxQ
,

),(

 (3.27), which has a zero of multiplicity at least m over these n points and with

minimal (1, k-1)-weighted degree which is explained later. Qab ∈ GF(q) is the

coefficient of x
a
y

b
. Geometrically, this polynomial intersects the n points at least m

times.

Factorisation: After the bivariate polynomial Q(x, y) has been found, it is factorised in

order to find the list L of polynomials p(x) given by:

L = {p(x): (y - p(x)) | Q(x, y) and deg(p(x)) < k} (4.1)

All the polynomials in L have the possibility of being the transmitted message f(x).

The one with the minimum distance to the received word after re-encoding is chosen

by the decoder.

4.2.2 Decoding Parameters

If we define the (u, v)-weighted degree of monomial x
a
y

b
 as:

degu,v(x
a
y

b
) = au + bv (4.2)

a sequence of bivariate monomials can be arranged by their weighted degrees. In

order to decode a (n, k) Reed-Solomon code by the GS algorithm, the (1, k-1) -

lexicographic order (ord) is used. Under (1, k-1) - lexicographic order [45, 54]:

2211 baba yxyx <

if deg1, k-1(11 ba yx) < deg1, k-1(22 ba yx), or deg1, k-1(11 ba yx) = deg1,k-1(11 ba yx) and a1 > a2.

For example, in order to decode a (7, 5) RS code, (1, 4) - lexicographic order is used.

The generation of this order is shown by Table 4.1. The entries Eab in Table 4.1a and

4.1b represent the (1, 4) - weighted degree and (1, 4) – lexicographic order of

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 44

monomials M with x degree a and y degree b respectively. Applying (4.2) with u = 1

and v = 4, we can generate the (1, 4) - weighted degree of monomials M shown by

Table 4.1a. Based on Table 4.1a and applying the above lexicographic order rule, we

can generate the (1, 4) – lexicographic order of monomials M shown in Table 4.1b

and denoted as ord(M). From Table 4.1b, it is easy to observe that x
4

< x
2
y < y

2
, since

ord(x
4
) = 4, ord(x

2
y) = 9 and ord(y

2
) = 14.

 a
0 1 2 3 4 5 6 7 8 9 10 11 12 …

 b

0 0 1 2 3 4 5 6 7 8 9 10 11 12 …

1 4 5 6 7 8 9 10 11 12 …

2 8 9 10 11 12 …

3 12 …

…

…

Table 4.1a (1, 4) – weighted degree of monomial x
a
y

b

 a
0 1 2 3 4 5 6 7 8 9 10 11 12 …

b

0 0 1 2 3 4 6 8 10 12 15 18 21 24 …

1 5 7 9 11 13 16 19 22 25 …

2 14 17 20 23 26 …

3 27 …

…

…

Table 4.1b (1, 4) – lexicographic order of monomial x
a
y

b

Based on the monomial’s weighted degree and order definition, we can define the

weighted degree of a nonzero bivariate polynomial in Fq[x, y] as the weighted degree

of its leading monomial ML. Any nonzero bivariate polynomial Q(x, y) can be written

as:

LL MQMQMQyxQ +++= L1100),((4.3)

with LMMM <<< L10 , Q0, Q1, ···, QL ∈ GF(q) and 0≠LQ . The (1, k-1) - weighted

degree of Q(x, y) can be defined as:

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 45

deg1, k-1(Q(x, y)) = deg1, k-1(ML) (4.4)

L is called the leading order (lod) of polynomial Q(x, y), defined as:

lod(Q(x, y)) = ord(ML) = L (4.5)

For example, give polynomial Q(x, y) = 1 + x
2
 + x

2
y + y

2
, applying the above (1, 4)-

lexicographic order, it has leading monomial ML = y
2
. Therefore, deg1,4(Q(x, y)) =

deg1,4(y
2
) = 8 and lod(Q(x, y)) = ord(y

2
) = 14. Consequently, any two nonzero

polynomials Q and H (Q, H ∈ Fq[x, y]) can be compared with respect to their leading

order that:

Q ≤ H, if lod(Q) ≤ lod(H) (4.6)

Sx(T) and Sy(T) are denoted as the highest degree of x and y under the (1, k-1) -

lexicographic order such that:

Sx(T) = max{a: ord(x
a
y

0
) ≤ T} (4.7)

Sy(T) = max{b: ord(x
0
y

b
) ≤ T} (4.8)

where T is any nonnegative integer. It is interesting to note that under (1, k-1) -

lexicographic order x
a
y

0
 is the minimal monomial with weight degree a. Therefore,

the (1, k-1) - weighted degree of any nonzero bivariate polynomial defined in (4.3)

with leading order L can be determined as:

deg1, k-1(Q(x, y)) = Sx(L) (4.9)

The error-correction capability tm and the maximum number of candidate messages lm

in the output list with respect to a certain multiplicity m of the GS algorithm can be

stated as [46]:









−−=

m

CS
n x

m

)(
1τ (4.10)

)(CSl ym = (4.11)

where








 +
=

2

1m
nC (4.12)

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 46

C represents the number of iterations in the interpolation process. These parameters

will be proven in section 4.4.1 when the factorisation theorem is presented. τm and lm

grow monotonically with multiplicity m [46]:

21 mm ττ ≤ (4.13)

21 mm ll < (4.14)

if m1 < m2. The GS algorithm algorithm’s error-correction upper bound τGS for a (n, k)

Reed-Solomon code is defined by equation (3.29). τGS is greater or equal to the half

distance boundary τ defined by (3.15) and approaches to it asymptotically with code

rate k/n increases. According to the GS algorithm analysis in [7], for Reed-Solomon

codes, decoding capability of the GS algorithm merges with the conventional

algebraic decoding algorithm at about k/n = 0.9. Note that the performance of the

generalised minimum distance (GMD) decoding algorithm [55] does not depend on

the code rate and it can always outperform the conventional decoding algorithm with

marginal coding gains. Simulations results in [8] show that the GS algorithm can

outperform the GMD algorithm in relatively low code rate situations. However, as

code rate increases, the GS algorithm’s performance will approach to the conventional

decoding algorithm, and the GMD algorithm can slightly outperform the GS

algorithm.

Now two examples are given to illustrate how τm and lm grow with multiplicity m with

the GS algorithm. Notice that those m listed in the following examples are the

minimal values need to correct the corresponding number of errors τm.

Example 4.1: To decode Reed-Solomon code (63, 15) defined over GF(64), with code

rate 0.238 (< 1/3), we obtain:

m 1 2 4 6 26

τm 27 30 31 32 33 = τGS

lm 2 4 8 13 55

Example 4.2: To decode Reed-Solomon code (63, 31) defined over GF(64), with code

rate 0.492 (> 1/3), we obtain:

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 47

m 1 3 5 13

τm 16 17 18 19 = τGS

lm 1 4 7 19

4.3. Interpolation

In this section, the interpolation theorem is explained from the algebraic-geometric

point of view. This is followed by a detailed description of its implementation method

and a novel modification scheme which improves its efficiency.

4.3.1. Interpolation Theorem

According to section 3.3.2, 1, x, …, x
a
 are the rational functions that have increasing

pole orders [13] over the point of infinity p∞ of a projective line. The interpolated

polynomial can generally be written as: ∑
Ν∈

=
ba

ba

ab yxQyxQ
,

),((3.27).

1, (1 - xi), …, (1 - xi)
α
 are the rational functions that have increasing zero orders [13]

over the finite field element xi used in encoding, and the received word ri ∈ GF(q).

The interpolated polynomial with respect to point (xi, ri) can also be written as:

∑
Ν∈

−−=
βα

βα
αβ

,

),(
)()(),(ii

rx
ryxxQyxQ ii (4.15)

where
),(ii rx

Qαβ ∈ GF(q) is the coefficient of (x - xi)
α

(y - ri)
β
. For (4.15), Q(xi, ri) = 0.

Based on section 3.5.3, if
),(ii rx

Qαβ = 0 for α + β < m, Q(x, y) has a zero of multiplicity

at least m over (xi, ri).

It is important to notice that [46]:

∑
≥

−
−








=+−=

α

αα

αa

i

a

i

a

ii

a xxx
a

xxxx)()((4.16)

and

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 48

∑
≥

−
−








=+−=

β

ββ

βb

i

b

i

b

ii

b ryr
b

rryy)()((4.17)

Substituting (4.16) and (4.17) into (3.27), we have:

∑ ∑ ∑
Ν∈ ≥ ≥

−−
−








−








=

ba a b

i

b

ii

a

iab ryr
b

xxx
a

QyxQ
,

)()(),(
α β

ββαα

βα

= ∑ ∑
Ν∈ ≥≥

−−
−−

















βα βα

βαβα

βα, ,

)()(
ba

ii

b

i

a

iab ryxxrx
ba

Q (4.18)

Therefore, from (4.15):

∑
≥≥

−−

















=

βα

βα

αβ
βαba

b

i

a

iab

rx
rx

ba
QQ ii

,

),(
 (4.19)

This is the (α, β) - Hasse derivative evaluation on the point (xi, ri) of the polynomial

Q(x, y) defined by (3.27) [45, 56, 57]. (4.19) defines the constraints for the

coefficients of polynomial Q (3.27) in order to have a zero of multiplicity m over

point (xi, ri).

Example 4.3 Given polynomial Q(x, y) = σ5
 + σ5

x + y + xy defined in GF(8) in which

σ is a primitive element satisfying σ3
+ σ + 1 = 0. Prove Q(x, y) has a zero of

multiplicity at least m = 2 at point (1, σ
5
). Addition and multiplication table of GF(8)

is shown in Appendix B.

Based on the above study, to have a zero of multiplicity 2 at (1, σ
5
), we need),1(

00

5σQ

= 0,),1(

01

5σQ = 0 and),1(

10

5σQ = 0.

),1(

00

5σQ = Q00 








0

0









0

0
1

0-0
(5σ)

0-0
 + Q10 









0

1









0

0
1

1-0
(5σ)

0-0
 + Q01 









0

0









0

1
1

0-0
(5σ)

1-0
 +

Q11 








0

1









0

1
1

1-0
(5σ)

1-0
 = 1 + 1 + 5σ + 5σ = 0

),1(

01

5σQ = Q01 








0

0









1

1
1

0-0
(5σ)

1-1
 + Q11 









0

1









1

1
1

1-0
(5σ)

1-1
 = 1 + 1 = 0

),1(

10

5σQ = Q10 








1

1









0

0
1

1-1
(5σ)

0-0
 + Q11 









1

1









0

1
1

1-1
(5σ)

1-0
 = 5σ + 5σ = 0.

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 49

Therefore, Q(x, y) has a zero of multiplicity at least m = 2 at point (1, σ
5
).

If we use D(Q) to denote the Hasse derivative evaluation of Q(x, y), then (4.19) can be

denoted as:

∑
≥≥

−−

















=

βα

βα

αβ
βαba

b

i

a

iabii rx
ba

QrxQD
,

),((4.20)

Therefore, the interpolation of the GS algorithm can be generalised as: Find a minimal

(1, k-1) - weighted degree polynomial Q(x, y) that satisfies:

Q(x, y) =
)(

min
Qlod

{ 0),(|],[),(=∈ iiq rxQDyxFyxQ αβ for i = 0, …, n - 1 and α + β < m

(α, β ∈ N)} (4.21)

4.3.2. Iterative Polynomial Construction

To find interpolated polynomial (4.21), an iterative polynomial construction algorithm

[9, 44-47, 58] is employed. In this algorithm, a group of polynomials are initialised,

they are tested by each of the Hasse derivative evaluations (4.19) and modified

interactively. The interactive modification between two polynomials is based on the

following two properties of the Hasse derivative [45, 56].

Property 1: Linear Functional of Hasse derivative

If H, Q ∈ Fq[x, y], d1 and d2∈ GF(q), then

D(d1H + d2Q) = d1D(H) + d2D(Q) (4.22)

Property 2: Bilinear Hasse derivative

If H, Q ∈ Fq[x, y], then

[H, Q]D = HD(Q) - QD(H) (4.23)

If the Hasse derivative evaluation of D(Q) = d1 and D(H) = d2 (d1, d2 ≠ 0), based on

Property 1 it is obvious to conclude that the Hasse derivative evaluation of (4.23) is

zero, denoted as:

D([H, Q]D) = 0 (4.24)

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 50

If lod(H) > lod(Q), the new constructed polynomial from (4.23) has leading order

lod(H). Therefore, by performing the bilinear Hasse derivative over two polynomials

both of which have nonzero evaluations, we can reconstruct a polynomial which has

zero Hasse derivative evaluation. Based on this principle, implementation algorithm

for interpolation is to iteratively modify a set of polynomials through all n points and

with every possible (α, β) pair under each point.

With multiplicity m, there are 






 +

2

1m
 pairs of (α, β), which are arranged as: (α, β) =

(0, 0), (0, 1), …, (0, m-1), (1, 0), (1, 1), …, (1, m-2), …, (m-1, 0). Therefore, when

decoding a (n, k) Reed-Solomon code with multiplicity m, there are C = 






 +

2

1m
n

iterations in order to construct a polynomial defined by (4.21). In order to introduce

our complexity reduction modification to this interpolation algorithm, the iterative

process is presented in a sequential manner with index ik such that ik = i 






 +

2

1m
 + r,

where i denotes the index of points (i = 0, 1, …, n - 1), r denotes the index of (α, β)

pairs (r = 0, 1, …, 






 +

2

1m
 - 1).

At the beginning, a group of polynomials are initialised as

G0 = {Q0,j = y
j
, j = 0, 1, …, lm} (4.25)

where lm is the maximal number of messages in the output list defined by (4.11). If ML

denotes the leading monomial of polynomial Q, it is important to point out that:

Q0, j = min{Q(x, y) ∈ Fq[x, y] | degy(ML) = j} (4.26)

Under ik modification, each polynomial in group
ki

G is tested by (4.20) using:

∆j =)(, jii kk
QD (4.27)

Those polynomials with ∆j = 0 do not need to be modified. However, those

polynomials with ∆j ≠ 0 need to be modified based on (4.23). In order to construct a

group of polynomials which satisfy:

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 51

 =+ jik
Q ,1 min{Q ∈ Fq[x, y] | 0)(,,0)(,0)(,10,11,1 === ++−+ jijiijii kkkkk

QDQDQD L , and

degy(ML) = j} (4.28)

the minimal polynomial among those polynomials with ∆j ≠ 0 is chosen. Denote its

index as j
’
 and record it as Q

’
:

j
’
 = index(min{ jik

Q , | ∆j ≠ 0}) (4.29)

Q
’
 = ', jik

Q (4.30)

For those polynomials with ∆j ≠ 0 but j ≠ j
’
, modify them by (4.23) without the

leading order increasing:

kikk Djiji QQQ],['

,,1 =+ = jij k
Q ,'∆ - ∆j Q

’
 (4.31)

Based on (4.24), we know that)(,1 jii kk
QD + = 0. As lod(jik

Q ,) > lod(Q
’
), therefore

lod(jik
Q ,1+) = lod(jik

Q ,).

For Q
’
 itself, it is modified by (4.23) with the leading order increasing:

kik
Dji

QxQQ],[''

,1 ' =+
= *j
∆ (x – xi) Q

’
 (4.32)

where xi is the x – coordinate of current interpolating point (xi, ri).)('
* QD

kij
=∆ ≠ 0

and so as)('xQD
ki

≠ 0, therefore,)(',1 jii
kk

QD
+

= 0. As lod(xQ
’
) > lod(Q

’
), lod(',1 jik

Q
+

) =

lod(xQ
’
) > lod(', jik

Q). Therefore whenever (4.32) is performed, we have: lod(jik
Q ,1+) >

lod(jik
Q ,).

After C iterative modifications, the minimal polynomial in group Gc is the

interpolated polynomial that satisfies (4.21), and it is chosen to be factorised in the

next step:

}|min{),(,, CjCjC GQQyxQ ∈= (4.33)

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 52

4.3.3. Complexity Reduced Modification

Based on the above analysis, it can be observed that when decoding a (n, k) Reed-

Solomon code with multiplicity m, lm + 1 bivariate polynomials are being interactively

modified over C iterative steps in which Hasse derivative evaluation (4.20) and

bilinear Hasse derivative modification (4.23) are being performed. This process has

complexity approximately O(n
2
m

4
) [46] and is responsible for the GS algorithm’s

high decoding complexity. Therefore, reducing the complexity of interpolation is

essential to improve the algorithm’s efficiency.

The leading order of the polynomial group
ki

G is defined as the minimal leading order

among the group’s polynomials:

lod(
ki

G) = min{lod(jik
Q ,) | jik

Q , ∈
ki

G } (4.34)

Based on initialisation defined in (4.25), the leading order of polynomial group G0 is

lod(G0) = lod(Q0, 0) = 0. In the ik modification, if no polynomial needs to be modified,

then the polynomial group is unchanged, lod(1+ki
G) = lod(

ki
G). Once a polynomial

needs to be modified, (4.32) must be used. If ML is the leading monomial of Q
*
, we

have:

lod(xQ
*
) = lod(Q

*
) + 









−1

deg *

k

Qx + degy(ML) + 1 (4.35)

and lod(
ki

G) will be increased if Q
*
 is the minimal polynomial in the group

ki
G . The

leading order increase guarantees that in the ik iterative step, the leading order of the

polynomials group
ki

G is always less than or equal to ik:

lod(
ki

G) ≤ ik (4.36)

Based on (4.36), after C iterative steps, we have:

lod(CG) ≤ C (4.37)

From (4.33) we know that only the minimal polynomial is chosen from the

polynomial group CG as Q(x, y) = {Qc, j | Qc, j∈Gc and lod(Qc, j) = lod(Gc)}, therefore:

lod(Q(x, y)) ≤ C (4.38)

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 53

which means the interpolated polynomial Q(x, y) has leading order less than or equal

to C. Those polynomials with leading order over C will not be candidates to be Q(x, y).

Therefore, during the iterative process, we can modify the group of polynomials by

eliminating those with leading order over C as [52]:

ki
G = { jik

Q , | lod(jik
Q ,) ≤ C} (4.39)

We now prove this modification will not affect the final result. In ik iterative step, if

there is a polynomial jik
Q , with lod(jik

Q ,) > C, it may be modified either by (4.31) or

(4.32) which will result in its leading order being unchanged or increased. Therefore,

at the end lod(Qc, j) > C and based on (4.38) it can not be Q(x, y). However, if jik
Q , is

the minimal polynomial defined by (4.29), this implies that those polynomials with

leading order less than C do not need to be modified. If jik
Q , is not the minimal

polynomial defined by (4.29), jik
Q , will not be chosen to perform bilinear Hasse

derivative (4.31) with other polynomials. Therefore, Q(x, y) has no information

introduced from jik
Q , since lod(jik

Q ,) > C. As a result, eliminating the polynomials

with leading order over C will not affect the final outcome.

This complexity modification scheme can be generally applied to the iterative

interpolation process, such as soft-decision list decoding of Reed-Solomon codes and

hard/soft-decision list decoding of Hermitian codes, both of which will be presented

in the later chapters of this thesis. Based on the total number of iterations C for

interpolation, the interpolated polynomial’s leading order always satisfies: lod(Q(x, y))

≤ C. It implies that those polynomials in the group G can be eliminated once their

leading order is over C.

This modification can reduce some unnecessary computation in terms of avoiding

Hasse derivative evaluation (4.27) and bilinear Hasse derivative modification (4.31)

(4.32) of polynomials with leading order over C. Based on the above analysis, the

modified interpolation process can be summarised as:

Algorithm 4.1: Interpolation for list decoding of a (n, k) Reed-Solomon code

(i) Initialise a group of polynomials by (4.25), set ik = 0

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 54

(ii) Modify the polynomial group by (4.39)

(iii) Perform Hasse derivative evaluation (4.27) for each polynomial in the group

(iv) If all the polynomials’ Hasse derivative evaluations are zero, go to (vii)

(v) Find the minimal polynomial defined by (4.29) (4.30)

(vi) For the minimal polynomial, modify it by (4.32). For the other polynomials with

nonzero Hasse derivative evaluation, modify them by (4.31)

(vii) ik = ik + 1

(viii) If ik = C, stop the process and choose Q(x, y) defined by (4.33) else go to (ii).

Here an example is given showing the modified interpolation process.

Example 4.4: Decode the (7, 2) Reed-Solomon code defined over GF(8) with

multiplicity m = 2. As C = 7 








1

3
 = 21, based on (4.10) (4.11) we have τ2 = 3 and l2 =

5. The transmitted codeword is generated by evaluating the message polynomial f(x) =

σ + σ6
x over the set of points x = (1, σ, σ3

, σ2
, σ6

, σ4
, σ5

) and the corresponding

received word is R = (σ5
, σ3

, σ4
, 0, σ6

, σ2
, σ2

), where σ is a primitive element in GF(8)

satisfying σ3
+ σ + 1 = 0. Construct a bivariate polynomial that has a zero of

multiplicity m = 2 over the n points 1

0|),(−

=

n

iii rx .

At the beginning, 6 polynomials are initialised as:

Q0, 0 = 1, Q0, 1 = y, Q0, 2 = y
2
, Q0, 3 = y

3
, Q0, 4 = y

4
, and Q0, 5 = y

5
. Their leading orders

are lod(Q0, 0) = 0, lod(Q0, 1) = 2, lod(Q0, 2) = 5, lod(Q0, 3) = 9, lod(Q0, 4) = 14 and

lod(Q0, 5) = 20 respectively. lod(G0) = lod(Q0, 0) = 0.

When ik = 0, i = 0 and (α, β) = (0, 0), no polynomial is eliminated from the group G0.

Perform Hasse derivative evaluation for each of the polynomials in G0 as:

∆0 =)(0,kk ii QD =)(0,0

),(

)0,0(
00 QD

yx
= 1, ∆1 =)(1,kk ii QD =)(1,0

),(

)0,0(
00 QD

yx
= σ5

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 55

∆2 =)(2,kk ii QD =)(2,0

),(

)0,0(
00 QD

yx
= σ3

, ∆3 =)(3,kk ii QD =)(3,0

),(

)0,0(
00 QD

yx
= σ

∆4 =)(4,kk ii QD =)(4,0

),(

)0,0(
00 QD

yx
= σ7

, ∆5 =)(5,kk ii QD =)(5,0

),(

)0,0(
00 QD

yx
= σ4

Find the minimal polynomial with ∆j ≠ 0 as:

j’ = 0 and Q’ = Q0, 0

Modify polynomials in G0 with ∆j ≠ 0 as:

Q1, 0 = ∆0(x – x0)Q’ = 1 + x, and lod(Q1, 0) = 1

Q1, 1 = ∆0Q0, 1 - ∆1Q’ = σ5
 + y, and lod(Q1, 1) = 2

Q1, 2 = ∆0Q0, 2 - ∆2Q’ = σ3
 + y

2
, and lod(Q1, 2) = 5

Q1, 3 = ∆0Q0, 3 - ∆3Q’ = σ + y
3
, and lod(Q1, 3) = 9

Q1, 4 = ∆0Q0, 4 - ∆4Q’ = σ6
 + y

4
, and lod(Q1, 4) = 14

Q1, 5 = ∆0Q0, 5 - ∆5Q’ = σ4
 + y

5
, and lod(Q1, 5) = 20

lod(G1) = lod(Q1, 0) = 1.

When ik = 1, i = 0 and (α, β) = (0, 1), no polynomial is eliminated from the group G1.

Perform Hasse derivative evaluation for each of the polynomial in G1 as:

∆0 =)(0,kk ii QD =)(0,1

),(

)1,0(
00 QD

yx
= 0. ∆1 =)(1,kk ii QD =)(1,1

),(

)1,0(
00 QD

yx
= 1

∆2 =)(2,kk ii QD =)(2,1

),(

)1,0(
00 QD

yx
= 0. ∆3 =)(3,kk ii QD =)(3,1

),(

)1,0(
00 QD

yx
= σ3

∆4 =)(4,kk ii QD =)(4,1

),(

)1,0(
00 QD

yx
= 0. ∆5 =)(5,kk ii QD =)(5,1

),(

)1,0(
00 QD

yx
= σ6

Find the minimal polynomial with ∆j ≠ 0 as:

j’ = 1 and Q’ = Q1, 1

As ∆0 = ∆2 = ∆4 = 0,

Q2, 0 = Q1, 0 = 1 + x, and lod(Q2, 0) = 1

Q2, 2 = Q1, 2 = σ3
 + y

2
, and lod(Q2, 2) = 5

Q2, 4 = Q1, 4 = σ6
 + y

4
, and lod(Q2, 4) = 14

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 56

Modify polynomials in G1 with ∆j ≠ 0 as:

Q2, 1 = ∆1(x – x0)Q’ = σ5
 + σ5

x + y(1 + x), lod(Q2, 1) = 4

Q2, 3 = ∆1Q1, 3 - ∆3Q’= σ3
y + y

3
, lod(Q2, 3) = 9

Q2, 5 = ∆1Q2, 5 - ∆5Q’ = σ6
y + y

5
, lod(Q2, 5) = 20

lod(G2) = lod(Q2, 0) = 1.

When ik = 2, i = 0 and (α, β) = (1, 0), no polynomial is eliminated from the group G2.

Perform Hasse derivative evaluation for each of the polynomial in G2 as:

∆0 =)(0,kk ii QD =)(0,2

),(

)0,1(
00 QD

yx
= 1. ∆1 =)(1,kk ii QD =)(1,2

),(

)0,1(
00 QD

yx
= 0

∆2 =)(2,kk ii QD =)(2,2

),(

)0,1(
00 QD

yx
= 0. ∆3 =)(3,kk ii QD =)(3,2

),(

)0,1(
00 QD

yx
= 0

∆4 =)(4,kk ii QD =)(4,2

),(

)0,1(
00 QD

yx
= 0. ∆5 =)(5,kk ii QD =)(5,2

),(

)0,1(
00 QD

yx
= 0

Find the minimal polynomial with ∆j ≠ 0 as:

j’ = 0 and Q’ = Q2, 0

As ∆1 = ∆2 = ∆3 = ∆4 = ∆5 = 0

Q3, 1 = Q2, 1 = σ5
 + σ5

x + y(1 + x), lod(Q3, 1) = 4

Q3, 2 = Q2, 2 = σ3
 + y

2
, and lod(Q3, 2) = 5

Q3, 3 = Q2, 3 = σ3
y + y

3
, lod(Q3, 3) = 9

Q3, 4 = Q2, 4 = σ6
 + y

4
, and lod(Q3, 4) = 14

Q3, 5 = Q2, 5 = σ6
y + y

5
, lod(Q3, 5) = 20

Modify polynomials in G2 with ∆j ≠ 0 as:

Q3, 0 = ∆0(x – x0)Q’ = 1 + x
2
, lod(Q3, 0) = 3

lod(G3) = lod(Q3, 0) = 3.

Based on the same process, interpolation is run through all the rest of the points (xi, ri)

(i = 1 to 6). In order to illustrate the complexity reduction modification scheme, Table

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 57

ik 0 1 2 3 4 5 6 7 8 9

lod(0,ki
Q) 0 1 1 3 6 6 10 15 15 21

lod(1,ki
Q) 2 2 4 4 4 7 7 7 11 11

lod(2,ki
Q) 5 5 5 5 5 5 5 5 5 5

lod(3,ki
Q) 9 9 9 9 9 9 9 9 9 9

lod(4,ki
Q) 14 14 14 14 14 14 14 14 14 14

lod(5,ki
Q) 20 20 20 20 20 20 20 20 20 20

lod(
ki

G) 0 1 1 3 4 5 5 5 5 5

ik 10 11 12 13 14 15 16 17 18 19 20 21

lod(0,ki
Q) 28 28 36 45 45 55 55 55 55 66 66 78

lod(1,ki
Q) 11 16 16 16 22 22 22 22 22 22 29 29

lod(2,ki
Q) 5 5 5 5 5 5 8 8 12 12 12 12

lod(3,ki
Q) 9 9 9 9 9 9 9 13 13 13 13 13

lod(4,ki
Q) 14 14 14 14 14 14 14 14 14 14 14 14

lod(5,ki
Q) 20 20 20 20 20 20 20 20 20 20 20 20

lod(
ki

G) 5 5 5 5 5 5 8 8 12 12 12 12

ik 10 11 12 13 14 15 16 17 18 19 20 21

lod(0,ki
Q)            

lod(1,ki
Q) 11 16 16 16        

lod(2,ki
Q) 5 5 5 5 5 5 8 8 12 12 12 12

lod(3,ki
Q) 9 9 9 9 9 9 9 13 13 13 13 13

lod(4,ki
Q) 14 14 14 14 14 14 14 14 14 14 14 14

lod(5,ki
Q) 20 20 20 20 20 20 20 20 20 20 20 20

lod(
ki

G) 5 5 5 5 5 5 8 8 12 12 12 12

Note:  means the corresponding polynomial is eliminated.

 means the corresponding polynomial is chosen as Q(x, y).

Table 4.2 Iterative process of example 4.4

Original GS

Modified GS

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 58

4.2 shows the whole iterative process with respect to the polynomials’ leading order.

From Table 4.2 we can see that the modified algorithm starts to take action at ik = 10

when there is polynomial with leading order over 21 and eliminating those

polynomials will not affect the final outcome. At the end, both the original and

modified GS algorithm produce the same result: Q(x, y) = min{G21} = Q21, 2 = 1 +

σ4
x

2
 + σ2

x
4
 + y

2
(σ5

 + σ4
x

2
). From this example we can see that more computation can

be reduced if the modified algorithm starts to take action at earlier steps. A detailed

complexity analysis of this modified algorithm is presented in section 4.5.

4.4 Factorisation

In this section, the factorisation theorem is explained, which is followed by a detailed

description of its implementation method: the Roth-Ruckenstein’s algorithm.

4.4.1 Factorisation Theorem

As mentioned in section 4.2.2, given the interpolated polynomial Q(x, y)� the

transmitted message polynomial f(x) can be found out by determining Q(x, y)’s y roots.

Lemma 4.1 If Q(x, y) has a zero of multiplicity at least m over (xi, ri) and p(x) is a

polynomial in Fq[x
k-1

] that p(xi) = ri, then (x – xi)
m
 | Q(x, p(x)) [7].

Define Λ(p, R) as the number of symbols in received word R that satisfy p(xi) = ri as:

Λ(p, R) = |{i: p(xi) = ri, i = 0, 1, …, n - 1}| (4.40)

Lemma 4.2 p(x) is a polynomial in Fq[x
k-1

] and p(xi) = ri for at least Λ(p, R) values, if

m Λ(p, R) > deg1, k-1(Q(x, y)), then y – p(x) | Q(x, y), or Q(x, p(x)) = 0 [7].

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 59

Based on lemma 4.1, if p(xi) = ri, then (x – xi)
m
 | Q(x, y). If S is the set of i that satisfies

p(xi) = ri. as |S| = Λ(p, R), then ∏
∈

−
Si

m

ixx)(| Q(x, p(x)). Assume g1(x) = ∏
∈

−
Si

m

ixx)(

and g2(x) = Q(x, p(x)), therefore g1(x) | g2(x). It is obvious that g1(x) has x degree m

Λ(p, R) and g2(x) has x degree equals to deg1, k-1Q(x, y). If m Λ(p, R) > deg1, k-1Q(x, y)

and g1(x) | g2(x), the only solution for these two preconditions is: g2(x) = 0. Therefore,

if m Λ(p, R) > deg1, k-1(Q(x, y)), Q(x, p(x)) = 0 or equivalently, y – p(x) | Q(x, y).

As Q(x, y) is the interpolated polynomial from the last step, according to (4.38), lod(Q)

≤ C. Based on (4.9), deg1, k-1(Q(x, y)) ≤ Sx(C). If m Λ(f, R) ≥ Sx(C), then m Λ(f, R) ≥

deg1, k-1(Q(x, y)). Based on lemma 4.2, if Λ(f, R) ≥ 1 + 








m

CS x)(
, the transmitted

message polynomial f(x) can be found out by factorising Q(x, y). As Λ(f, R) represents

the number of points that satisfy ri = f(xi) = ci, those points that do not satisfy this

equation are where the errors locate. Therefore the error-correction capability of the

GS algorithm is τm = n - 








m

CS x)(
 - 1 which is defined by (4.10). Under (1, k-1)-

lexicographic order, x
0
y

j
 is the maximal monomial with weighted degree (k - 1)j. In

polynomial Q(x, y), there should not be any monomials with y-degree over Sy(C),

otherwise lod(Q) > C. As a result, max{degyQ(x, y)} ≤ Sy(C). As the factorisation

output list contains the y roots of Q(x, y), and the number of y roots of Q(x, y) should

not exceed its y degree, therefore the maximal number of candidate messages in the

output list is lm = Sy(C) which is defined by (4.11).

4.4.2 Recursive Coefficient Search

To find out the y-roots of the interpolated polynomial Q(x, y), Roth and Ruckenstein

[10] introduced an efficient algorithm for factorising these bivariate polynomials,

called Roth-Ruckenstein’s algorithm.

In general, factorisation output p(x) ∈ Fq[x
k-1

] can be expressed in the form of:

p(x) = p0 + p1x + ··· + pk-1x
k-1

 (4.41)

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 60

where p0, p1, …, pk-1 ∈ GF(q). In order to find the polynomials p(x), we must

determine their coefficients p0, p1,…, pk-1 respectively. The idea of Roth-

Ruckenstein’s algorithm is to recursively deduce p0, p1,…, pk-1 one at a time.

For any bivariate polynomial, if h is the highest degree such that x
h

| Q(x, y), we can

define:

hx

yxQ
yxQ

),(
),(* = (4.42)

If we denote p0 = p(x) and Q0(x, y) = Q
*
(x, y), where Q(x, y) is the new interpolated

polynomial (4.33), we can define the recursive updated polynomials ps(x) and Qs(x, y),

where s ≥ 1, as:

sk

ks

ss

s xpp
x

pxp
xp −−

−
−− ++=

−
= 1

1

11)0()(
)(L , (s ≤ k - 1) (4.43)

),(),(1

*

1 −− += sss pxyxQyxQ (4.44)

Lemma 4.3 In this sequential deduction with ps(x) and Qs(x, y) defined by (4.43) and

(4.44), when s ≥ 1, (y - p(x)) | Q(x, y) if and only if (y - ps(x)) | Qs(x, y) [46].

This means that if polynomial ps(x) is a y root of Qs(x, y), we can trace back to find

the coefficients ps-1, …, p1, p0 to reconstruct the polynomial p(x), which is the y root

of polynomial Q(x, y).

The first coefficient p0 can be determined by finding the roots of Q0(0, y) = 0. If we

assume that Q(x, p(x)) = 0, then based on lemma 4.3, p0(x) should satisfy Q0(x, p0(x))

= 0. When x = 0, Q0(0, p0(0)) = 0. According to (4.41) p0(0) = p0, therefore p0 is the

root of Q0(0, y) = 0. By finding the roots of Q0(0, y) = 0, a number of different p0 can

be determined. For each p0, we can deduce further to find the rest of ps (s = 1,…, k - 1)

based on the recursive transformation (4.43) and (4.44).

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 61

Assume that after s - 1 deductions, polynomial ps-1(x) is the y root of Qs-1(x, y). Based

on (4.43), ps-1(0) = ps-1 and a number of ps-1 can be determined by finding the roots of

Qs-1(0, y) = 0. For each ps-1, we can deduce to find ps. As Qs-1(x, ps-1(x)) = 0, (y - ps-1(x))

| Qs-1(x, y). If we define y = xy + ps-1, then (xy + ps-1 - ps-1(x)) | Qs-1(x, xy + ps-1). Based

on (4.43), xy + ps-1 - ps-1(x) = xy - xps(x). As)
1

,(
*

1
),(

−
+

−
=

s
pxyx

s
Qyx

s
Q , (xy - xps(x))

| Qs-1(x, xy + ps-1), and (y - ps(x)) | Qs(x, y). Therefore, ps can again be determined by

finding the roots of Qs(0, y) = 0. This root finding algorithm can be explained as a tree

growing process, which is shown in Fig 4.1. There can be an exponential number of

routes for choosing coefficients ps (s = 0, 1, ..., k - 1) to construct p(x). However, the

intended p(x) should satisfy: deg(p(x)) < k and (y - p(x)) | Q(x, y). Based on (4.43),

when s = k, pk(x) = 0. Therefore if Qk(x, 0) = 0, or equivalently Qk(x, pk(x)) = 0, (y-

pk(x)) | Qk(x, y). According to lemma 4.3, (y-p(x)) | Q(x, y) and p(x) is found.

Figure 4.1 Coefficients deduction in the Roth-Ruckenstein’s algorithm

Based on the above analysis, the factorisation process can be summarised as [10, 46]:

Algorithm 4.2: Factorisation of list decoding of a (n, k) Reed-Solomon code

(i) Initialise Q0(x, y) = Q
*
(x, y), s = 0

(ii) Find roots ps of Qs(0, y) = 0

Q(x, y)

p0

p0

p1
.
.
.
.
.
.

p1

p1
.
.
.
.
.
.

p1

p2
.
.
.

p2

p2 .
.
.

p2

p2
.
.
.

p2

p2 .
.
.

p2

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

…
…

..

…
…

…
…

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 62

(iii) For each ps, perform Q transformation (4.44) to calculate Qs+1(x, y)

(iv) s = s + 1

(v) If s < k, go to (ii). If s = k and Qs(x, 0) ≠ 0, stop this deduction route. If s = k and

Qs(x, 0) = 0, trace the deduction route to find ps-1, …, p1, p0.

Here presents a work example of the Roth-Ruckenstein’s algorithm.

Example 4.5: Based on polynomial Q(x, y) = 1 + σ4
x

2
+ σ2

x
4

+ y
2
(σ5

+ σ4
x

2
) which is

the interpolation result of example 4.4, determine the factorisation output list L using

the Roth-Ruckenstein’s algorithm.

Initialise Q0(x, y) = Q
*
(x, y) = 1 + σ4

x
2

+ σ2
x

4
+ y

2
(σ5

+ σ4
x

2
) and s = 0.

Q0(0, y) = 1 + σ5
y

2
 and p0 = σ is the root of Q0(0, y) = 0.

For p0 = σ, generate Q1(x, y) = Q0
*
(x, xy + p0) = σ3

 + σ2
x

2
 + y

2
(σ5

 + σ4
x

2
). s = s + 1 =

1. As s < k, go to (ii) of the algorithm

Q1(0, y) = σ3
 + σ5

y
2
 and p1 = σ6

 is a root of Q1(0, y) = 0.

For p1 = σ6
, generate Q2(x, y) = Q1

*
(x, xy + p1) = y

2
(σ5

 + σ4
x

2
). s = s + 1 = 2. As s = k

and Q2(x, 0) = 0, trace this deduction route to find its output p0 = σ and p1 = σ6
.

As a result, factorisation output list L = {p(x) = σ + σ6
x}. According to example 4.4,

p(x) matches the transmitted message polynomial f(x).

4.5 Complexity Analysis

The GS algorithm’s high decoding complexity is mainly caused by interpolation.

Compared to this, the factorisation complexity cost is insignificant. This section

analyses the computational complexity (finite field arithmetic operations) for the

original and modified algorithm.

It is difficult to analyse the computational complexity precisely because the length

(number of coefficients) of the group of interpolated polynomials varies in different

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 63

situations. We define the number of coefficients of the polynomial Q(x, y) as its

interpolation cost by:

γ = |{Qab = coeff(Q(x, y)) and Qab ≠ 0}| (4.45)

[59] has stated that the interpolation cost is error dependent:

1
)1(2

)1(

2)1(2
)(

2

++
−

−Φ−Φ
+

Ω
+

−

Ω
≤ m

k

k

k
eγ (4.46)

where Ω = em + (k-1)m, Φ = Ω mod (k-1) and e is the error weight. According to

section 4.3.3, we know that the interpolated polynomial Q(x, y) has leading order less

than or equal to C, therefore its interpolation cost is less than or equal to C + 1. If we

regard the interpolation process as solving a system of homogeneous linear equations

by Gaussian elimination and assume those polynomials have the same interpolation

cost as C + 1, the GS algorithm’s computational complexity can be predicted.

Interpolating the group of polynomials with interpolation cost C + 1 by C iterative

steps can be regarded as operating on a matrix of size C × (C + 1) by Gaussian

elimination and its computational complexity is approximately [59]:

3)1(
3

2
+C (4.47)

However, in most of the situations γ(e) ≤ C + 1, which means some elements in the

row of the matrix are not used and the row operation is not fully performed. Therefore,

in most cases (4.47) is an upper bound for the GS algorithm’s computational

complexity. As the interpolation cost grows with the error weight, so does the

computational complexity. Based on (4.47), Table 4.3 predicts the computational

complexity for decoding Reed-Solomon codes (63, 15) and (63, 31) both of which

were first introduced in example 4.1 and 4.2 respectively.

m C + 1 Finite field arithmetic operations

1 64 1.75×10
5

2 190 4.57×10
6

4 631 1.67×10
8

6 1324 1.55×10
9

Table 4.3a Computational complexity for Reed-Solomon code (63, 15)

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 64

Table 4.3b Computational complexity for Reed-Solomon code (63, 31)

In computer simulations, the computational complexity for the two codes has been

measured, which are shown in Fig 4.2. Comparing the measurements with Table 4.3,

we can see that in most cases (4.47) is a computational complexity upper bound for

the GS algorithm and the decoding complexity grows with the error weight. With

higher multiplicity m, the GS algorithm has better error-correction capability, but at

the expense of much higher computation. Comparing the computational complexity

between the original and modified GS algorithm, it shows that the lower the error

weight, the more computation can be reduced. For Reed-Solomon code (63, 15), the

modification can reduce the computational complexity by 37.38% in low error weight

situations, but in high error weight situations the complexity is only reduced by 0.70%.

For Reed-Solomon code (63, 31), the complexity reduction varies from 21.48% to

0.00% with increasing error weight. In Fig 4.2, the conventional decoding algorithm –

Berlekamp-Massey (BM) algorithm’s decoding complexity is also measured against

the error weight. It can be seen that the conventional decoder’s efficiency is still

higher than the modified GS algorithm. Therefore, the modified GS algorithm can

outperform the BM algorithm in terms of error correction capability, but its decoding

complexity is higher. While comparing the modified GS algorithm with the GS

algorithm, its decoding efficiency is higher, but error correction capability remains the

same.

m C + 1 Finite field arithmetic operations

1 64 1.75×10
5

3 379 3.63×10
7

5 946 5.64×10
8

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 65

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

Number of Errors

C
o
m
p
u
ta
ti
o
n
a
l
C
o
m
p
le
x
it
y

GS (m=1)

Modified GS (m=1)

GS (m=2)

Modified GS (m=2)

GS (m=4)

Modified GS (m=4)

GS (m=6)

Modified GS (m=6)

BM

31.22%
22.93%

10.32% 2.30%

0.70%

29.91%

28.85%

12.41% 6.75%

3.48%

27.72%

29.11%

12.74% 6.46%
2.38%

37.38%

25.54%
11.17% 5.21% 2.83%

(a) Reed-Solomon code (63, 15)

1.00E+03

1.00E+04

1.00E+05

1.00E+06

1.00E+07

1.00E+08

1.00E+09

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Number of Errors

C
o
m
p
u
ta
ti
o
n
a
l
C
o
m
p
le
x
it
y

GS (m=1)

Modified GS (m=1)

GS (m=3)

Modified GS (m=3)

GS (m=5)

Modified GS (m=5)

BM

21.48%
19.18% 12.18%

5.69%

0.00%

19.29%

18.64% 10.52% 4.75%
0.55%

14.19%
16.16%

10.75% 4.55%

0.56%

(b) Reed-Solomon code (63, 31)

Figure 4.2 Computational complexity analyses for the modified GS algorithm

The modification’s error dependent property is analysed as followed.

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 66

During the iterative interpolation process, if we define the maximal leading order of

the polynomial group
ki

G as:

maxlod(
ki

G) = max{lod(jik
Q ,) | jik

Q , ∈
ki

G } (4.48)

The modification (4.39) will start to act when maxlod(
ki

G) > C. We use ia to denote

the iterative index when the modification starts to act, which can be explained as:

ia = {ik | maxlod(
ki

G) > C and maxlod(1−ki
G) ≤ C} (4.49)

ia is error dependent. Under two different situations with error weight e1 and e2 (e1, e2

≤ τm), decoding the same code with multiplicity m, we have:

ia(e1) ≤ ia(e2), if e1 ≤ e2 (4.50)

which means the lower the error weight, the earlier the modification starts to act.

It has been observed that 0,ki
Q is always the first polynomial in the polynomial group

to have leading order over C. Therefore, analysing the leading order increase pattern

of polynomial 0,ki
Q is useful to explain the modified algorithm’s error dependent

property (4.50). According to the polynomials’ property (4.28) and the leading order

increase relationship (4.35), we can see that, during the iterative process, 0,ki
Q ’s

leading monomial ML always satisfies degy(ML) = 0 and (4.35) can be simplified for

0,ki
Q as:

lod(0,1+ki
Q) = lod(0,ki

Q) + 








−1

deg 0,

k

Q
kix

 + 1 (4.51)

At the beginning of the iterative process, lod(Q0, 0) = 0. From (4.51), we can see that

0,ki
Q will be modified by (4.32) with lod(0,1+ki

Q) = lod(0,ki
Q) + 1 for k - 1 times until

degx(0,ki
Q) = k - 1. Followed by that, 0,ki

Q will again be modified by (4.32) with

lod(0,1+ki
Q) = lod(0,ki

Q) + 2 for k - 1 times until degx(0,ki
Q) = 2(k - 1). This periodic

process continues and the leading order of 0,ki
Q is accumulated as 1(k - 1) + 2(k - 1) +

···. 0,ki
Q will be eliminated once its leading order is over C, therefore the periodic

process will stop when lod(0,1+ki
Q) = lod(0,ki

Q) + λ, where λ is defined as:

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 67

})1(|min{
1

Cikx
x

i

>−= ∑
=

λ (4.52)

As there are
2

)1)(1(+− mk
 iterative steps for each of the periodic processes, under the

zero error situation the upper bound for ia(0) can be defined as:

λ
2

)1)(1(
)0(

+−
≤

mk
ia (4.53)

Once ia(0) has been determined, ia(e) would always satisfy:








 +
+≤

2

1
)0()(

m
eiei aa (4.54)

which means the lower the error weight, the earlier the modification starts to act and

more computation can be reduced as a consequence. Table 4.4 shows some

experimental data of ia(e) from the authors’ implementation [52] of Reed-Solomon

codes (63, 15) and (63, 31), both of which reveal that (4.54) is being observed.

m C λ
ia(0) upper

bound
ia(0) ia(1) ia(2) ia(3) ia(4) ia(5)

1 63 3 42 36 37 38 39 40 41

2 189 5 105 99 102 105 108 111 114

4 630 10 350 318 328 338 348 358 368

6 1323 14 686 651 672 693 714 735 756

Table 4.4a ia(e) for Reed-Solomon code (63, 15)

m C λ
ia(0) upper

bound
ia(0) ia(1) ia(2) ia(3) ia(4) ia(5)

1 63 2 60 47 48 49 50 51 52

3 378 5 300 271 277 283 289 295 301

5 945 8 720 673 688 703 718 733 748

Table 4.4b ia(e) for Reed-Solomon code (63, 31)

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 68

4.6 Simulation Results

A software platform using the C programming language has been developed for the

GS algorithm with the complexity reduced modification and a few simulation results

have been achieved. The performances of the two Reed-Solomon codes which are

defined by examples 4.1 and 4.2 are shown in Fig 4.3 and 4.4. They are also published

in [52]. In the simulations, QPSK modulation scheme is employed. The performance

of a conventional unique Reed-Solomon code decoding algorithm (Berlekamp-

Massey algorithm) is used to compare with the GS algorithm. The Rayleigh fading

channel is memoryless with Doppler shift. It is a fast fading channel in which each

QPSK symbol is multiplied by a Rayleigh distributed random number with mean

value 1.26 and variance 0.5.

Fig 4.3a and 4.3b show the performance of Reed-Solomon code (63, 15) over AWGN

and Rayleigh fading channels. Over AWGN channels about 0.4 - 1.3 dB coding gain

can be achieved at BER = 10
-5

 with different multiplicity m, while over the Rayleigh

fading channels the coding gain is about 1 - 2.8 dB. Fig 4.4a and 4.4b show the

performance of Reed-Solomon code (63, 31). For this code, the GS algorithm has no

performance advantage with multiplicity m = 1. However with multiplicity m > 1, at

BER = 10
-5

 it can achieve 0.2 - 0.8 dB coding gain over AWGN channels and 0.5 -

1.4 dB coding gain over Rayleigh fading channels.

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 69

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

2 3 4 5 6 7 8 9 10 11 12

SNR(Eb/N0)

B
E
R

uncoded

Berlekamp-Massey

GS (m=1)

GS (m=2)

GS (m=4)

GS (m=6)

GS (m=26)

(a) over AWGN channel

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

SNR(Eb/N0)

B
E
R

uncoded

Berlekamp-Massey

GS (m=1)

GS (m=2)

GS (m=4)

GS (m=6)

GS (m=26)

(b) over Rayleigh fading channel

Figure 4.3 Hard-decision list decoding performance of Reed-Solomon code (63, 15)

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 70

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

SNR(Eb/N0)

B
E
R

uncoded

GS (m=1)/Berlekamp-Massey

GS (m=3)

GS (m=5)

GS (m=13)

(a) over AWGN channel

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

SNR(Eb/N0)

B
E
R

uncoded

GS (m=1)/Berlekamp-Massey

GS (m=3)

GS (m=5)

GS (m=13)

(b) over Rayleigh fading channel

Figure 4.4 Hard-decision list decoding performance of Reed-Solomon code (63, 31)

Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

 71

4.7 Conclusion

This chapter explained in detail the hard-decision list decoding algorithm for Reed-

Solomon codes. In order to improve the algorithm’s decoding efficiency, a novel

modification to the interpolation part has been presented. This modification is based

on eliminating unnecessary polynomials during the iterative interpolation process.

According to the complexity analysis, it can be seen that the decoding complexity is

error dependent and the modification can reduce the decoding complexity, especially

for low error weight situations in which complexity reduction can be up to 37.38%.

Based on this modified GS algorithm, simulation results are presented showing the

coding gains over a unique decoding algorithm with more significant gains for low

rate codes and in a fading environment. It is very important to point out that this

performance advantage is still at the cost of high decoding complexity compared with

the unique decoding algorithms. Based on the hard-decision list decoding algorithm,

further improvement can be achieved by applying a soft-decision list decoding

scheme. This soft-decision list decoding scheme for Reed-Solomon codes is to be

presented in the next chapter.

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 72

Chapter 5

Soft-Decision List

Decoding of Reed-

Solomon Codes

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 73

5.1 Introduction

From Chapter 4, it was seen that Guruswami and Sudan’s hard-decision list decoding

scheme can outperform the conventional unique decoding algorithm by correcting

errors beyond the half distance boundary. Greater performance improvements can be

achieved by employing a soft-decision list decoding algorithm. This chapter presents

this soft-decision list decoding algorithm for Reed-Solomon codes. Koetter and Vardy

[8] first introduced a soft-decision list decoding scheme for Reed-Solomon codes,

which is called the Koetter-Vardy (KV) algorithm. Different to the hard-decision

scheme, the soft-decision scheme obtains the received word’s posteriori transition

probability, which is represented by a reliability matrix ΠΠΠΠ. The reliability matrix ΠΠΠΠ is

then converted into a multiplicity matrix M based on which the interpolated

polynomial is built. The interpolation and factorisation processes are the same as

described in Chapter 4. This soft decision scheme can be illustrated by Fig 5.1.

Figure 5.1 Soft-decision list decoding scheme

From Fig 5.1, it can be seen that this soft-decision scheme builds upon the hard-

decision scheme with an additional process that converts reliability values into

multiplicity values. In [8] it was shown that this soft-decision scheme can outperform

Guruswami-Sudan’s hard-decision scheme with significant coding gains. [8] also

showed that this soft-decision scheme can also outperform the generalised-minimum

distance (GMD) decoding algorithm [55]. Some later developments of this soft-

decision scheme’s application, very large scale integration (VLSI) design and

complexity reduction transform are presented in [60, 61] and [50] respectively. This

chapter presents the soft-decision list decoding scheme for Reed-Solomon codes. It is

shown how to obtain the reliability matrix ΠΠΠΠ based on the received information and

how to convert the reliability matrix ΠΠΠΠ into the multiplicity matrix M. For the

algorithm that converts ΠΠΠΠ to M, a practical method to realise the stopping rule based

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 74

on the designed length of output list is introduced. It is shown in Chapter 4 that the

interpolation complexity can be reduced by eliminating polynomials with leading

order over the iteration number [52]. This modification scheme can also be applied to

the soft-decision scheme. Based on the resulting multiplicity matrix M, the cost of the

matrix CM can be determined, which represents the total iteration number. Therefore,

in the following interpolation process, polynomials with leading order greater than

this number can be eliminated. It will be shown later in this chapter how the

modification performs with the soft-decision scheme. Simulation results of this soft-

decision scheme based on assigning the same length of output list as the hard-decision

shows the coding gains that can be achieved compared with hard-decision list

decoding. More importantly, it is first shown by how much the decoding complexity

increases in order to achieve this performance advantage.

5.2 Prerequisite Knowledge

This section gives some prerequisite knowledge for demonstrating the soft-decision

list decoding scheme.

Based on the (1, k-1)-weighted degree definition of monomial x
a
y

b
 given in section

4.2.2, let us define the following two parameters:

N1, k-1(δ) = |{x
a
y

b
: a, b ≥ 0 and deg1, k-1(x

a
y

b
) ≤ δ, δ ∈ N}| (5.1)

which represents the number of bivariate monomial x
a
y

b
 with (1, k-1)-weighted degree

not greater than a nonnegative integer δ [8]. And

∆1, k-1(v) = min{δ: N1, k-1(δ) > v, v ∈ N} (5.2)

which denotes the minimal value of δ that guarantees N1, k-1(δ) is greater than a

nonnegative integer v [8]. Associated with these two definitions, the following two

corollaries shall be proposed.

Corollary 5.1: ∆1, k-1(v) = deg1, k-1(x
a
y

b
 | ord(x

a
y

b
) = v).

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 75

Proof: According to section 4.2.2, monomial x
a
y

b
’s (1, k-1)-lexicographic order grows

based on its (1, k-1)-weighted degree grows. Up to monomial x
a
y

b
 with ord(x

a
y

b
) = v,

there are in total v + 1 monomials. Therefore, its (1, k-1)-weighted degree deg1, k-1(x
a
y

b
)

is the minimal value that guarantees there are more than v monomials with (1, k-1)-

weighted degree not greater than it.

Corollary 5.2: N1, k-1(δ) >
)1(2

2

−k

δ
, and when δ → ∞, N1, k-1(δ) =

)1(2

2

−k

δ
 [8].

Proof: To prove corollary 5.2, a (1, k-1)-weighted degree monomial table needs to be

taken for analysis. Take Table 4.1a which shows the (1, 4)-weighted degree of

monomial x
a
y

b
 as an example. This table can be geometrically plotted as Fig 5.2.

Figure 5.2 Geometric analysis of table 4.1a

In Fig 5.2, index of x-axis and y-axis represent monomial x
a
y

b
’s x degree a and y

degree b respectively. The unit distance of x-axis weights 1 and the unit distance of y-

axis weights k – 1. Each monomial x
a
y

b
 occupies a unit square and therefore in this

figure, N1, k-1(δ) denotes the total area occupied by monomial x
a
y

b
 with deg1, k-1(x

a
y

b
) ≤

δ. It is denoted as Area1 = N1, k-1(δ), which is enclosed by the solid line shown in the

figure. The triangle defined by vertexes (0, 0), (δ, 0), and (0, 






−1k

δ
) has area

2

1
δ








−1k

δ
 ≅

)1(2

2

−k

δ
, which is denoted as Area2 =

)1(2

2

−k

δ
. From Fig 5.2, it is easy to

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 76

be seen that Area1 > Area 2, and therefore N1, k-1(δ) >
)1(2

2

−k

δ
. Also, based on the

figure, it is not difficult to realise that when δ → ∞, Area1 and Area2 approach to be

equal with each other and therefore N1, k-1(δ) =
)1(2

2

−k

δ
. Take the case shown in Fig

5.2 as an example, δ = 12, and N1, k-1(δ) = N1, k-1(12) = 28, while
)1(2

2

−k

δ
 =

42

122

⋅
 = 18.

Therefore, N1, k-1(δ) >
)1(2

2

−k

δ
.

5.3 Reliability Information

As mentioned in Chapter 4, the hard-decision decoder obtains a vector of received

word R = (r0, r1, …, rn-1) (ri ∈ GF(q), i = 0, 1, …, n - 1). However, the decoder can

also be supplied with posteriori transition probability information [8, 62, 63], or so

called the reliability information. The decoder that utilises this information is called

soft-decision decoder. This section shows how to obtain the reliability information.

Assume the channel is memoryless with input alphabet χ ∈ GF(q) and output alphabet

ℜ ∈ GF(q). Let Pr indicates the probability function, χ is uniformly distributed over

GF(q) = (ρ0, ρ1, …, ρq-1) as Pr(χ = ρ0) = Pr(χ = ρ1) = ⋅⋅⋅ = Pr(χ = ρq-1). If the channel

is continuous, then ℜ is continuous and p(⋅ | ρ) is the probability density function. If

the channel is discrete, then ℜ is discrete and p(⋅ | ρ) is the probability mass function

[64]. For the random received alphabet ℜ = ιj (j = 0, 1, …, n - 1), the probability that

χ = ρi (i = 0, 1, …, q - 1) was being transmitted can be obtained by [8]:

Pr(χ = ρi | ℜ = ιj) =
∑
∈

=

=

)(

)Pr()|(

)Pr()|(

qGF

j

iij

p

p

ρ

ρχρι

ρχρι
 =
∑
∈)(

)|(

)|(

qGF

j

ij

p

p

ρ

ρι

ρι
 (5.3)

For Reed-Solomon codes, q = n + 1. For each random received variable ιj, q transition

probabilities can be obtained as: Pr(χ = ρ0 | ℜ = ιj), Pr(χ = ρ1 | ℜ = ιj), …, and Pr(χ =

ρq-1 | ℜ = ιj). Further, for a received vector ℜ = (ι0, ι1, …, ιn-1), a q × n reliability

matrix ΠΠΠΠ can be determined as:

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 77

ΠΠΠΠ =































−−−−

−

−

1,11,10,1

,

1,11,10,1

1,01,00,0

nqqq

ji

n

n

πππ

π

πππ

πππ

LLL

MOM

MM

MOM

LLL

 (5.4)

where its entry πi, j is:

πi, j = Pr(χ = ρi | ℜ = ιj) (i = 0, 1, …, q - 1 and j = 0, 1, …, n - 1) (5.5)

Referring to Fig 5.1, matrix ΠΠΠΠ is taken as an input to the soft-decision decoder and

converted to a multiplicity matrix M, followed by the interpolation and factorisation

processes.

In the following description, the channel is assumed to be continuous. In order to

obtain the reliability information, it is worthy to mention the probability density

function. Let us assume Su are the modulated symbols (e. g. in BPSK, they are S1, S2;

in QPSK, they are S1, S2, S3, S4) and any symbol Su can be projected into V basis

functions as Su1, Su2, …, SuV. Given received symbol y, the probability density

function with respect to the basis functions (yt, Sut) can be given as [64]:

p(yt | Sut) = 






 −
−

0

2

0

)(
exp

1

N

Sy

N

utt

π
 (5.6)

where N0 denotes the power of noise. Then the probability density function with

respect to symbols (y, Su) can be calculated by:

p(y | Su) = ∏ ∑
= =








 −−
=

V

t

V

t

utt

Vutt
N

Sy

N
Syp

1 1 0

2

2/

0

)(
exp

)(

1
)|(

π
 (5.7)

Based on (5.7), the reliability information with respect to finite field alphabets can be

further obtained by applying (5.3). Here shows an example of obtaining reliability

information based on the received symbols.

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 78

Example 5.1 Calculate all the reliability information of received alphabet symbol ιj

which is defined in GF(16). The QPSK modulation is used with mapping scheme

shown by Fig 5.3. As each QPSK symbol carries two binary bits information and a

GF(16) symbol contains four binary bits , ιj can be obtained by demodulating two

QPSK symbols. The two received QPSK symbols are given as: yA = (yAI, yAQ) =

(0.510761, 1.925977) and yB = (yBI, yBQ) = (1.733793, -0.745044). Given Signal-to-

Noise Ratio (SNR) = 3 dB and bit energy (Eb) = 0.5, the noise power can be

calculated by N0 = 0.5/10
0.3

 = 0.250594.

Figure 5.3 QPSK modulation mapping scheme

Applying hard-decision to the received symbols yA and yB, they can be demodulated

as 00 and 10 respectively by applying the mapping scheme shown in Fig 5.3.

Combining them as 0010 and it is equivalent to finite field alphabet 2 and ιj = 2.

For soft-decision, as it is QPSK modulation, applying (5.7) with V = 2 (two basis

functions, Inphase and Quadrature). For received symbol yA, four probability density

functions can be obtained as:

p(yA | S1) =










 −+−
−

ΙΙ

0

2

1

2

1

0

)()(
exp

1

N

SySy

N

QAQA

π
 = 0.002899,

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 79

p(yA | S2) =










 −+−
−

ΙΙ

0

2

2

2

2

0

)()(
exp

1

N

SySy

N

QAQA

π
 = 0.000009,

p(yA | S3) =










 −+−
−

ΙΙ

0

2

3

2

3

0

)()(
exp

1

N

SySy

N

QAQA

π
 = 3.307612 × 10

-15
,

p(yA | S4) =










 −+−
−

ΙΙ

0

2

4

2

4

0

)()(
exp

1

N

SySy

N

QAQA

π
 = 8.632852 × 10

-13
,

and their summation ∑
=

4

1

)|(
u

uA Syp = 0.002908. Therefore,

Pr(S1 | yA) =

∑
=

4

1

1

)|(

)|(

u

uA

A

Syp

Syp
 = 0.996905, Pr(S2 | yA) =

∑
=

4

1

2

)|(

)|(

u

uA

A

Syp

Syp
 = 0.003095,

Pr(S3 | yA) =

∑
=

4

1

3

)|(

)|(

u

uA

A

Syp

Syp
 = 1.137418 × 10

-12
,

Pr(S4 | yA) =

∑
=

4

1

4

)|(

)|(

u

uA

A

Syp

Syp
 = 2.968656 × 10

-10
.

For received symbol yB, four probability density functions can be obtained as:

p(yB | S1) =










 −+−
−

ΙΙ

0

2

1

2

1

0

)()(
exp

1

N

SySy

N

QBQB

π
 = 4.194589 × 10

-6
,

p(yB | S2) =










 −+−
−

ΙΙ

0

2

2

2

2

0

)()(
exp

1

N

SySy

N

QBQB

π
 = 1.050284 × 10

-14
,

p(yB | S3) =










 −+−
−

ΙΙ

0

2

3

2

3

0

)()(
exp

1

N

SySy

N

QBQB

π
 = 5.980199 × 10

-11
,

p(yB | S4) =










 −+−
−

ΙΙ

0

2

4

2

4

0

)()(
exp

1

N

SySy

N

QBQB

π
 = 0.018812,

and their summation ∑
=

4

1

)|(
u

uB Syp = 0.018816. Therefore,

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 80

Pr(S1 | yB) =

∑
=

4

1

1

)|(

)|(

u

uB

B

Syp

Syp
 = 2.229267 × 10

-4
,

Pr(S2 | yB) =

∑
=

4

1

2

)|(

)|(

u

uB

B

Syp

Syp
 = 5.581866 × 10

-13
,

Pr(S3 | yB) =

∑
=

4

1

3

)|(

)|(

u

uB

B

Syp

Syp
 = 3.178252 × 10

-9
, Pr(S4 | yB) =

∑
=

4

1

4

)|(

)|(

u

uB

B

Syp

Syp
 = 0.999787.

Based on the above reliability values obtained from two received QPSK symbols, the

reliability values for received alphabet symbol ιj can be calculated as:

Pr(χ = 0 | ℜ = ιj) = Pr(0000 | ℜ = ιj) = Pr(S1 | yA) ⋅ Pr(S1 | yB) = 2.222367 × 10
-14

,

Pr(χ = 1 | ℜ = ιj) = Pr(0001 | ℜ = ιj) = Pr(S1 | yA) ⋅ Pr(S2 | yB) = 5.564590 × 10
-13

,

Pr(χ = 2 | ℜ = ιj) = Pr(0010 | ℜ = ιj) = Pr(S1 | yA) ⋅ Pr(S4 | yB) = 0.996693,

Pr(χ = 3 | ℜ = ιj) = Pr(0011 | ℜ = ιj) = Pr(S1 | yA) ⋅ Pr(S3 | yB) = 3.168415 × 10
-9

,

Pr(χ = 4 | ℜ = ιj) = Pr(0100 | ℜ = ιj) = Pr(S2 | yA) ⋅ Pr(S1 | yB) = 6.899581 × 10
-7

,

Pr(χ = 5 | ℜ = ιj) = Pr(0101 | ℜ = ιj) = Pr(S2 | yA) ⋅ Pr(S2 | yB) = 1.727588 × 10
-15

,

Pr(χ = 6 | ℜ = ιj) = Pr(0110 | ℜ = ιj) = Pr(S2 | yA) ⋅ Pr(S4 | yB) = 0.003094,

Pr(χ = 7 | ℜ = ιj) = Pr(0111 | ℜ = ιj) = Pr(S2 | yA) ⋅ Pr(S3 | yB) = 9.741342 × 10
-12

,

Pr(χ = 8 | ℜ = ιj) = Pr(1000 | ℜ = ιj) = Pr(S4 | yA) ⋅ Pr(S1 | yB) = 6.617927 × 10
-14

,

Pr(χ = 9 | ℜ = ιj) = Pr(1001 | ℜ = ιj) = Pr(S4 | yA) ⋅ Pr(S2 | yB) = 1.657064 × 10
-22

,

Pr(χ = 10 | ℜ = ιj) = Pr(1010 | ℜ = ιj) = Pr(S4 | yA) ⋅ Pr(S4 | yB) = 2.968024 × 10
-10

,

Pr(χ = 11 | ℜ = ιj) = Pr(1011 | ℜ = ιj) = Pr(S4 | yA) ⋅ Pr(S3 | yB) = 9.435137 × 10
-19

,

Pr(χ = 12 | ℜ = ιj) = Pr(1100 | ℜ = ιj) = Pr(S3 | yA) ⋅ Pr(S1 | yB) = 2.535608 × 10
-16

,

Pr(χ = 13 | ℜ = ιj) = Pr(1101 | ℜ = ιj) = Pr(S3 | yA) ⋅ Pr(S2 | yB) = 6.348915 × 10
-25

,

Pr(χ = 14 | ℜ = ιj) = Pr(1110 | ℜ = ιj) = Pr(S3 | yA) ⋅ Pr(S4 | yB) = 1.137176 × 10
-12

,

Pr(χ = 15 | ℜ = ιj) = Pr(1111 | ℜ = ιj) = Pr(S3 | yA) ⋅ Pr(S3 | yB) = 3.615001 × 10
-21

.

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 81

Among the above reliability values, Pr(χ = 2 | ℜ = ιj) is the maximal. This indicates

that received finite field alphabet ιj has the highest probability of being transmitted as

χ = 2, which matches the hard-decision result mentioned above.

5.4 From Reliability Values to Multiplicity Values

The reliability matrix ΠΠΠΠ (5.4) is then converted into a multiplicity matrix M which

defines the interpolated points with corresponding interpolation multiplicities. One of

the core contributions of [8] is presenting the algorithm that converts ΠΠΠΠ to M. This

algorithm is described as followed:

Algorithm 5.1: Convert reliability matrix Π to multiplicity matrix M.

Input: Reliability matrix Π and a desired value of s = ∑∑
−

=

−

=

1

0

1

0

,

q

i

n

j

jim

Initialisation: Set Π
*
 = Π and q × n all-zero multiplicity matrix M

(i): While (s > 0) {

(ii): Find the maximal entry *

, jiπ in Π
*
 with position (i, j)

(iii): Update *

, jiπ in Π
*
 as *

, jiπ =
2,

,

+ji

ji

m

π

(iv): Update mi, j in M as mi, j = mi, j + 1

(v): s = s – 1

}

Algorithm 5.1 results a q × n multiplicity matrix M which can be written as:

M =































−−−−

−

−

1,11,10,1

,

1,11,10,1

1,01,00,0

nqqq

ji

n

n

mmm

m

mmm

mmm

LLL

MOM

MM

MOM

LLL

 (5.8)

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 82

in which its entries mi, j represents the multiplicity value of interpolated point (xj, ρi) (j

= 0, 1, …, n – 1 and i = 0, 1, …, q - 1). xj are the finite field elements used in encoding

(3.14). In algorithm 5.1, desired value s indicates the total value of multiplicity of all

interpolated points. This algorithm gives priority to those interpolated points which

correspond to a higher reliability values πi, j to be assigned with a higher multiplicity

values mi, j. For illustration of the algorithm, here gives a work example.

Example 5.2 For soft-decision list decoding of the (7, 2) Reed-Solomon code which is

defined in GF(8), the following 8 × 7 reliability matrix ΠΠΠΠ is obtained by the receiver:

∏∏∏∏=

































000003.0000092.0000035.0000026.0000000.0000481.0000001.0

008382.0000002.0000000.0000023.0026295.0017900.0000284.0

000084.0000003.0000307.0003621.0000006.0019810.0000017.0

278789.0000000.0000000.0003180.0968097.0736533.0009543.0

000006.0954880.0100855.0003750.0000000.0000140.0000052.0

020798.0018571.0000126.0003293.0000148.0005205.0028559.0

000209.0025948.0897551.0525038.0000000.0005760.0001749.0

691729.0000505.0001125.0461070.0005453.0214170.0959796.0

(Note: in the matrix ΠΠΠΠ (ΠΠΠΠ*
), the maximal entry is underlined)

Apply Algorithm 5.1 with a desired value s = 20.

Initialisation: Set ΠΠΠΠ*
 = ΠΠΠΠ and M = 0.

As s = 20 > 0, find the maximal entry πi, j
*

= 0.968097 in ΠΠΠΠ*
 with position (i, j) = (4, 2)

Update π4, 2
*
 as π4, 2

*
 =

20

968097.0

22,4

2,4

+
=

+m

π
 = 0.484048

Update m4, 2 in M as m4, 2 = 0 + 1 = 1

s = s – 1 = 19

Now the updated ΠΠΠΠ*
 is:

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 83

∏∏∏∏*
=

































000003.0000092.0000035.0000026.0000000.0000481.0000001.0

008382.0000002.0000000.0000023.0026295.0017900.0000284.0

000084.0000003.0000307.0003621.0000006.0019810.0000017.0

278789.0000000.0000000.0003180.0484048.0736533.0009543.0

000006.0954880.0100855.0003750.0000000.0000140.0000052.0

020798.0018571.0000126.0003293.0000148.0005205.0028559.0

000209.0025948.0897551.0525038.0000000.0005760.0001749.0

691729.0000505.0001125.0461070.0005453.0214170.0959796.0

and the updated M is:

M =

































0000000

0000000

0000000

0000100

0000000

0000000

0000000

0000000

.

In the next iteration, as s = 19 > 0, find the maximal entry πi, j
*
 = 0.959696

in ΠΠΠΠ*

 with

position (i, j) = (0, 0)

Update π0, 0
*
 as π0, 0

*
 =

20

959796.0

20,0

0,0

+
=

+m

π
 = 0.479898

Update m0, 0 in M as m0, 0 = 0 + 1 = 1

s = s – 1 = 18

Now the updated ΠΠΠΠ*
 is:

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 84

ΠΠΠΠ*
=

































000003.0000092.0000035.0000026.0000000.0000481.0000001.0

008382.0000002.0000000.0000023.0026295.0017900.0000284.0

000084.0000003.0000307.0003621.0000006.0019810.0000017.0

278789.0000000.0000000.0003180.0484048.0736533.0009543.0

000006.0954880.0100855.0003750.0000000.0000140.0000052.0

020798.0018571.0000126.0003293.0000148.0005205.0028559.0

000209.0025948.0897551.0525038.0000000.0005760.0001749.0

691729.0000505.0001125.0461070.0005453.0214170.0479898.0

and the updated M is:

M =

































0000000

0000000

0000000

0000100

0000000

0000000

0000000

0000001

.

Following the same process until s = 0, the updated ΠΠΠΠ*
 is:

ΠΠΠΠ*
=

































000003.0000092.0000035.0000026.0000000.0000481.0000001.0

008382.0000002.0000000.0000023.0026295.0017900.0000284.0

000084.0000003.0000307.0003621.0000006.0019810.0000017.0

139395.0000000.0000000.0003180.0242024.0245511.0009543.0

000006.0238720.0100855.0003750.0000000.0000140.0000052.0

020798.0018571.0000126.0003293.0000148.0005205.0028559.0

000209.0025948.0224388.0175013.0000000.0005760.0001749.0

230576.0000505.0001125.0230535.0005453.0214170.0239949.0

and the updated M is:

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 85

M =

































0000000

0000000

0000000

1000320

0300000

0000000

0032000

2001003

.

As s = 0, the iteration stops and the algorithm outputs matrix M =

































0000000

0000000

0000000

1000320

0300000

0000000

0032000

2001003

.

In the resulting multiplicity matrix M, it can be seen that the sum of its entries

∑∑
= =

7

0

6

0

,

i j

jim = 20 which is the desired value s set in the beginning. Also, take any two

entries in ΠΠΠΠ for comparison, π4, 3 = 0.968097 > π4, 2 = 0.836533. In the resulting

multiplicity matrix M, m4, 3 = 3 ≥ m4, 2 = 2. It indicates that the interpolated point

which corresponds to a higher reliability value πi, j will be assigned with a higher

multiplicity value mi, j.

5.5 Soft-Decision Solution

Based on the multiplicity matrix (5.8), interpolated polynomial Q(x, y) = ba

ba

ab yxQ∑
Ν∈,

is built so that Q(x, y) has a zero of multiplicity at least mi, j (mi, j ≠ 0) over interpolated

point (xj, ρi). It can be seen that the total number of interpolated points covered by Q(x,

y) is:

|{ mi, j ≠ 0 | mi, j ∈ M, i = 0, 1, …, q - 1 and j = 0, 1, …, n - 1}| (5.9)

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 86

Based on the derivation of section 4.3.1, with respect to point (xj, ρi), Q’s coefficients

Qab should satisfy:

β

βα

α
ρ

βα

−

≥≥

−∑ 














 b

i

ba

a

jab xQ
ba

,

 = 0, ∀ α, β ∈ N and α + β < mi, j (5.10)

There are in total:

CM = ∑∑
−

=

−

=

+
1

0

1

0

,,)1(
2

1 q

i

n

j

jiji mm (5.11)

constraints of type (5.10) for Q’s coefficients Qab. CM is called the cost of multiplicity

matrix M, which also denotes the number of iteration in the interpolation process.

Referring to encoding process described by equation (3.14), if x0, x1, …, xn-1 are the

finite field elements and c0, c1,…, cn-1 are the corresponding encoded code word

symbols, interpolated polynomial Q(x, y) can be explained as passing through point

(x0, c0) with multiplicity m0 = mi, 0 (ρi = c0), point (x1, c1) with multiplicity m1 = mi, 1

(ρi = c1), …, and point (xn-1, cn-1) with multiplicity mn-1 = mi, n-1 (ρi = cn-1). Based on

lemma 4.1 described in section 4.4.1, if f(x) is the message polynomial (3.13) that

satisfies f(xj) = cj (j = 0, 1, …, n - 1), polynomial Q(x, f(x)) should satisfy:

110)()()(110
−

−−−− nm

n

mm
xxxxxx L | Q(x, f(x)) (5.12)

Again, if we let g1(x) = 110)()()(110
−

−−−− nm

n

mm
xxxxxx L and g2(x) = Q(x, f(x)),

based on (5.12), g1(x) | g2(x). g1(x) has x degree degx(g1(x)) = m0 + m1 + ⋅⋅⋅ + mn-1. The

x degree of g1(x) is defined as the code word score with respect to multiplicity matrix

M as:

SM(c) = degx(g1(x)) = m0 + m1 + ⋅⋅⋅ + mn-1 = ∑
−

=

−==
1

0

, }1,,1,0,|{
n

j

jiji qicm Kρ (5.13)

The x degree of g2(x) is bounded by degx(g2(x)) ≤ deg1, k-1Q(x, y). Therefore, if

SM(c) > deg1, k-1Q(x, y), then degx(g1(x)) > degx(g2(x)). To satisfy both degx(g1(x)) >

degx(g2(x)) and g1(x) | g2(x), the only solution is: g2(x) = 0 which indicates Q(x, f(x)) =

0 or equivalently y – f(x) | Q(x, y), and message polynomial f(x) can be found out by

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 87

determining Q(x, y)’s y roots. As a result, drawn from [8], the following lemma is

proposed.

Lemma 5.3: If code word score with respect to multiplicity matrix M is greater than

the interpolated polynomial Q(x, y)’s (1, k-1)-weighted degree as:

SM(c) > deg1, k-1Q(x, y)

then Q(x, f(x)) = 0 or equivalently y – f(x) | Q(x, y). Message polynomial f(x) can be

found out by determining Q(x, y)’s y roots [8].

If the (1, k-1)-weighted degree of interpolated polynomial Q is δ*
, based on (5.1), Q

has at most 1,1 −kN (δ*
) nonzero coefficients. The interpolation procedure generates a

system of CM linear equations of type (5.10). The system will be solvable if [8]:

1,1 −kN (δ*
) > CM (5.14)

Based on (5.2), in order to guarantee the solution, the (1, k-1)-weighted degree δ*
 of

the interpolated polynomial Q should be large enough so that:

1,1deg −k (Q(x, y)) = δ*
 = 1,1 −∆ k (CM) (5.15)

Therefore, according to lemma 5.3, given the soft-decision code word score (5.13)

and the (1, k-1)-weighted degree of the interpolated polynomial Q (5.15), message

polynomial f can be found out if:

SM(c) > 1,1 −∆ k (CM) (5.16)

As the (1, k-1)-weighted degree of the interpolated polynomial Q(x, y) can be

determined by (5.15) while 1,1 −∆ k (CM) can be realised by applying corollary 5.1 as:

1,1 −∆ k (CM) = deg1, k-1(x
a
y

b
 | ord(x

a
y

b
) = CM), a stopping rule for algorithm 5.1 based on

the designed length of output list l can be imposed. This is more realistic for assessing

soft-decision list decoding scheme’s performance. As factorisation outputs are the y

roots of the interpolated polynomial Q, the maximal number of outputs lM based on

the interpolated polynomial Q is:

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 88

lM = deg0, 1Q(x, y) = 








−

∆
=









−

−−

1

)(

1

),(deg 1,11,1

k

C

k

yxQ Mkk
 (5.17)

Therefore, after step (v) of algorithm 5.1, the updated multiplicity matrix M’s cost CM

can be determined using (5.11). As CM has been determined, the interpolated

polynomial Q(x, y)’s (1, k-1)-weighted degree can be determined by (5.15). Then

(5.17) can be applied to calculate the maximal number of factorisation outputs lM.

Based on a designed length of output list l, stop algorithm 5.1 once lM is greater then l.

From the above description, when designed length of output list l → ∞, the soft-

decision’s asymptotically optimal result can be achieved as a high enough code word

score SM(c) can always be produced to satisfy condition (5.16). When l → ∞, s → ∞,

the cost of multiplicity matrix CM → ∞ so as 1,1 −∆ k (CM) → ∞. Based on corollary 5.2,

we have 1,1 −∆ k (CM) =))(()1(2 1,11,1 Mkk CNk −− ∆− = MCk)1(2 − . Successful list

decoding coding condition (5.16) can be written as:

SM(c) > MCk)1(2 − (5.18)

or equivalently,

∑
−

=

−==
1

0

, }1,,1,0,|{
n

j

jiji qicm Kρ > ∑∑
−

=

−

=

+−
1

0

1

0

,,)1()1(
q

i

n

j

jiji mmk (5.19)

As mi, j → ∞, to access equation (5.19), the following lemma is needed.

Lemma 5.4 For algorithm 5.1, when s → ∞,
s

m

n

jiji ,,
≅

π
 [8].

Based on lemma 5.4, we have mi, j = ji
n

s
,π and substitute it into (5.19), (5.19) can be

re-written as:

∑ ∑∑
−

=

−

=

−

=

+−>−==
1

0

1

0

1

0

,,,)()1(}1,,1,0,|{
n

j

q

i

n

j

jijijiji
s

n
k

n

s
qic

n

s
ππρπ K (5.20)

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 89

As when s → ∞,
s

n
≅ 0, (5.20) can be further approximated as:

∑ ∑∑
−

=

−

=

−

=

−>−==
1

0

1

0

1

0

2

,,)1(}1,,1,0,|{
n

j

q

i

n

j

jijiji kqic πρπ K (5.21)

Therefore, soft-decision list decoding’s optimal result is determined by the received

reliability values. In practice, due to the decoding complexity restriction, soft-decision

list decoding can only perform based on a designed length of output list l. This output

length restriction in fact leads to practical decoding performance degradation. This

phenomenon can be seen later when the simulation results are discussed. Also, based

on equation (5.21), soft-decision list decoding has more performance improvement

potential for low rate codes as the k value is small.

5.6 Complexity reduction Interpolation and Factorisation

Based on the multiplicity matrix M, the following complexity reduction interpolation

and factorisation processes can be implemented by applying algorithm 4.1 and

algorithm 4.2 respectively. The interpolated polynomial Q(x, y) builds upon the

multiplicity matrix M with a zero of multiplicity at least mi, j (mi, j ≠ 0) at all the

associated points (xj, ρi) (j = 0, 1, …, n – 1 and i = 0, 1, …, q - 1). As details of the

interpolation and factorisation processes can be referred to Chapter 4 or the author’s

publication [52, 53], this section only mentions some necessary modifications to the

interpolation process, while factorisation process remains the same. Also, an analysis

of how much decoding complexity can be reduced by the modification scheme

proposed by section 4.3.3 will be given.

As mentioned in section 5.5, to build interpolated polynomial Q(x, y), there are in

total CM (5.11) iterations. Therefore, the iteration index ik used in algorithm 4.1 is: ik =

0, 1, …, CM. Based on a designed length of output list l, the initialisation at step (i)

can be modified as:

G0 = {Q0,j = y
j
, j = 0, 1, …, l} (5.22)

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 90

As there are in total CM iterations, based on the complexity reduction scheme’s

description given in section 4.3.3, the interpolated polynomial Q’s leading order is

less than or equal to the total number of iterations CM as:

lod(Q(x, y)) ≤ CM (5.23)

This indicates the fact that (5.15) is an upper bound for the interpolated polynomial’s

(1, k-1)-weighted degree as:

deg1, k-1Q(x, y) ≤ 1,1 −∆ k (CM) (5.24)

Based on (5.23), those polynomials with leading order over CM will neither be chosen

as the interpolated polynomial, nor be modified with the interpolated polynomial.

Therefore, they can be eliminated from the polynomial group and the modification at

step (ii) can be re-written as:

ki
G = { jik

Q , | lod(jik
Q ,) ≤ CM} (5.25)

With respect to interpolated point (xj, ρi) and Hasse derivative parameter (α, β) (α + β

< mi, j), the Hasse derivative evaluation performed at step (iii) of algorithm 4.1 can be

modified and determined by equation (5.10). For the following of the process, it is the

same as algorithm 4.1 only take a notice that for polynomial modification (4.32), the

interpolated point’s x-coordinate xi should be replaced by the xj which is the current

interpolated point’s x-coordinate. And also, distinguish index j for interpolated point’s

x-coordinate xj and polynomials jik
Q , in the group

ki
G .

As discussed in section 4.5, the complexity reduction scheme is error dependent that it

can reduce interpolation complexity more significantly in low error weight situations

[52]. However, in a soft-decision decoder, no hard-decision received vector is

obtained and therefore it is impossible to measure the actual error weight (Hamming

distance between the received word and transmitted code word). In order to evaluate

the complexity modification scheme’s performance for this soft-decision list decoder,

decoding complexity of the original and modified interpolation processes is measured

against the SNR values. Fig 5.4 shows how much decoding complexity can be

reduced for soft-decision list decoding of Reed-Solomon code (63, 15) with output

length l = 2 and 4. From Fig 5.4 it can be seen that more decoding complexity can be

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 91

reduced in high SNR values which in fact correspond to low error weight situations if

hard-decision was made. Under high SNR values, complexity can be reduced up to

36.45%. However, in low SNR values, complexity reduction is not as significant.

1.00E+05

1.00E+06

1.00E+07

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SNR (Eb/N0)

C
o
m
p
u
ta
ti
o
n
 C
o
m
p
le
x
it
y

Original Interpolation (l=2)

Complexity Reducing Interpolation (l=2)

Original Interpolation (l=4)

Complexity Reducing Interpolation (l=4)

0.10% 1.86%
32.17%

35.99% 35.97%

0.11%
2.38%

34.57%

36.45% 35.91%

% - percentage of complexity reduction

Figure 5.4 Complexity reduction analysis for soft-decision list decoding of Reed-

Solomon code (63, 15)

5.7 Simulation Results Discussion

This section presents soft-decision list decoding results for the two Reed-Solomon

codes introduced in Chapter 4: Reed-Solomon codes (63, 15) and (63, 31). They are

simulated under both AWGN and Rayleigh fading channels. The Rayleigh fading

channel is frequency nonselective with Doppler frequency [64] 126.67 Hz and data

rate 30 kb/s. The fading profile is generated using Jakes’ method [64]. The fading

coefficients have mean value 1.55 and variance 0.60. Under Rayleigh fading channel,

a block interleaver with size 63 × 63 is used to combat the fading effect. QPSK

modulation scheme is used and simulations are run using C programming language.

Soft-decision list decoding results for Reed-Solomon codes (63, 15) and (63, 31) are

shown by Fig 5.5 and 5.6 respectively. Soft-decision’s performance is compared with

the hard-decision based on giving the same maximal length of output list l (or so

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 92

called the designed length of output list for soft-decision), which is indicated by

different patterns of ‘*’ in the figures.

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 1 2 3 4 5 6 7 8 9 10 11 12

SNR (Eb/N0)

B
E
R

uncoded

GS (m=1, l=2)*

GS (m=2, l=4)**

GS (m=4, l=8)***

GS (m=6, l=13)****

GS (m=26, l=55)*****

KV (l=2)*

KV (l=3)

KV (l=4)**

KV (l=8)***

KV (l=13)****

KV (l=55)*****

KV (Optimal)

(a) over AWGN channel

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 2 4 6 8 10 12 14 16 18 20

SNR (Eb/N0)

B
E
R

Uncoded

GS (m=1, l=2)*

GS (m=2, l=4)**

GS (m=4, l=8)***

GS (m=6, l=13)****

GS (m=26, l=55)*****

KV (l=1)

KV (l=2)*

KV (l=4)**

KV (l=8)***

KV (l=13)****

KV (l=55)*****

KV (Optimal)

(b) over Rayleigh fading channel

Figure 5.5 Soft-decision list decoding of Reed-Solomon code (63, 15)

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 93

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 1 2 3 4 5 6 7 8 9 10 11 12

SNR (Eb/N0)

B
E
R

uncoded

GS (m=1, l=1)*

GS (m=3, l=4)**

GS (m=5, l=7)***

GS (m=13, l=19)****

KV (l=1)*

KV (l=2)

KV (l=3)

KV (l=4)**

KV (l=7)***

KV (l=19)****

KV (Optimal)

(a) over AWGN channel

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 2 4 6 8 10 12 14 16 18 20

SNR (Eb/N0)

B
E
R

Uncoded

GS (m=1, l=1)*

GS(m=3, l=4)**

GS(m=5, l=7)***

GS (m=13, l=19)****

KV (l=1)*

KV (l=4)**

KV (l=7)***

KV (l=19)****

KV (Optimal)

(b) over Rayleigh fading channel

Figure 5.6 Soft-decision list decoding of Reed-Solomon code (63, 31)

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 94

Designed output

length l

Number of

polynomials l + 1

Soft-decision Hard-decision

CM
3)1(

3

2
+MC Cm

3)1(
3

2
+mC

2 3 84 4.09 × 10
5
 63 1.75 × 10

5

4 5 211 6.35 × 10
6
 189 4.75 × 10

6

8 9 631 1.68 × 10
8
 630 1.67 × 10

8

13 14 1470 2.12 × 10
9
 1323 1.55 × 10

9

55 56 22371 7.46 × 10
12 22113 7.21 × 10

12

Table 5.1 Decoding complexity comparison for soft-decision and hard-decision list

decoding of Reed-Solomon code (63, 15)

Designed output

length l

Number of

polynomials l + 1

Soft-decision Hard-decision

CM
3)1(

3

2
+MC Cm

3)1(
3

2
+mC

1 2 90 5.12 × 10
5
 63 1.75 × 10

5

4 5 451 6.17 × 10
7
 378 3.63 × 10

7

7 8 1082 8.48 × 10
8
 945 5.64 × 10

8

19 20 6307 1.67 × 10
11

 5733 1.26 × 10
11

Table 5.2 Decoding complexity comparison for soft-decision and hard-decision list

decoding of Reed-Solomon code (63, 31)

Simulation result comparisons are made based on output length l because for output

length l, there are l + 1 polynomials taking part in the iterative interpolation process.

The total number of iterations (Cm = (4.12) for hard-decision. CM (5.11) for soft-

decision) also grow with length l. Both the number of polynomials l + 1 and the

number of iterations (Cm, CM) are the important parameters that determine the

decoding complexity. As mentioned in section 4.5, by knowing the total number of

iterations, the list decoding system’s decoding complexity can be approximately

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 95

predicted by 3)1(
3

2
+mC for hard-decision and 3)1(

3

2
+MC for soft decision [52, 59].

Table 5.1 and 5.2 present the decoding complexity comparison between soft-decision

and hard-decision based on the designed output length l for Reed-Solomon codes (63,

15) and (63, 31) respectively. From Table 5.1 and 5.2, it can be observed that based

on the same value of l, soft-decision costs a bit higher decoding complexity than the

hard-decision, but remains in the same order of decoding complexity. For example,

list decoding of Reed-Solomon code (63, 15) with designed output length l = 2, soft-

decision costs 4.09 × 10
5
 finite field calculations while hard-decision costs 1.75 × 10

5

finite field calculations. However, significant changes of decoding complexity are still

due to the changes of output length l. Notice that values CM presented in the above

two tables are the average values obtained from simulation observation. Even though

soft-decision has higher decoding complexity than the hard-decision based on the

same designed length, from Fig 5.5 and 5.6 it can be seen that soft-decision can

achieved significant coding gain over the hard-decision, especially over Rayleigh

fading channel. For example, over Rayleigh fading channel and based on designed

length l = 2, soft-decision list decoding of Reed-Solomon code (63, 15) can achieve

about 5.8 dB coding gain at BER = 10
-5

 compared with hard-decision. The

performance improvement of soft-decision list decoding over hard-decision list

decoding is achieved by insignificant complexity penalty is different to other types of

coding schemes for which soft-decision decoding does increase decoding complexity

significantly. This is because for the list decoding algorithm, the complexity is mainly

dominated by the interpolation process, compared with which the complexity

introduced by the priori process (Algorithm 5.1) is marginal. And for the interpolation

process, the important parameter that determines its complexity is the iteration

number. As the iteration number of soft-decision does not vary much from hard-

decision based on the same designed output length, the complexity of the soft-

decision list decoding is not much higher than the hard-decision.

It is important to point out that the hard-decision scheme with large designed output

length costs very high decoding complexity, as indicated by Table 5.1 and 5.2.

However, by using the soft-decision scheme with small output length can outperform

hard-decision scheme’s complexity expensive results. For example, hard-decision list

Chapter 5 Soft-Decision List Decoding of Reed-Solomon Codes

 96

decode Reed-Solomon code (63, 31) with designed length l = 19, referring to Table

5.2, the decoding complexity is approximately 1.26 × 10
11

. However, using soft-

decision scheme with output length l = 1 can already achieve better performance over

Rayleigh fading channel. The decoding complexity for l = 1 is only approximately

5.12 × 10
5
 which is much lower than the hard-decision.

It is also worthy to mention that the soft-decision scheme’s optimal result is obtained

by using equation (5.21) without running through interpolation and factorisation

processes. Assume that the decoder acknowledges the transmitted code word symbols

c0, c1, …, cn-1, after the reliability matrix ∏∏∏∏ has been obtained, equation (5.21) can be

used to assess the soft-decision scheme’s optimal result. If equation (5.21) is satisfied,

decoding is claimed to be successful. Otherwise, decoding fails. From Figs 5.5 and

5.6, it can be seen that soft-decision scheme approaches its optimal result with the

designed length of output list increases.

5.8 Conclusion

The chapter presented the soft-decision list decoding scheme for Reed-Solomon codes.

At the receiver, the received word’s reliability information is obtained. The

information is then converted into multiplicity information based on which the

interpolation process is performed. It was shown in the chapter how to obtain the

reliability values and how to convert them into multiplicity values. For the algorithm

that converts reliability values into multiplicity values, a practical method to realise

the stopping rule based on the designed length of output list was introduced. Applying

the complexity reduction scheme for interpolation, the soft-decision scheme’s

interpolation complexity can also be reduced based on knowing the iteration number.

Simulation results show that based on the same designed length of output list, the

soft-decision scheme has significant coding gains compared with the hard-decision

scheme, but is at the higher expense of decoding complexity. It is also shown that the

soft-decision scheme with a small output list length and lower decoding complexity

can outperform the hard-decision scheme’s optimal result which is not suitable for

practical implementation due to a very high decoding complexity.

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 97

Chapter 6

Hard-Decision List

Decoding of Hermitian

Codes

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 98

6.1 Introduction

This chapter presents the hard-decision list decoding algorithm which is called the

Guruswami-Sudan (GS) algorithm for one of the best performing algebraic-geometric

codes – Hermitian codes. Performance of Hermitian codes by using the conventional

unique decoding algorithm – Sakata algorithm with majority voting [5, 6, 25], has

been investigated by Johnston and Carrasco [29, 31]. However, the unique decoding

algorithm’s error-correction capability is limited by the half distance bound 






 −

2

1*d

(3.22), where d
*
 is the designed minimum distance of the code. The GS algorithm can

correct errors beyond this bound. This chapter presents the mathematical framework

of the GS algorithm for its application to Hermitian codes, so as to engineer the

decoding process. It consists of two processes: interpolation, to build an interpolated

polynomial based on the received information and factorisation, to find the

transmitted message information based on the interpolated polynomial. By first

defining a Hermitian curve, these processes can be implemented with an iterative

polynomial construction algorithm and a recursive coefficient search algorithm

respectively. The first simulation results of GS decoding Hermitian codes was

published by the author in [65]. However, list decoding of Hermitian codes with the

GS algorithm remains complex and limits the application of the GS algorithm to

longer codes. According to the complexity analysis in [52, 65], the GS algorithm’s

high complexity is mainly caused by the iterative interpolation, in which a group of

polynomials are tested for different zero conditions and modified interactively. In

section 3.5.3, to define the zero condition of a polynomial for Hermitian codes we

need to transfer it into a polynomial written with respect to the zero basis functions of

a Hermitian curve, which is not very efficient for implementation. However, the zero

condition of a polynomial can also be defined without this transfer based on

knowledge of the corresponding coefficients between the pole basis monomials and

zero basis functions of a Hermitian curve. Inspired by this, a new algorithm to

determine these coefficients is proposed in the chapter. These coefficients can be

applied afterwards in the interpolation process. In order to improve the list decoding

efficiency for Reed-Solomon codes, a complexity reduction scheme which identifies

any unnecessary polynomials in the group and eliminates them during the iterative

interpolation is proposed in [52] and described in Chapter 4 of the thesis. From this

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 99

project’s research, this scheme is also valid for list decoding of Hermitian codes. In

this chapter, the modified interpolation process will be presented with applying this

complexity reduction scheme. The complexity analysis of this modification scheme

shows that it can reduce decoding complexity up to 48.83%. The above work on

reducing interpolation complexity was written in the author’s paper [66] which has

been accepted for publication. The factorisation process can be implemented by

applying the recursive coefficient search algorithm which was first introduced by

Roth and Ruckenstein [10] with application for Reed-Solomon codes, and later

extended by Wu and Siegel [11, 12] for general algebraic-geometric codes. A more

general factorisation algorithm which can be applied for both Reed-Solomon and

algebraic-geometric codes is presented by the author in [67]. Based on the complexity

reduction interpolation process and the more general factorisation process, list

decoding results for longer Hermitian codes have been achieved. This chapter

presents simulation results for the list decoding of Hermitian codes with comparisons

to the unique decoding algorithm - the Sakata algorithm with majority voting [5, 6,

25]. Also, a comparison of Hermitian codes and Reed-Solomon codes using the list

decoding algorithm is presented.

6.2 Prerequisite Knowledge

Here gives a short review for the prerequisite knowledge of Hermitian codes which

was mentioned in Chapter 3. A Hermitian curve defined over GF(q) is given as:

Hw(x, y) = x
w+1

 + y
w
 + y (6.1)

where w = q and has a genus g =
2

)1(−ww
 [19]. For simplicity, GF(q) is assumed to

be an extension field of GF(2). There are n = w
3
 affine points pi = (xi, yi) that satisfy

Hw(xi, yi) = 0 and a point at infinity p∞. On curve Hw, the pole order at p∞ (
∞pv) of

variable x and y are
∞pv (x

-1
) = w and

∞pv (y
-1

) = w + 1 [19]. With respect to the point

at infinity p∞, there exists a pole basis Lw which contains a set of bivariate monomials

φa(x, y) with coefficients 1 and increasing pole orders, defined by (3.23) as: Lw = {φa(x,

y) |
∞pv (φa

-1
) <

∞pv (φa+1
-1

), a ∈ N} [9, 44], where the x degree of φa is not greater than

w and N is the set of nonnegative integers. Lw defines the set of pole basis functions of

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 100

the Hermitian curve Hw. A couple of examples of Lw is given in section 3.4.

Nonnegative integers can be divided into nongaps which are the pole orders of

monomials in Lw, and gaps otherwise. Take L4 = {1, x, y, x
2
, xy, y

2
, x

3
, x

2
y, xy

2
, y

3
, x

4
,

x
3
y, x

2
y

2
, xy

3
, y

4
, x

4
y, x

3
y

2
, x

2
y

3
, xy

4
, y

5
, …} shown by example 3.2 for analysis. In L4,

nonnegative integers 1, 2, 3, 6, 7, and 11 are gaps while the rest of the nonnegative

integers are nongaps. With respect to every affine point pi, there exists a zero

basis
ipwZ , which contains a set of rational functions αψ ,ip (x, y) with increasing zero

orders at pi (
ipv), defined by (3.24) as:

ipwZ , = { αψ ,ip (x, y) |
ipv (αψ ,ip) <

ipv (1, +αψ
ip),

α ∈ N} [9, 44]. αψ ,ip has a zero order α at affine point pi. According to (3.25), it can

be generally written as:

αψ ,ip (x, y) =),()1(, yxwpi δλψ ++ = (x – xi)
λ
[(y – yi) – xi

w
(x – xi)]

δ
, (λ, δ ∈ N, 0 ≤

λ ≤ w, δ

≥ 0)

The relationship between pole basis monomial φa and zero basis function αψ ,ip can be

written as [44]:

φa = ∑
Ν∈α

ααψγ ,,, ii ppa (6.2)

where αγ ,, ipa ∈ GF(q) are the corresponding coefficients.

The construction of a (n, k) Hermitian code can be described as evaluating the n affine

points of Hw over the message polynomial f, which is shown by equation (3.20) and

(3.21) in Chapter 3.

To decode a (n, k) Hermitian code with the GS algorithm, the pole order of variable z

is defined as wz =
∞pv (z

-1
) =

∞pv (φk-1
-1

) and wz > 2g - 1. Then, any trivariate monomial

φaz
b
’s (1, wz)-weighted degree can be defined as:

zw,1deg (φaz
b
) =

∞pv (φa
-1

) + b ⋅ wz (6.3)

and a (1, wz)-lexicographic order (ord) can be defined to arrange monomials φaz
b
:

1

1

b

a zφ < 2

2

b

a zφ

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 101

if
zw,1deg (1

1

b

a zφ) <
zw,1deg (2

2

b

a zφ), or
zw,1deg (1

1

b

a zφ) =
zw,1deg (2

2

b

a zφ) and b1 < b2

[44]. For example, to list decode Hermitian code (8, 4, 4) which is defined in GF(4),

wz = 4. The (1, 4)-weighted degree and (1, 4)-lexicographic order of monomial φaz
b

(φa ∈ L2) are shown in Table 6.1a and 6.1b respectively.

 a
0 1 2 3 4 5 6 7 8 9 10 11 ……

 b

0 0 2 3 4 5 6 7 8 9 10 11 12 ……

1 4 6 7 8 9 10 11 12 ……

2 8 10 11 12 ……

3 12 ……

…

…

Table 6.1a (1, 4)-weighted degree of monomial φaz
b
 (φa ∈ L2)

 a
0 1 2 3 4 5 6 7 8 9 10 11 ……

b

0 0 1 2 3 5 6 8 10 13 15 18 21 ……

1 4 7 9 11 14 16 19 22 ……

2 12 17 20 23 ……

3 24 ……
…

…

Table 6.1b (1, 4)-lexicographic order of monomial φaz
b
 (φa ∈ L2)

Fq[x, y, z] is the ring of polynomials defined over the set of pole basis functions in Lw

of the Hermitian curve Hw, which can be generally written as: f(x, y, z)

= ∑
Ν∈ba

b

aab zyxf
,

),(φ , where fab ∈ GF(q) and φa ∈ Lw. Subsequently, Fq[x, y] is a subset

of Fq[x, y, z] with z degree equals to 0 and u

qF [x, y] is a subset of Fq[x, y] with
∞pv (φa

-

1
) ≤ u. As wz =

∞pv (z
-1

) =
∞pv (φk-1

-1
), the message polynomial (3.20) is a polynomial

in zw

qF [x, y]. The following definition is given for polynomials defined in Fq[x, y, z]:

Definition 1: If φa’z
b’

 is the maximal monomial in polynomial f ∈ Fq[x, y, z] as:

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 102

φa’z
b’

 = max{φaz
b
 | fab ≠ 0}

φa’z
b’

is called f’s leading monomial and its coefficient fa’b’ is called f’s leading

coefficient, denoted as:

LM(f) = φa’z
b’

, and LC(f) = fa’b’

and polynomial f’s (1, wz)-weighted degree (
zw,1deg (f)) and leading order (lod(f)) are

defined as:

zw,1deg (f) =
zw,1deg (φa’z

b’
), and lod(f) = ord(φa’z

b’
)

For example, f is a polynomial in F4[x, y, z] and can be written as: f(x, y, z) = σx +

σ2
x

2
 + σxy + σ2

xz + yz
2
 + σz

3
 = σ ⋅ φ1z

0
 + σ2

 ⋅ φ3z
0
 + σ ⋅ φ4z

0
 + σ2

 ⋅ φ1z
1
 + 1 ⋅ φ2z

2
 + σ ⋅

φ0z
3
, where σ is a primitive element in GF(4) satisfying σ2

 + σ + 1 = 0. Applying the

(1, 4)-lexicographic order shown by Table 6.1b, it can be seen that the leading

monomial of f is φa’z
b’

 = φ0z
3
. Therefore, LM(f) = φ0z

3
, LC(f) = σ, 4,1deg (f) =

4,1deg (φ0z
3
) = 12 and lod(f) = ord(φ0z

3
) = 24.

Based on the above definition, for any two polynomials f and h ∈ Fq[x, y, z], f < h if

lod(f) < lod(h).

6.3 GS Decoding of Hermitian Codes

The GS algorithm consists of two processes: interpolation and factorisation. Given a

received word R = (r0, r1, …, rn-1) (ri ∈ GF(q), i = 0, 1, …, n - 1), n interpolated units

can be formed by combining each received symbol with its respective affine point

used in encoding as: (p0, r0), (p1, r1), …, (pn-1, rn-1). Interpolation is to build the

minimal polynomial Q ∈ Fq[x, y, z] which has a zero of multiplicity at least m over

the n interpolated units. In general, Q can be written as (3.30): Q = ∑
Ν∈ba

b

aab zQ
,

φ ,

where Qab ∈ GF(q) and φa ∈ Lw. If (pi, ri) is the intended interpolated unit, it can also

be written with respect to the zero basis functions in
ipwZ , as [44]:

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 103

Q = β
α

βα
αβ ψ)(,

,

),(

ip

rp
rzQ

i

ii −∑
Ν∈

 (6.4)

where
),(ii rp

Qαβ ∈ GF(q). If
),(ii rp

Qαβ = 0 for α + β < m, polynomial Q has a zero of

multiplicity at least m at unit (pi, ri) [9, 44]. As z
b
 = (z – ri + ri)

b
 = ββ

β β
)(i

b

i

b

rzr
b

−













−

≤

∑

and φa = ∑
Ν∈α

ααψγ ,,, ii ppa , substitute them into (3.30) as:

Q = ∑ ∑∑
Ν∈ ≤

−

Ν∈

−














ba b

i

b

ippaab rzr
b

Q
ii

,

,,,))()((
β

ββ

α
αα

β
ψγ

= ∑ ∑
Ν∈ ≥

−
−















βα

β
α

β

β

α ψγ
β,

,

,

,,)()(ip

ba

b

ipaab rzr
b

Q
ii

 (6.5)

Therefore, coefficients
),(ii rp

Qαβ of (6.4) can be written as:

),(ii rp
Qαβ =

β

α
β

γ
β

−

≥

∑ 












b

ipa

ba

ab r
b

Q
i ,,

,

 (6.6)

(6.6) defines the zero condition constraints to the coefficients Qab of polynomial Q, so

that Q has a zero of multiplicity at least m over unit (pi, ri). Here gives an example to

show how to define the zero condition of a polynomial in Fq[x, y, z] using (6.6).

Example 6.1 Given polynomial Q(x, y, z) = 1 + σy + σx
2
 + z

2
(1 + σ2

y) defined in F4[x,

y, z]. Justify it has a zero of multiplicity at least 2 over unit (p, r) = ((1, σ), σ). σ is a

primitive element in GF(4) satisfying σ2
 + σ + 1 = 0. Addition and multiplication

tables of GF(4) is given in Appendix A.

Polynomial Q(x, y, z) = 1 + σy + σx
2
 + z

2
(1 + σ2

y) = Q00φ0z
0
 + Q20φ2z

0
 + Q30φ3z

0
 +

Q02φ0z
2
 + Q22φ2z

2
. For supporting the zero condition calculations, the corresponding

coefficients αγ ,, pa are shown in Table 6.2 as:

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 104

a

α

0 1 2 3 …

0 1 1 σ 1 …

1 0 1 1 0 …

…

…

…

…

…

Table 6.2 Corresponding coefficients αγ ,, pa given p = (1, σ)

Based on the above description, to justify Q has a zero of multiplicity m over unit (p,

r), its coefficients Qab should satisfy),(rpQαβ = 0 for α + β < 2 as:),(

00

rpQ = 0,),(

01

rpQ = 0

and),(

10

rpQ = 0.

Based on definition (6.6),

),(

00

rpQ = Q00 








0

0
γ0, p, 0σ

0-0
 + Q20 









0

0
γ2, p, 0σ

0-0
 + Q30 









0

0
γ3, p, 0σ

0-0
 + Q02 









0

2
γ0, p, 0σ

2-0
 +

Q22 








0

2
γ2, p, 0σ

2-0
 = 1 + σ2

 + σ + σ2
 + σ2

 = 0

),(

01

rpQ = Q02 








1

2
γ0, p, 0σ

2-1
 + Q22 









1

2
γ2, p, 0σ

2-1
 = 0 + 0 = 0

),(

10

rpQ = Q00 








0

0
γ0, p, 1σ

0-0
 + Q20 









0

0
γ2, p, 1σ

0-0
 + Q30 









0

0
γ3, p, 1σ

0-0
 + Q02 









0

2
γ0, p, 1σ

2-0
 +

Q22 








0

2
γ2, p, 1σ

2-0
 = σ + σ = 0.

Therefore, polynomial Q has a zero of multiplicity at least 2 over unit (p, r) = ((1, σ),

σ).

If constraint (6.6) for the coefficients of polynomial Q is denoted as)(
),(

QD ii rp

αβ , such

that:

)(
),(

QD ii rp

αβ =
),(ii rp

Qαβ =
β

α
β

γ
β

−

≥

∑ 












b

ipa

ba

ab r
b

Q
i ,,

,

 (6.7)

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 105

then interpolation is to build a polynomial Q defined as:

Q =
)(

min
Qlod

{Q ∈ Fq[x, y, z] |)(
),(

QD ii rp

αβ = 0 for i = 0, 1, …, n – 1 ∧ α + β < m (α, β ∈

N)} (6.8)

As there are












 +

2

1m
 permutations of (α, β) for α + β < m, there are in total:

C =












 +

2

1m
n (6.9)

zero condition constraints that coefficients Qab of polynomial Q need to satisfy. C also

represents the number of iterations in the interpolation algorithm [9, 44], in which

each iteration imposes a zero condition constraint to Qab. The (1, wz)-weighted degree

upper bound of polynomial Q is defined as [9, 44]:

max{
zw,1deg Q} = lm

∞pv (z
-1

) + tm (6.10)

where lm is the maximal number of output candidates from factorisation, defined as:

lm = max{u |














2

u

∞pv (z
-1

) - (u - 1) g ≤ C} – 1 (6.11)

and parameter tm is defined as:

tm = max{u | (lm + 1) u - Γ(u) +












 +

2

1ml

∞pv (z
-1

) - lm g ≤ C} (6.12)

where u ∈ N and Γ(u) denotes the number of gaps that are less than or equal to the

nonnegative integer u [9].

If there exists a polynomial h ∈ zu

qF [x, y] such that

Λ(h, R) = |{i | h(pi) = ri, i = 0, 1, …, n - 1}| (6.13)

the total zero orders of polynomial Q(x, y, h) over all the interpolated units is:

∑
−

=

1

0

)),,((
n

i

p hyxQv
i

 ≥ m Λ(h, R) (6.14)

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 106

To define the total zero order of polynomial Q(x, y, h), the following lemma is applied.

Lemma 6.1 Q(x, y, z) has a zero of multiplicity m over unit (pi, ri) and h is a

polynomial in zu

qF [x, y] that satisfies h(pi) = ri, then Q(x, y, h) has a zero order at least

m at pi, as)),,((hyxQv
ip ≥ m [9, 44].

Equation (6.13) defines the total number of affine points that satisfy h(pi) = ri, and

therefore the total zero order of polynomial Q(x, y, h) over all the affine points is

defined by equation (6.14).

Theorem 6.2 If polynomial Q(x, y, h)’s total zero orders is greater than its pole order

as:

∑
−

=

1

0

)),,((
n

i

p hyxQv
i

 >)),,((1−

∞
hyxQv p (6.15)

then h is the z root of Q: Q(x, y, h) = 0, or equivalently z – h | Q(x, y, z) [7, 9, 44].

As h ∈ zu

qF [x, y],)),,((1−

∞
hyxQv p =)),,((1−

∞
zyxQv p =

zw,1deg (Q(x, y, z)). Therefore,

based on (6.13) and (6.14), theorem 6.2 results the following corollary:

Corollary 6.3: If there exists a polynomial h ∈ zu

qF [x, y] such that:

m Λ(h, R) >
zw,1deg (Q(x, y, z)) (6.16)

list decoding outputs h can be found out by factorising the interpolated polynomial

Q(x, y, z) as: z – h | Q(x, y, z).

Factorisation is to find the z roots of the interpolated polynomial Q, among which the

message polynomial (3.20) is included [11, 12, 65]. If h = f, equation (6.13) defines

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 107

the number of uncorrupted received symbols. Therefore, the GS algorithm’s error-

correction capability τm is:

τm = n - Λ(h, R) = n - 








m

Q
zw,1deg

 - 1 (6.17)

As the upper bound of
zw,1deg Q is defined by (6.10), therefore:

τm ≥ n -










 +−

∞

m

tzvl mpm)(1

 - 1 (6.18)

According to the theoretical background description given in Chapter 3, the GS

algorithm’s error-correction capability upper bound for a (n, k) Hermitian code is

defined by equation (3.32) as: τGS = n -  )(*dnn − - 1.

6.4 Determining the Corresponding Coefficients

Based on equation (6.7), the corresponding coefficients αγ ,, ipa are critical for defining

the zero condition of a polynomial in Fq[x, y, z]. Without knowing them, we have to

transfer a general polynomial (3.30) into (6.4) and find the coefficients
),(ii rp

Qαβ , which

is not efficient during the iterative interpolation. In fact, the corresponding

coefficients αγ ,, ipa can be determined independently of the received word. And

therefore, if they can be determined beforehand and applied during the iterations, the

interpolation efficiency can be greatly improved. This section proposes an algorithm

to determine them.

The problem we intend to solve can be simply stated as: given an affine point pi = (xi,

yi) of curve Hw and a pole basis monomial φa, determine the corresponding

coefficients αγ ,, ipa so that φa can be written as a sum of the zero basis functions αψ ,ip :

φa = ∑
Ν∈α

ααψγ ,,, ii ppa . For any two pole basis monomials
1aφ and

2aφ in Lw,
1aφ 2aφ =

∑
Ν∈a

aφ and the zero basis function αψ ,ip (3.25) can be written as a sum of pole basis

monomials φa as [44]:

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 108

αψ ,ip =∑
Ν∈a

aaφζ (6.19)

where coefficients ζa ∈ GF(q). Based on (3.25), partition αψ ,ip (x, y) as:

αψ ,ip = B

p

A

p ii αα ψψ ,, ⋅ (6.20)

where A

pi α
ψ , = (x – xi)

λ
 and B

pi α
ψ , = [(y – yi) – xi

w
(x – xi)]

δ
 = [y – xi

w
x – (yi – xi

w+1
)]

δ
. It is

easy to recognise that A

pi α
ψ , has leading monomial LM(A

pi α
ψ ,) = x

λ
 and leading

coefficient LC(A

pi α
ψ ,) = 1. As

∞pv (y
-1

) >
∞pv (x

-1
), B

pi α
ψ , has leading monomial

LM(B

pi α
ψ ,) = y

δ
 and leading coefficient LC(B

pi α
ψ ,) = 1. Based on (6.20), αψ ,ip has

leading monomial LM(A

pi α
ψ ,) ⋅ LM(B

pi α
ψ ,) = x

λ
y
δ
 and leading coefficient LC(A

pi α
ψ ,) ⋅

LC(B

pi α
ψ ,) = 1. As 0 ≤

λ ≤ w and δ ≥ 0, the set of leading monomials of zero basis

functions in
ipwZ , contains all the monomials defined in pole basis Lw. Summarising

the above analysis, corollary 6.4 is proposed as followed.

Corollary 6.4: If φL is the leading monomial of zero basis function αψ ,ip as LM(αψ ,ip)

= φL, the leading coefficient of αψ ,ip equals to 1 and (6.19) can be written as:

 αψ ,ip = ∑
<Ν∈

+
Laa

Laa

,

φφζ (6.21)

The set of leading monomials of zero basis functions in
ipwZ , contains all the

monomials in Lw:

{LM(αψ ,ip) = φL, αψ ,ip ∈
ipwZ , } ⊆ Lw (6.22)

Following on, by identifying the second largest pole basis monomial φL-1 with

coefficient ζL-1 ∈ GF(q) in αψ ,ip , (6.21) can also be written as:

αψ ,ip = ∑
−<Ν∈

−− ++
1,

11

Laa

LLLaa φφζφζ (6.23)

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 109

Now it is sufficient to propose the new efficient algorithm to determine the

corresponding coefficients αγ ,, ipa .

Algorithm 6.1: Determine the corresponding coefficients αγ ,, ipa between a pole basis

monomial φa and zero basis functions αψ ,ip .

(i) Initialise all corresponding coefficients αγ ,, ipa = 0

(ii) Find the zero basis function αψ ,ip with LM(αψ ,ip) = φa, and let αγ ,, ipa = 1

(iii) Initialise function ψ̂ = αψ ,ip

(iv) While (ψ̂ ≠ φa) {

(v) Find the second largest pole basis monomial φL-1 with coefficient ζL-1 in ψ̂

(vi) In
ipwZ , , find a zero basis function αψ ,ip whose leading monomial LM(αψ ,ip) =

φL-1, and let the corresponding coefficient αγ ,, ipa = ζL-1

(vii) Update ψ̂ = ψ̂ + αγ ,, ipa αψ ,ip

}

Proof: Notice that functions αψ ,ip with LM(αψ ,ip) > φa will not contribute to the sum

calculation of (6.2) and their corresponding coefficients αγ ,, ipa = 0. The zero basis

function αψ ,ip found at (ii) has leading monomial φL = φa. Based on (6.23), it can be

written as:

αψ ,ip = ∑
−<Ν∈

−− ++
1','

11''

Laa

aLLaa φφζφζ (6.24)

(6.24) indicates the corresponding coefficient between φa and αψ ,ip is 1: αγ ,, ipa = 1.

Polynomialψ̂ initialised by (iii) is an accumulated polynomial resulting in φa. While

ψ̂ ≠ φa, in (6.24), the second largest monomial φL-1 with coefficient ζL-1 is identified

by (v). Then, find another zero basis function αψ ,ip in
ipwZ , that LM(αψ ,ip) = φL-1.

According to corollary 6.4, this zero basis function always exists and it can be written

as: αψ ,ip
= ∑

−<Ν∈

−+
1','

1''

Laa

Laa φφζ . At (vi), the corresponding coefficient between

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 110

monomial φa and the found zero basis function αψ ,ip can be determined as: αγ ,, ipa =

ζL-1. As a result, the accumulated calculation of (vii) can be written as:

ψ̂ = ∑
−<Ν∈

−− ++
1','

11''

Laa

aLLaa φφζφζ + αγ ,, ipa αψ ,ip

= ∑
−<Ν∈

−− ++
1','

11''

Laa

aLLaa φφζφζ + ∑
−<Ν∈

−−− +
1','

11''1

Laa

LLaaL φζφζζ (6.25)

Therefore in the new accumulated ψ̂ , ζL-1φL-1 is eliminated while the leading

monomial φa is preserved. If the updated ψ̂ ≠ φa, its second largest monomial φL-1 is

again eliminated while φa is always preserved as a leading monomial by the same

process. The algorithm terminates after all monomials that are smaller than φa have

been eliminated and results in ψ̂ = φa. This process is equivalent to the sum

calculation of (6.2). Here a worked example is presented to illustrate algorithm 6.1.

Example 6.2: Given pi = (σ2
, σ2

) is an affine point on curve H2 and a pole basis (L2)

monomial φ5 = y
2
, determine the corresponding coefficients αγ ,,5 ip so that φ5 can be

written as φ5 = ∑
Ν∈α

ααψγ ,,,5 ii pp .

Based on (3.25), the first 8 zero basis functions in
ipZ ,2 can be listed as:

0,ipψ = (x - σ2
)
0
 = 1 1,ipψ = (x - σ2

)
1
 = σ2

 + x

2,ipψ = (x - σ2
)
2
 = σ + x

2
 3,ipψ = (y - σ2

) - σ(x - σ2
) = σ + σx + y

4,ipψ = (x - σ2
)[(y - σ2

) - σ(x - σ2
)] = 1 + σ2

x + σ2
y + σx

2
 + xy

5,ipψ = (x - σ2
)
2
[(y - σ2

) - σ(x - σ2
)] = σ2

 + σ2
x + σx

2
 + σy

2
 + x

2
y

6,ipψ = [(y - σ2
) - σ(x - σ2

)]
2
 = σ2

 + σ2
x

2
 + y

2

7,ipψ = (x - σ2
)[(y - σ2

) - σ(x - σ2
)]

2
 = σ + σ2

x + σ2
y + σx

2
 + xy

2
.

Initialise all αγ ,,5 ip = 0. In
ipZ ,2 , as LM(6,ipψ) = φ5, we let 6,,5 ipγ = 1 and initialise the

accumulated polynomial ψ̂ = 6,ipψ = σ2
 + σ2

x
2
 + y

2
.

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 111

As ψ̂ ≠ φ5, its second largest monomial φL-1 = x
2
 with coefficient ζL-1 = σ2

 are

identified. Among the zero basis functions in
ipZ ,2 , we find 2,ipψ with LM(2,ipψ) =

φL-1 = x
2
, and let 2,,5 ipγ = ζL-1 = σ2

. Update ψ̂ = ψ̂ + 2,,5 ipγ 2,ipψ = σ + y
2
.

As ψ̂ ≠ φ5, again its second largest monomial φL-1 = 1 with coefficient ζL-1 = σ are

identified. Among the zero basis functions in
ipZ ,2 , we find 0,ipψ with LM(0,ipψ) = φL-

1 = 1, and let 0,,5 ipγ = ζL-1 = σ. Update ψ̂ = ψ̂ + 0,,5 ipγ 0,ipψ = y
2
.

Now, ψ̂ = φ5, we can stop the algorithm and output 0,,5 ipγ = σ, 2,,5 ipγ = σ2
 and 6,,5 ipγ =

1. The rest of the corresponding coefficients αγ ,,5 ip = 0 (α ≠ 0, 2, 6).

Before interpolation, monomials φa that exist in the interpolated polynomial Q are

unknown. However, the (1, wz)-weighted degree upper bound of polynomial Q is

defined by (6.10), from which the largest pole basis monomial φmax that might exist in

Q can be predicted by
∞pv (φmax

-1
) = max{

zw,1deg Q}. Based on interpolation

multiplicity m, with parameter α < m, the corresponding coefficients that might be

used in interpolation are αγ ,,0 ip ∼ αγ ,max, ip (α < m). Therefore algorithm 6.1 can be

used to determine all the corresponding coefficients αγ ,,0 ip ∼ αγ ,max, ip and only αγ ,,0 ip

∼ αγ ,max, ip (α < m) are stored for interpolation in order to minimise the memory

requirement. For example, to list decode the (8, 4, 4) Hermitian code with multiplicity

m = 2, max{
zw,1deg Q} = 13. Therefore, the largest pole basis monomial that might

exist in Q is φmax = φ12 = x
2
y

3
 and algorithm 6.1 can be applied to calculate all the

corresponding coefficients αγ ,,0 ip ∼ αγ ,,12 ip and αγ ,,0 ip ∼ αγ ,,12 ip (α < 2) are stored.

6.5 Complexity reduction Interpolation

Interpolation is to determine polynomial Q defined by (6.8). This can be implemented

by an iterative polynomial construction algorithm [9, 44, 46, 52]. At the beginning, a

group of polynomials are initialised. During the iterations, they are tested by different

zero condition constraints and modified interactively. As mentioned in section 6.3,

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 112

there are in total C (6.9) iterations, after which the minimal polynomial in the group is

chosen as the interpolated polynomial Q. According to the iterative process analysis

given in Chapter 4 and also paper [52], the interpolated polynomial Q has leading

order lod(Q) ≤ C. This indicates that those polynomials with leading order over C will

not be the chosen candidates. Also, if there is a polynomial in the group with leading

order over C during the iterations, the chosen polynomial Q has not been modified

with this polynomial, otherwise lod(Q) > C. Therefore, those polynomials with

leading order greater than C can be eliminated from the group during iterations in

order to save the unnecessary computations.

If f ∈ Fq[x, y, z] has leading monomial LM(f) = φa’z
b’

, polynomials in Fq[x, y, z] can be

partitioned into the following classes according to their leading monomial’s z degree

b’ and φa’’s pole order
∞pv (φa’

-1
) as:

Vλ + wδ = {f ∈ Fq[x, y, z] | b’ = δ ∧
∞pv (φa’

-1
) = uw + λ, LM(f) = φa’z

b’
, (δ, u, λ) ∈ N, λ

< w} (6.26)

such that Fq[x, y, z] = U
w

wV
<Ν∈

+

λδλ
δλ

,,

. According to section 6.3, the factorisation outputs

are the z roots of Q. Therefore, the z degree of Q is less than or equal to the maximal

number of the output list lm (6.11) and Q is a polynomial chosen from the following

classes:

Vj = Vλ + wδ (0 ≤ λ < w, 0 ≤ δ ≤ lm) (6.27)

At the beginning of the iterative process, a group of polynomials are initialised to

represent each of the polynomial classes defined by (6.27) as:

G = {Qj = Qλ + wδ = y
λ
z
δ
, Qj ∈ Vj} (6.28)

During the iterations, each polynomial Qj in the group G is the minimal polynomial

within its class Vj that satisfies all the tested zero conditions. At the beginning of each

iteration, polynomial group G is modified by:

G = {Qj | lod(Qj) ≤ C} (6.29)

in order to eliminate those polynomials with leading order over C. Then the remaining

polynomials in G are tested by the zero condition constraint defined by (6.7) as:

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 113

j∆ =)(
),(

j

rp
QD ii

αβ (6.30)

The determined corresponding coefficients αγ ,, ipa are applied for this calculation.

Those polynomials with j∆ = 0 satisfy the zero condition and do not need to be

modified. However, those polynomials with j∆ ≠ 0 need to be modified. Among

them, find the index of the minimal polynomial as j
’
 and record the minimal

polynomial as Q
’
:

j
’
 = index (

)(
min

jQlod
{Qj | j∆ ≠ 0}) (6.31)

Q
’
 = Qj’ (6.32)

For Qj’, it is modified as:

Qj’ = (x - xi)Q
’
 (6.33)

where xi is the x coordinate of affine point pi which is included in the current

interpolated unit (pi, ri). The modified Qj’ satisfies
),(ii rp

Dαβ (Qj’) = 0. Based on property

1 and 2 mentioned in section 4.3.2,
),(ii rp

Dαβ [(x - xi)Q
’
] =

),(ii rp
Dαβ (xQ

’
) - xi

),(ii rp
Dαβ (Q

’
) = xi

∆j’ - xi∆j’ = 0. The rest of the polynomials with j∆ ≠ 0 are modified as:

Qj = ∆j’Qj - j∆ Q
’
 (6.34)

The modified Qj satisfies
),(ii rp

Dαβ (Qj) = 0 because
),(ii rp

Dαβ [∆j’Qj - j∆ Q
’
] = ∆j’

),(ii rp
Dαβ (Qj)

- j∆),(ii rp
Dαβ (Q

’
) = ∆j’ j∆ - j∆ ∆j’ = 0. After C iterations, the minimal polynomial in the

group G is chosen as the interpolated polynomial Q:

Q =
)(

min
jQlod

{Qj | Qj ∈ G} (6.35)

From the above description, it can be seen that by applying the complexity reduction

scheme (6.29), zero condition calculation (6.30) and modifications (6.33) (6.34) for

those polynomials Qj with lod(Qj) > C can be avoided, and therefore the interpolation

efficiency can be improved. According to [52] and Chapter 4, this complexity

reduction scheme is error dependent that it can reduce complexity more significantly

in low error weight situations. This is because the modification scheme (6.29) takes

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 114

action in earlier iteration steps while in low error weight situations, and therefore

more computation can be reduced. Fig. 6.1 shows interpolation (with different

multiplicity m) complexity reduction by applying the scheme (6.29) for decoding

Hermitian code (64, 19, 40). It is shown that complexity can be reduced significantly

in low error weight situations, especially when m = 1, complexity can be reduced up

to 48.83%. However, in high error weight situations, complexity reduction is not as

significant. Based on Fig. 6.1, it can also be observed that the complexity reduction

also depends on the interpolation multiplicity m. When m = 1, complexity reduction is

the most significant; when m = 2, complexity reduction is the most marginal.

1.00E+05

1.00E+06

1.00E+07

1.00E+08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Errors

C
o
m
p
u
ta
ti
o
n
a
l
C
o
m
p
le
x
it
y

original interpolation (m=1)

complexity reducing interpolation (m=1)

original interpolation (m=2)

complexity reducing interpolation (m=2)

original interpolation (m=3)

complexity reducing interpolation (m=3)
48.83%

41.34%

34.08%

19.69%

11.92%

5.89%

2.61%

30.17%

22.05%

14.28% 11.29%

10.60%

% -- percentage of complexity reduction

Figure 6.1 Complexity analysis for the interpolation of GS decoding Hermitian code

(64, 19, 40)

Summarising section 6.4 and 6.5, the modified complexity reduction interpolation

process for GS decoding Hermitian codes can be stated as:

Initial computation: Apply algorithm 6.1 to determine all the necessary

corresponding coefficients αγ ,, ipa and store them to be used by the iterative

polynomial construction algorithm (algorithm 6.2)

Algorithm 6.2: Iterative Polynomial Construction

Initialisation: Initialise the group of polynomials G by (6.28)

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 115

(i): For each interpolated unit (pi, ri) (i = 0, 1, …, n – 1) {

(ii): For each pair of the zero condition parameters (α, β) (α + β < m) {

(iii): Modify polynomial group G by (6.29)

(iv): Test the zero condition j∆ of each polynomial in G by (6.30)

(v): For polynomials Qj with j∆ ≠ 0 {

(vi): Denote the minimal polynomial’s index as j
’
 by (6.31) and record it as Q

’

by (6.32)

(vii): If j = j
’
, Qj is modified by (6.33)

(viii): If j ≠ j
’
, Qj is modified by (6.34)

}}}

At the end of the iterations, the minimal polynomial Q is chosen from the group G as

(6.35).

Here gives an example to illustrate this complexity reduction interpolation process.

Example 6.3 Decode Hermitian code (8, 4, 4) defined in GF(4) using the GS

algorithm with interpolation multiplicity m = 2. The Hermitian code word is generated

by evaluating the message polynomial over the following affine points: p0 = (0, 0), p1

= (0, 1), p2 = (1, σ), p3 = (1, σ2
), p4 = (σ, σ), p5 = (σ, σ2

), p6 = (σ2
, σ), p7 = (σ2

, σ2
).

Given received word R = (1, σ2
, σ, σ2

, σ, σ2
, σ2

, σ).

Applying (6.9), the iteration number C = 8 








2

3
= 24. Based on C, the length of output

list can be determined as l2 = 3 and parameter t2 = 1 by using (6.11) and (6.12)

respectively. As a result, the (1, 4)-weighted degree upper bound for the interpolated

polynomial can be determined by (6.10) as max{ 4,1deg Q} = 13. Therefore, the

maximal pole basis (L2) monomial that might exist in the interpolated polynomial is

φmax = φ12 = x
2
y

3
. As the interpolation multiplicity m = 2, algorithm 6.1 is applied to

determine the corresponding coefficients αγ ,,0 ip ∼ αγ ,,12 ip and αγ ,,0 ip ∼ αγ ,,12 ip (α < 2)

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 116

are stored for the following interpolation process. Table 6.3 lists all the resulted

corresponding coefficients αγ ,,0 ip ∼ αγ ,,12 ip (α < 2).

p0,

αγ ,, 0pa

a

α
0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0

p1,

αγ ,, 1pa

a

α
0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 0 1 0 0 1 0 0 1 0 0 1 0

1 0 1 0 0 1 0 0 1 0 0 1 0 0

p2,

αγ ,, 2pa

a

α
0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 1 σ 1 σ σ2
 σ σ2

 1 σ2
 1 σ 1

1 0 1 1 0 σ2
 0 1 σ2

 σ2
 0 σ 0 σ2

p3,

αγ ,, 3pa

a

α
0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 1 σ2
 1 σ2

 σ σ2
 σ 1 σ 1 σ2

 1

1 0 1 1 0 σ 0 1 σ σ 0 σ2
 0 σ

p4,

αγ ,, 4pa

a

α
0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 σ σ σ2
 σ2

 σ2
 1 1 1 σ σ σ σ2

1 0 1 σ2
 0 σ2

 0 σ σ2
 σ 0 σ 0 1

p5,

αγ ,, 5pa

a

α
0 1 2 3 4 5 6 7 8 9 10 11 12

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 117

0 1 σ σ2
 σ2 1

 σ σ σ2
 1 1 σ σ2 σ2

1 0 1 σ2 0 σ 0 σ σ 1 0 σ2 0 σ2

p6,

αγ ,, 6pa

a

α
0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 σ2
 σ σ 1 σ2 σ2 σ 1 1 σ2 σ σ

1 0 1 σ 0 σ2 0 σ2 σ2 1 0 σ 0 σ

p7,

αγ ,, 7pa

a

α
0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 σ2 σ2 σ σ σ 1 1 1 σ2
 σ2 σ2 σ

1 0 1 σ 0 σ 0 σ2 σ σ2 0 σ2 0 1

Table 6.3 Pre-determined corresponding coefficients for example 6.3

Following on, algorithm 6.2 is performed to find the interpolated polynomial Q(x, y,

z). At the beginning, a group of polynomials is initialised as:

Q0 = 1, Q1 = y, Q2 = z, Q3 = yz, Q4 = z
2
, Q5 = yz

2
, Q6 = z

3
, Q7 = yz

3
. Their leading

orders are: lod(Q0) = 0, lod(Q1) = 2, lod(Q2) = 4, lod(Q3) = 9, lod(Q4) = 12, lod(Q5) =

20, lod(Q6) = 24, lod(Q7) = 35.

For interpolated unit (p0, r0) = ((0, 0), 1),

For zero parameter α = 0 and β = 0,

As lod(Q7) > C, polynomial Q7 is eliminated from the group.

Test the zero condition of the remaining polynomials in the group as:

∆0 =
),(

00
00 rp

D (Q0) = 1, ∆1 =
),(

00
00 rp

D (Q1) = 0, ∆2 =
),(

00
00 rp

D (Q2) = 1, ∆3 =
),(

00
00 rp

D (Q3) = 0,

∆4 =
),(

00
00 rp

D (Q4) = 1, ∆5 =
),(

00
00 rp

D (Q5) = 0, ∆6 =
),(

00
00 rp

D (Q6) = 1

Find the minimal polynomial with ∆j ≠ 0 as:

j’ = 0 and Q’ = Q0

As ∆1 = ∆3 = ∆5 = 0

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 118

Q1 = Q1 = y, and lod(Q1) = 2

Q3 = Q3 = yz, and lod(Q3) = 9

Q5 = Q5 = yz
2
, and lod(Q5) = 20

Modify polynomials in the group with ∆j ≠ 0 as:

Q0 = (x - 0)Q’ = x, and lod(Q0) = 1

Q2 = ∆0Q2 - ∆2Q’ = 1 + z, and lod(Q2) = 4

Q4 = ∆0Q4 - ∆4Q’ = 1 + z
2
, and lod(Q4) = 12

Q6 = ∆0Q6 - ∆6Q’ = 1 + z
3
, and lod(Q6) = 24

For zero parameter α = 0 and β = 1,

As there is no polynomial in the group with leading order over C, no polynomial is

eliminated in this iteration.

Test the zero condition of the remaining polynomials in the group as:

∆0 =
),(

01
00 rp

D (Q0) = 0, ∆1 =
),(

01
00 rp

D (Q1) = 0, ∆2 =
),(

01
00 rp

D (Q2) = 1, ∆3 =
),(

01
00 rp

D (Q3) = 0,

∆4 =
),(

01
00 rp

D (Q4) = 0, ∆5 =
),(

01
00 rp

D (Q5) = 0, ∆6 =
),(

01
00 rp

D (Q6) = 1

Find the minimal polynomial with ∆j ≠ 0 as:

j’ = 2 and Q’ = Q2

As ∆0 = ∆1 = ∆3 = ∆4 =∆5 = 0,

Q0 = Q0 = x, and lod(Q0) = 1

Q1 = Q1 = y, and lod(Q1) = 2

Q3 = Q3 = yz, and lod(Q3) = 9

Q4 = Q4 = 1 + z
2
, and lod(Q4) = 12

Q5 = Q5 = yz
2
, and lod(Q5) = 20

Modify polynomials in the group with ∆j ≠ 0 as:

Q2 = (x - 0)Q’ = x + xz, and lod(Q2) = 7

Q6 = ∆2Q6 - ∆6Q’ = z + z
3
, and lod(Q6) = 24

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 119

For zero parameter α = 1 and β = 0,

As there is no polynomial in the group with leading order over C, no polynomial is

eliminated in this iteration.

Test the zero condition of the remaining polynomials in the group as:

∆0 =
),(

10
00 rp

D (Q0) = 1, ∆1 =
),(

10
00 rp

D (Q1) = 0, ∆2 =
),(

10
00 rp

D (Q2) = 0, ∆3 =
),(

10
00 rp

D (Q3) = 0,

∆4 =
),(

10
00 rp

D (Q4) = 0, ∆5 =
),(

10
00 rp

D (Q5) = 0, ∆6 =
),(

10
00 rp

D (Q6) = 0

Find the minimal polynomial with ∆j ≠ 0 as:

j’ = 0 and Q’ = Q0

As ∆1 = ∆2 = ∆3 = ∆4 =∆5 = ∆6 = 0,

Q1 = Q1 = y, and lod(Q1) = 2

Q2 = Q2 = x + xz, and lod(Q2) = 7

Q3 = Q3 = yz, and lod(Q3) = 9

Q4 = Q4 = 1 + z
2
, and lod(Q4) = 12

Q5 = Q5 = yz
2
, and lod(Q5) = 20

Q6 = Q6 = z + z
3
, and lod(Q6) = 24

Modify polynomials in the group with ∆j ≠ 0 as:

Q0 = (x - 0)Q’ = x
2
, and lod(Q0) = 3

Following the same process, interpolation runs through the rest of the interpolated

units (p1, r1) ~ (p7, r7) and with respect to all zero parameters (α, β) = (0, 0), (0, 1),

and (1, 0). After C iterations, the chosen interpolated polynomial is: Q(x, y, z) = σ2
 +

σx + y + σx
2
 + y

2
 + σ2

x
2
y + σ2

xy
2
 + σ2

y
3
 + σ2

x
2
y

2
 + z(x + xy + xy

2
) + z

2
(σ2

 + σx + σ2
y

+ σx
2
), and lod(Q(x, y, z)) = 23. Polynomial Q(x, y, z) has a zero of multiplicity at

least 2 over the 8 interpolated units.

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 120

6.6 General Factorisation

Based on the interpolated polynomial, factorisation is to find the polynomial’s z roots

in order to determine the output list. Building upon the work of [10] and [12], this

section presents a generalised factorisation algorithm, or so called the recursive

coefficient search algorithm which can be applied to both Reed-Solomon codes and

algebraic-geometric codes. This section’s work is based on the author’s paper [67]. In

general, the algorithm is described with application to algebraic-geometric codes.

Therefore, it has to be stated that when applying this algorithm to Reed-Solomon

codes, the rational functions in an algebraic-geometric code’s pole basis are simplified

to univariate monomials in Reed-Solomon code’s pole basis. As a consequence

polynomials in Fq[x, y] are simplified to univariate polynomials with variable x.

Based on section 6.3, those polynomials h∈ zw

qF [x, y] will be in the output list if Q(x,

y, h) = 0. The outcome of the factorisation can be written as:









++=

++=

−−

−−

11,00,

11,100,11

kklll

kk

hhh

hhh

φφ

φφ

L

M

L

 (6.36)

with l ≤ lm. Rational functionsφ 0, …, φ k-1 are predetermined by the decoder, therefore,

to find the list of polynomials is equivalent to find their coefficients h1,0, …, h1,k-1, …,

hl,0, …, hl,k-1 respectively. Substituting h into the interpolated polynomial Q =

∑
Ν∈ba

b

aab zQ
,

φ , we have:

Q(x, y, h)= ∑∑
Ν∈

−−

Ν∈

++=
ba

b

kkaab

b

a

ba

ab hhQhQ
,

1100

,

)(φφφφ L (6.37)

It is important to notice that:

(φ iφ j) mod χ = ∑
Ν∈v

vφ (6.38)

where χ is the algebraic curve (e. g. Hermitian curve Hw) and φ i, φ j, andφ v are

rational functions in pole basis which is associated with the curve χ (e. g. pole basis

Lw associated with curve Hw). Therefore (6.37) can be re-written as a polynomial in

Fq[x, y]:

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 121

Q(x, y, h) = ∑
Ν∈a

aaQ φ (6.39)

where coefficients Qa are equations with unknowns h0, …, hk-1. If T = |{Qa | Qa ≠ 0}|,

the rational functionsφ a with Qa ≠ 0 can be arranged as
Taaa φφφ <<< L

21
and (6.39)

can again be written as:

Q(x, y, h) =
TT aaaaaa QQQ φφφ +++ L

2211
 (6.40)

Again, coefficients
21

, aa QQ ,…, and
TaQ are equations of unknowns h0, …, hk-1. To

have Q(x, y, h) = 0, we need
1aQ =

2aQ = ⋅⋅⋅ =
TaQ = 0. Therefore, h0, …, hk-1 can be

determined by solving the following simultaneous set of equations as:













=

=

=

−

−

−

0),,(

0),,(

0),,(

10

10

10

2

1

ka

ka

ka

hhQ

hhQ

hhQ

T
K

M

K

K

 (6.41)

In order to solve equation set (6.41), a recursive coefficient search algorithm is

applied to determine h0, …, hk-1 [11, 12]. Following on, here is to propose a more

general and efficient factorisation algorithm. Let us denote the following polynomials

with respect to recursive index s (0 ≤ s ≤ k - 1):

h
(s)

(x, y)

= h0φ 0 + ⋅⋅⋅ + hk-1-sφ k-1-s (6.42)

which is a candidate polynomial with coefficients h0, .., hk-1-s undetermined. Update

Q(x, y, z) recursively as:

Q
(s+1)

(x, y, z) = Q
(s)

(x, y, z + hk-1-sφ k-1-s) (6.43)

with Q
(0)

(x, y, z) = Q(x, y, z) which is the interpolated polynomial (6.8). Substitute hk-1-

sφ k-1-s into Q
(s)

(x, y, z), we have:

),,(),(
~

11

)()(

sksk

ss hyxQyxQ −−−−= φ (6.44)

With)(~ sQ mod χ, it can be transferred into a polynomial in Fq[x, y] with coefficients

expressed as∑
Ν∈

−−

i

i

ski h 1ϖ where ϖi ∈ GF(q). Denote)(~ sQ ’s leading monomial with its

leading coefficient as:

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 122

)(s

Lφ = LM()(~ sQ) (6.45)

)(1

)(

sk

s

L hC −− = LC()(~ sQ) (6.46)

Based on (6.42), it can be seen that LM(h
(s)

) =φ k-1-s and LC(h
(s)

) = hk-1-s. Therefore,

for any recursive polynomial Q
(s)

(x, y, z), we have:

LM(Q
(s)

(x, y, h
(s)

)) = LM(Q
(s)

(x, y, hk-1-sφ k-1-s)) = LM()(~ sQ) =)(s

Lφ (6.47)

LC(Q
(s)

(x, y, h
(s)

)) = LC(Q
(s)

(x, y, hk-1-sφ k-1-s)) = LC()(~ sQ) =)(1

)(

sk

s

L hC −− (6.48)

As all the candidate outputs should satisfy Q(x, y, h) = 0 and from the above

definitions it can be seen that h = h
(0)

 and Q
(0)

(x, y, z) = Q(x, y, z), therefore Q(x, y, h)

= 0 is equivalent to Q
(0)

(x, y, h
(0)

) = 0. Based on (6.47) and (6.48), in order to have

Q
(0)

(x, y, h
(0)

) = 0, we need to find out its leading monomial)0(

Lφ with leading

coefficient)(1

)0(

−kL hC and determine values of hk-1 that satisfy)(1

)0(

−kL hC = 0. As a

result, the leading monomial of Q
(0)

(x, y, h
(0)

) has been eliminated. Based on each

value of hk-1 and performing the polynomial update (6.43), Q
(1)

(x, y, z) is generated, in

which)0(

Lφ has been eliminated. Now, Q(x, y, h) = 0 is equivalent to Q
(1)

(x, y, h
(1)

)=0.

Again, to have Q
(1)

(x, y, h
(1)

) = 0, we need)(2

)1(

−kL hC = 0. Therefore, hk-2 can be

determined by solving)(2

)1(

−kL hC = 0. Based on each value of hk-2, we can trace

further to find the rest of the coefficients. In general, after coefficients hk-1-s (0 ≤ s < k

- 1) have been determined from solving)(1

)(

sk

s

L hC −− = 0, based on each value of them,

perform the polynomial update (6.43) to generate Q
(s+1)

(x, y, z). From Q
(s+1)

(x, y, z),

)1(~ +sQ can be calculated and hk-1-(s+1) can be determined by solving)()1(1

)1(

+−−

+

sk

s

L hC = 0.

This process can be illustrated in Fig. 6.2:

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 123

Figure 6.2 Recursive coefficient search

From Fig. 6.2 it can be seen that there might be an exponential number of routes to

find coefficients hk-1, …, h0. However, not every route will be able to reach h0 as

during the recursive process there maybe no solution for)(1

)(

sk

s

L hC −− = 0. If h0 is

produced and Q
(k-1)

(x, y, h0φ 0) = 0, this route can be traced to find the rest of the

coefficients h1, …, hk-1 to construct polynomial h which will satisfy Q(x, y, h) = 0. The

correctness of this judgement will be proven later.

Based on the above description, here summarises the generalised factorisation

algorithm as:

Algorithm 6.3: Recursive Coefficient Search

Initialisation: Q
(0)

(x, y, z) = Q(x, y, z). The recursive index s = 0 and output candidate

index l = 1

Perform: Recursive coefficient search (s) (RCS(s))

Recursive coefficient search (RCS):

Input parameter: s (0 ≤ s ≤ k - 1)

(i): Perform (6.44) to calculate)(~ sQ (x, y)

(ii): Find out)(s

Lφ with its coefficient)(1

)(

sk

s

L hC −−

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 124

(iii): Determine hk-1-s by solving)(1

)(

sk

s

L hC −− = 0

(iv): For each value of hk-1-s, do

{

(v): hl, k-1-s = hk-1-s

(vi): If s = k - 1, calculate Q
(k-1)

(x, y, h0φ 0) and go to (vii). Else, go to (viii)

(vii): If Q
(k-1)

(x, y, h0φ 0) = 0, trace this route to find coefficients hl, k-1, hl, k-2, …, and

hl, 0 to construct the candidate polynomial hl and l = l + 1. Else, stop this route

(viii): Perform polynomial update (6.43) to generate Q
(s+1)

(x, y, z)

(ix): Perform RCS(s + 1)

}

This recursive coefficient search algorithm has the priority to search deeper

coefficients. This means if a number of hk-1-s have been determined, the algorithm will

be based on one of them to determine the rest of the coefficients until all the possible

routes started from this hk-1-s have been traced. After this, it will be based on the other

value of hk-1-s and trace deeper again. This algorithm will terminate after all the

possible routes started from hk-1 have been traced. To prove the correctness of this

algorithm, it needs to justify the polynomial hl produced in (vii) satisfies Q(x, y, hl) =

0.

Proof: As Q
(k-1)

(x, y, h0φ 0) = 0 and h
(k-1)

(x, y) = h0φ 0, we have Q
(k-1)

(x, y, h
(k-1)

) = 0.

Assuming h1 is the previously found coefficient, then Q
(k-1)

(x, y, z) is generated by

(6.43) based on it as: Q
(k-1)

(x, y, z) = Q
(k-2)

(x, y, z + h1φ 1). From Q
(k-1)

(x, y, h
(k-1)

) = 0,

we have Q
(k-2)

(x, y, h
(k-1)

+ h1φ 1) = 0. Based on (6.42), it can be seen that h
(k-2)

= h0φ 0

+ h1φ 1 = h
(k-1)

 + h1φ 1. Therefore, Q
(k-2)

(x, y, h
(k-2)

) = 0. Based on the same deduction

progress, it can be deduced further to have Q
(k-3)

(x, y, h
(k-3)

) = 0, …, and Q
(0)

(x, y, h
(0)

)

= 0. As Q
(0)

(x, y, z) = Q(z) and h
(0)

= h0φ 0 + h1φ 1 + ⋅⋅⋅ + hk-1φ k-1 whose coefficients

have been traced as the coefficients of the output candidate hl, it can be concluded that

Q(x, y, hl) = 0.

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 125

Here gives two worked examples to illustrate the generalised factorisation algorithm’s

application to a Hermitian code and a Reed-Solomon code respectively.

Example 6.4 List decode a (8, 4, 4) Hermitian code defined in GF(4). Given the

interpolated polynomial is: Q(x, y, z) = σ2
y + σ2

x
2
+ σxy + σ2

y
2

+ σ2
x

2
y + x

2
y

2
+ xy

3
+

(σx + σxy + σxy
2
)z + (x + x

2
)z

2
. Apply algorithm 6.3 to find out its z roots.

Initialisation: Q
(0)

(x, y, z) = Q(x, y, z), s = 0 and l = 1

RCS(0):

)0(~
Q (x, y) = Q

(0)
(x, y, h3x

2
) = (σ2

+ σh3)y + σ2
x

2
+ σxy + (σ2

+ h3
2
)y

2
+ (σ2

+ h3
2
)x

2
y +

(1 + h3
2
)x

2
y

2
+ xy

3
+ (σh3 + h3

2
)y

4
, with)0(

Lφ = y
4
 and)(3

)0(hCL = σh3 + h3
2
.

Solving)(3

)0(hCL = 0, we have h3 = 0 or h3 = σ.

For h3 = 0, h1,3 = h3 = 0. As s = 0 < 3, update Q
(1)

(x, y, z) = Q
(0)

(x, y, z + 0x
2
) = Q(x, y,

z), and perform RCS(1)…

Based on the same progress, here summarises the outcome from RCS(1), RCS(2) and

RCS(3) in Table 6.4 as:

Table 6.4 Recursive coefficient search from h3 = 0

After RCS(2), we have Q
(3)

(x, y, z) = (σx + σxy + σxy
2
)z + (x + x

2
)z

2
. In RCS(3), by

solving)(0

)3(hCL = 0, we have h0 = 0. Therefore, h1,0 = h0 = 0. As s = 3 and Q
(3)

(x, y,

h0φ 0) = Q
(3)

(x, y, 0⋅1) = 0, this route can be traced to construct candidate polynomial

h1 = σx + σ2
y, and update the candidate index l = l + 1 = 2.

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 126

Going back to the closest division point (when s = 0), we have:

For h3 = σ, h2,3 = h3 = σ. As s = 0 < 3, update Q
(1)

(x, y, z) = Q
(0)

(x, y, z + σx
2
) =

σ2
x

2
+ σxy + σx

2
y

2
+ xy

3
+ (σx + σxy + σxy

2
)z + (x + x

2
)z

2
, and perform RCS(1)…

Again, here summarises the outcome of RCS(1), RCS(2) and RCS(3) in Table 6.5 as:

Table 6.5 Recursive coefficient search from h3 = σ

After RCS(2), we have Q
(3)

(x, y, z) = σ2
x

2
+ σ2

xy + σ2
xy

2
+ (σx + σxy + σxy

2
)z + (x +

x
2
)z

2
. In RCS(3), by solving)(0

)3(hCL = 0, we have h2,0 = h0 = σ. As s = 3 and Q
(3)

(x, y,

h0 φ 0) = Q
(3)

(x, y, σ⋅1) = 0, this route can be traced to construct the candidate

polynomial h2 = σ + σ2
y + σx

2
. As all the possible routes from h0 have been traced, the

factorisation process terminates and outputs: h1 = σx + σ2
y, h2 = σ + σ2

y + σx
2
.

Example 6.5 List decoding of a (7, 2, 6) Reed-Solomon code defined in GF(8). σ is a

primitive element in GF(8) satisfying σ3
 + σ + 1 = 0. Addition and multiplication

table of GF(8) is given in Appendix B. Given the interpolated polynomial as: Q(x, z)

= σx + σ6
x

2
+ (σ3

+ σ3
x)z + σ2

z
2
. Apply algorithm 6.3 to determine its z roots.

Initialisation: Q
(0)

(x, z) = Q(x, z), s = 0 and l = 1

RCS(0):

)0(~
Q (x, z) = Q

(0)
(x, h1x) = (σ + σ3

h1)x + (σ6
+ σ3

h1 + σ2
h1

2
)x

2
, with)0(

Lφ = x
2

and)(1

)0(hCL = σ6
+ σ3

h1 + σ2
h1

2
. Solving)(1

)0(hCL = 0, we have h1 = σ5
 or h1 = σ6

.

For h1 = σ5
, h1,1 = h1 = σ5

. As s = 0 < 1, update Q
(1)

(x, z) = Q
(0)

(x, z + σ5
x) = (σ3

+

σ3
x)z + σ2

z
2
, and perform RCS(1)

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 127

In RCS(1), following the same progress, we have)1(

Lφ = x and)(0

)1(hCL = σ3
h0.

Solving)(0

)1(hC L
 = 0, we have h0 = 0.

For h0 = 0, h1,0 = h0 = 0. As s = 1 and Q
(1)

(x, h0φ 0) = Q
(1)

(x, 0⋅1) = 0, this route can be

traced to construct candidate polynomial h1 = σ5
x. Update the output candidate index

as l = l + 1 = 2

Going back to the closest division point (when s = 0), we have:

For h1 = σ6
, h2,1 = h1 = σ6

. As s = 0 < 1, update Q
(1)

(x, z) = Q
(0)

(x, z + σ6
x) = σ4

x + (σ3

+ σ3
x)z + σ2

z
2
, and perform RCS(1)

In RCS(1), we have)1(

Lφ = x and)(0

)1(hCL = σ4
+ σ3

h0. Solving)(0

)1(hCL = 0, we have

h0 = σ.

For h0 = σ, h2,0 = h0 = σ. As s = 1 and Q
(1)

(x, h0φ 0) = Q
(1)

(x, σ⋅1) = 0, this route can be

traced to construct candidate polynomial h2 = σ + σ6
x. As all the possible routes from

h0 have been traced, the factorisation process terminates and outputs: h1 = σ5
x, h2 = σ

+ σ6
x.

6.7 Simulation Results Discussion

Employing the above efficiency improved interpolation algorithm and generalised

factorisation algorithm, list decoding of longer Hermitian codes is feasible and the

author has developed a software platform using the C programming language to

evaluate the performance. The evaluating list decoder structure is shown by Fig. 6.3.

Simulations are run over AWGN and Rayleigh fading channels using QPSK

modulation. The Rayleigh fading channel is frequency non-selective with Doppler

frequency 126.67 Hz and date rate of 30 kb/s. The fading profile is generated by

Jakes’ method [64]. The fading coefficients have mean value 1.56 and variance 0.60.

Over the fading channel, a block interleaver with size 100 × n is used, where n is the

length of the code. Simulation results are analysed with regard to the following two

aspects: performance comparison with the conventional unique decoding algorithm

and performance comparison with the Reed-Solomon codes using list decoding.

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 128

Figure 6.3 Efficiency improved list decoding structure for Hermitian codes

6.7.1 Comparison with Unique Decoding Algorithm

Figs. 6.4, 6.5 and 6.6 present the performance of Hermitian codes (64, 19, 40), (64, 29,

30) and (64, 39, 20) respectively, while Figs. 6.7 and 6.8 present the performance of

Hermitian codes (512, 153, 332) and (512, 289, 196) respectively. These simulation

results were first published in the author’s papers [65, 66]. Their performances are

evaluated by measuring their coding gains (dB) over the unique decoding algorithm [5,

6, 25] at a bit error rate (BER) of 10
-5

.

According to the interpolation description in section 6.5, for interpolation with

multiplicity m, there are w(lm + 1) polynomials being initialised taking part in C (6.9)

iterations. Even though some of them will be eliminated during the iteration by

scheme (6.29), a high value of m will still lead to infeasibility for implementation.

Therefore, some feasible results of the GS algorithm (m = 1, 2) have been achieved.

Table 6.6 presents the simulation parameters for these 5 Hermitian codes. Also,

details of more list decoding parameters of these 5 Hermitian codes are included in

Appendix D. Before interpolation, algorithm 6.1 is applied to determine the

corresponding coefficients αγ ,,0 ip ∼ αγ ,max, ip and only αγ ,,0 ip ∼ αγ ,max, ip (α = 0, 1) are

stored in order to minimise the memory requirement. From Table 6.6, it can be

observed that achieving the optimal result of the GS algorithm remains prohibitive for

implementation. But if assuming the GS algorithm is able to correct τGS (3.32) errors

and the transmitted code word c is known by the decoder, the theoretical optimal

Determine the

Corresponding

Coefficients

(Algorithm 6.1)

Complexity

Reducing

Interpolation

(Algorithm 6.2)

Generalised

Factorisation

(Algorithm 6.3)

Received word R

Note: indicates the pre-calculation step of the efficient list decoder.

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 129

performance of the GS algorithm can also be evaluated without employing the

interpolation and factorisation processes. This is achieved by measuring the Hamming

distance between the received word R and the transmitted code word c . If it is not

greater than τGS, decoding is claimed to be successful. Otherwise, decoding is a failure.

Figs. 6.4 to 6.8 show that the GS algorithm approaches its optimal result with

increasing interpolation multiplicity m. Among the performance evaluations, it is

worth pointing out Fig. 6.6 which shows that GS decoding of Hermitian code (64, 39,

20) with multiplicity m = 2 is close to the theoretical optimal result.

Hermitian

codes

Interpolation

multiplicity
C lm w(lm + 1) max{

zw,1deg Q} φmax

(64, 19, 40)

m = 1 64 2 12 50 φ44 = y10

m = 2 192 3 16 90 φ84 = y18

optimal (m = 17) 9792 28 116  

(64, 29, 30)

m = 1 64 1 8 55 φ49 = y55

m = 2 192 3 16 104 φ98 = xy20

optimal (m = 35) 40320 48 196  

(64, 39, 20)

m = 1 64 1 8 60 φ54 = y12

m = 2 192 2 12 114 φ108 = xy22

optimal (m = 11) 4224 13 56  

(512, 153,

332)

m = 1 512 2 24 373 φ345 = x5y37

m = 2 1536 3 32 682 φ654 = x2y74

optimal (m = 213) 11668992 359 2880  

(512, 289,

196)

m = 1 512 1 16 442 φ414 = x8y42

m = 2 1536 2 24 856 φ828 = x8y88

optimal (m = 93) 2237952 118 952  

Note: C represents the number of iterations; lm represents the maximal length of the output list from factorisation;,

w(lm + 1) represents the number of polynomials being initialised at the beginning of the interpolation process.

max{
zw,1deg Q} represents the interpolated polynomial’s (1, wz)-weighted degree upper bound, φmax represents

the maximal pole basis monomial that might exist in the interpolated polynomial Q.

Table 6.6 List decoding parameters

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 130

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Eb/N0[dB]

B
E

R
Uncoded

Sakata

GS (m=1)

GS (m=2)

GS (Optimal)

(a) over AWGN channel

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-4 -2 0 2 4 6 8 10 12 14 16 18 20

Eb/N0[dB]

B
E

R

Uncoded

Sakata

GS (m=1)

GS (m=2)

GS (Optimal)

(b) over Rayleigh fading channel

Figure 6.4 Hard-decision list decoding performance of Hermitian code (64, 19, 20)

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 131

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Eb/N0[dB]

B
E

R

Uncoded

Sakata

GS (m=1)

GS (m=2)

GS (optimal)

(a) over AWGN channel

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-4 -2 0 2 4 6 8 10 12 14 16 18 20

Eb/N0[dB]

B
E

R

Uncoded

Sakata

GS (m=1)

GS (m=2)

GS (Optimal)

(b) over Rayleigh fading channel

Figure 6.5 Hard-decision list decoding performance of Hermitian code (64, 29, 30)

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 132

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Eb/N0[dB]

B
E

R
Uncoded

Sakata

GS (m=1)

GS (m=2)

GS (Optimal)

(a) over AWGN channel

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-4 -2 0 2 4 6 8 10 12 14 16 18 20

Eb/N0[dB]

B
E

R

Uncoded

Sakata

GS (m=1)

GS (m=2)

GS (Optimal)

(b) over Rayleigh fading channel

Figure 6.6 Hard-decision list decoding performance of Hermitian code (64, 39, 20)

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 133

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

Eb/N0[dB]

B
E

R

Uncoded

Sakata

GS (m=1)

GS (m=2)

GS (Optimal)

(a) over AWGN channel

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

Eb/N0[dB]

B
E

R

Uncoded

Sakata

GS (m=1)

GS (m=2)

GS (Optimal)

(b) over Rayleigh fading channel

Figure 6.7 Hard-decision list decoding performance of Hermitian code (512, 153, 332)

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 134

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

Eb/N0[dB]

B
E

R
Uncoded

Sakata

GS (m=1)

GS (m=2)

GS (Optimal)

(a) over AWGN channel

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

Eb/N0[dB]

B
E

R

Uncoded

Sakata

GS (m=1)

GS (m=2)

GS (Optimal)

(b) over Rayleigh fading channel

Figure 6.8 Hard-decision list decoding performance of Hermitian code (512, 289, 196)

Table 6.7 analyses the simulation results shown by Figs. 6.4 to 6.8. Equation (6.18)

defines the GS algorithm’s error-correction capability lower bound for Hermitian

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 135

codes. During simulations, the average number of errors mτ that the GS algorithm is

able to correct in order to achieve the corresponding performance is measured. Based

on Table 6.7, it can be observed that the GS algorithm’s coding gains grow with

interpolation multiplicity m and they are especially significant over the Rayleigh

fading channel. For example, GS decoding Hermitian code (64, 19, 40) with

multiplicity m = 2 can achieve a 1.42 dB coding gain on the Rayleigh fading channel.

The GS algorithm can achieve more significant coding gains for low rate codes, but

this is at the higher expense of decoding complexity. For example, comparing

Hermitian

codes

Interpolation

multiplicity
mτ

Coding gains (dB)

AWGN Rayleigh fading

(64, 19, 40)

m = 1 20 0.17 0.71

m = 2 21 0.33 1.42

optimal (m = 17) τGS = 24 0.91 3.30

(64, 29, 30)

m = 1 14 0.01 0.10

m = 2 15 0.15 1.0

optimal (m = 35) τGS = 17 0.50 2.05

(64, 39, 20)

m = 1 9 0.10 0.01

m = 2 10 0.30 0.94

optimal (m = 11) τGS = 10 0.30 0.94

(512, 153,

332)

m = 1 167 0.05 0.16

m = 2 184 0.40 0.88

optimal (m = 213) τGS = 208 0.88 1.84

(512, 289,

196)

m = 1 97 0.01 0.01

m = 2 99 0.08 0.16

optimal (m = 93) τGS = 109 0.32 0.72

Table 6.7 Simulation results (Figs. 6.4 to 6.8) analysis

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 136

Hermitian codes (512, 153, 332) and (512, 289, 196), more significant coding gains

can be achieved for the former. However, according to Table 6.6, GS decoding

Hermitian code (512, 153, 332) has higher decoding complexity because there are

more polynomials being initialised at the beginning to take part in the iterative

interpolation. The same result can also be found by comparing Hermitian codes

defined in GF(16).

6.7.2 Comparison with Reed-Solomon Codes

By applying the list decoding algorithm, this section presents Hermitian codes

performance comparisons with Reed-Solomon codes.

First, comparisons are made with a Reed-Solomon code which is defined over the

same finite field. Fig. 6.9 present the comparison of Hermitian code (512, 153, 332)

and Reed-Solomon code (63, 19, 45), both of which are defined in GF(64) and have

code rate 0.3. This comparison result is published in the author’s paper [67].

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Eb/N0 [dB]

B
E

R

Uncoded

Unique decode AG

GS decode AG(m=1)

GS decode AG(m=2)

GS decode AG(optimal)

Unique decode RS

GS decode RS(m=1)

GS decode RS(m=2)

GS deocde RS(optimal)

(a) over AWGN channel

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 137

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Eb/N0 [dB]

B
E

R
Uncoded

Unique decode AG

GS decode AG(m=1)

GS decode AG(m=2)

GS decode AG(optimal)

Unique decode RS

GS decode RS(m=1)

GS decode RS(m=2)

GS decode RS(optimal)

(b) over Rayleigh fading channel

Figure 6.9 Hard-decision list decoding performance comparison of Hermitian code

(512, 153, 332) and Reed-Solomon code (64, 19, 45)

Comparing the list decoding performance with respect to a certain multiplicity m at

BER = 10
-5

 between Hermitian and Reed-Solomon codes, the Hermitian code can

always outperform the Reed-Solomon code. This is because over the same finite field,

longer Hermitian codes with larger minimum distances can be generated. This longer

code can correct larger number of errors within one code word block, resulting

performance advantage over Reed-Solomon codes. According to Fig. 6.9(a), over the

AWGN channel, Hermitian code (512, 153, 332) has 0.7 dB, 0.65 dB and 0.5 dB

coding gains over Reed-Solomon code (63, 19, 45) with m = 1, 2 and optimal,

respectively. According to Fig. 6.9(b), the coding gains over the Rayleigh fading

channel are more significant and are 3.7 dB, 3.3 dB and 2.9 dB with respect to m = 1,

2 and optimal.

Second, comparisons are made between Hermitian codes and Reed-Solomon codes

which are defined in a larger finite field. Two comparison schemes are proposed:

Hermitian code (512, 153, 332) compared with Reed-Solomon code (255, 76, 180),

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 138

both of which have code rate 0.3 and Hermitian code (512, 289, 196) compared with

Reed-Solomon code (255, 144, 112), both of which have code rate 0.56. The

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Eb/N0 [dB]

B
E

R

Uncoded

Unique decode AG

GS decode AG (m=1)

GS decode AG (m=2)

GS decode AG (Optimal)

Unique decode RS

GS decode RS (m=1)

GS decode RS (m=2)

GS decode RS (Optimal)

(a) over AWGN channel

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Eb/N0 [dB]

B
E

R

Uncoded

Unique decode AG

GS decode AG (m=1)

GS decode AG (m=2)

GS decode AG (optimal)

Unique decode RS

GS decode RS (m=1)

GS decode RS (m=2)

GS decode RS (optimal)

(b) over Rayleigh fading channel

Figure 6.10 Hard-decision list decoding performance comparison of Hermitian

code (512, 153, 332) and Reed-Solomon code (255, 76, 180)

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 139

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Eb/N0 [dB]

B
E

R

Uncoded

Unique decode AG

GS decode AG (m=1)

GS decode AG (m=2)

GS decode AG (Optimal)

Unique decode RS

GS decode RS (m=1)

GS decode RS (m=2)

GS decode RS (Optimal)

(a) over AWGN channel

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Eb/N0 [dB]

B
E

R

Uncoded

Unique decode AG

GS decode AG (m=1)

GS decode AG (m=2)

GS decode AG (Optimal)

Unique decode RS

GS decode RS (m=1)

GS decode RS (m=2)

GS decode RS (Optimal)

(b) over Rayleigh fading channel

Figure 6.11 Hard-decision list decoding performance comparison of Hermitian

code (512, 289, 196) and Reed-Solomon code (255, 144, 112)

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 140

Hermitian codes are defined in GF(64) while the Reed-Solomon codes are defined in

GF(256). This comparison result is later published in the author’s paper [68]. Notice

that over the Rayleigh fading channel, 100 × 512 and 50 × 255 block interleavers are

applied for Hermitian codes and Reed-Solomon codes respectively. Figs. 6.10 and

6.11 show the comparison results.

Comparisons are made by measuring the Hermitian codes’ coding gains over Reed-

Solomon codes at a BER equal to 10
-5

 using the same decoding parameter

(multiplicity m). Based on the performance of Fig. 6.10 and 6.11, the coding gains

that Hermitian codes are able to achieve over Reed-Solomon codes are summarised in

Table 6.8.

Decoding

Algorithms

Hermitian (512, 153, 332) /

RS (255, 76, 180)

Hermitian (512, 289, 196) /

RS (255, 144, 112)

AWGN Rayleigh AWGN Rayleigh

Unique 0.62 dB 2.54 dB 0.38 dB 3.85 dB

GS (m = 1) 0.46 dB 2.08 dB 0.38 dB 3.85 dB

GS (m = 2) 0.54 dB 1.69 dB 0.46 dB 4.08 dB

GS (Optimal) 0.62 dB 1.62 dB 0.46 dB 3.46 dB

Table 6.8 Simulation results (Figs. 6.10 to 6.11) analysis

From Table 6.8’s analysis, it can be seen that Hermitian codes can also outperform

Reed-Solomon codes defined in a larger finite field using both the unique decoding

algorithm and the GS algorithm. For Hermitian code (512, 153, 332), the GS

algorithm can achieve up to 0.62 dB coding gain on the AWGN channel and 2.08 dB

coding gain on the Rayleigh fading channel. For Hermitian code (512, 289, 196), the

GS algorithm can achieve up to 0.46 dB and 4.08 dB coding gain on the AWGN and

Rayleigh fading channel respectively. It is also interesting to notice that, for

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 141

Hermitian code (512, 153, 332), the GS algorithm with multiplicity m = 2 can

outperform the optimal result that the GS algorithm can achieve for Reed-Solomon

code (255, 76, 180) over both AWGN and Rayleigh fading channels, while for

Hermitian code (512, 289, 196) a similar observation can be made for the GS

algorithm with multiplicity m = 1. As the Reed-Solomon codes are defined over

GF(256), decoding Reed-Solomon codes costs more finite field arithmetic operations

than decoding Hermitian codes defined over GF(64). However, Hermitian codes still

have significant performance advantages compared with Reed-Solomon codes on both

AWGN and Rayleigh fading channels.

6.8 Conclusion

This chapter presented a hard-decision list decoding algorithm (GS algorithm) for

Hermitian codes. Two contributions for reducing interpolation complexity have been

proposed in order to improve the efficiency for list decoding of Hermitian codes. First,

an efficient algorithm to determine the corresponding coefficients between the pole

basis monomials and zero basis functions of a Hermitian curve was proposed. The

coefficients are stored to be applied during the iterative interpolation in order to

simplify the zero condition calculation of a polynomial. Then, a complexity reduction

interpolation algorithm was proposed by applying a developed scheme which

eliminates any unnecessary polynomials during iterations. It is shown that this scheme

can improve interpolation efficiency by up to 48.83%. For the factorisation process, a

generalised factorisation algorithm which can be applied to both Hermitian codes and

Reed-Solomon codes was proposed. Applying the efficiency improved interpolation

algorithm and a generalised factorisation algorithm, list decoding performances of

Hermitian codes over AWGN and Rayleigh fading channels are evaluated. Simulation

results show that the GS algorithm can achieve significant coding gains over the

unique decoding algorithm. The GS algorithm’s coding gains increase with

interpolation multiplicity and it is more significant for low rate codes. However,

according to the simulation parameters, these performance advantages are at the

expenses of higher decoding complexity. By applying the list decoding algorithm,

simulation results on hard-decision list decoding of Hermitian code were compared

with Reed-Solomon codes. It is shown that, Hermitian codes can outperform similar

Chapter 6 Hard-Decision List Decoding of Hermitian Codes

 142

code rate Reed-Solomon codes which are defined both in the same finite field and in a

larger finite field.

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 143

Chapter 7

Soft-Decision List

Decoding of Hermitian

Codes

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 144

7.1 Introduction

Following the decoding of Hermitian codes by the Guruswami-Sudan (GS) algorithm

which is a hard-decision list decoding scheme, this chapter presents a soft-decision list

decoding scheme for Hermitian codes. It is developed based on Koetter and Vardy’s

soft-decision scheme for Reed-Solomon codes [8] which is mentioned in Chapter 5.

According to Fig. 5.1, for the soft-decision scheme, the received information

probabilistic reliability matrix ΠΠΠΠ is obtained by the receiver instead of a hard-decision

received word R. Matrix ΠΠΠΠ is then converted to a multiplicity matrix M based on

which the interpolated polynomial is built. The following analyses given in this

chapter show that the soft-decision scheme is able to produce a higher code word

score [8] than the hard-decision scheme, and therefore increase the system’s error-

correction capability. In the discussion of the simulation results for GS decoding

Hermitian codes given in Chapter 6, achieving the GS algorithm’s upper bound τGS

(3.32) remains almost prohibitive in practice. However, this chapter shows that the

soft-decision scheme with short decoded output list can outperform GS decoding’s

optimal result, indicating this soft-decision scheme can achieve the previously

prohibitive bound τGS with a moderate decoding complexity.

An algorithm that converts the reliability matrix ΠΠΠΠ to multiplicity matrix M

(algorithm 5.1) is presented in this chapter, introducing a stopping rule based on the

designed length of the output list. For the following interpolation and factorisation

processes, algorithm 6.2 and 6.3 can be applied for implementation respectively.

Again, it is shown that by realising the total number of iterations in interpolation, the

interpolation complexity can be reduced by eliminating polynomials with leading

order greater than the iteration number.

This chapter assesses the soft-decision scheme’s performance with regard to three

aspects: a complexity based comparison with the hard-decision scheme, the soft-

decision scheme with long output list and the soft-decision scheme’s asymptotically

optimal performance. This chapter’s work is presented in the author’s submitted paper

[69].

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 145

7.2 Prerequisite Knowledge

This section presents some important parameters for introducing the soft-decision list

decoding scheme.

As mentioned in section 6.2, for decoding a (n, k) Hermitian code, parameter wz is

defined as:

wz =
∞pv (z

-1
) =

∞pv (φk-1
-1

), and wz > 2g – 1 (7.1)

where φk-1 is the kth monomial in pole basis Lw of Hermitian curve Hw and g is the

genus of the curve. Based on wz, the two parameters first defined by (5.1) and (5.2)

for analysing bivariate monomial x
a
y

b
 (a, b ∈ N) can be extended to trivariate

monomials φaz
b
 (a, b ∈ N) as:

zwN ,1 (δ) = |{φaz
b
 : a, b ≥ 0 and

zw,1deg (φaz
b
) ≤ δ, δ ∈ N}| (7.2)

which represents the number of monomials with (1, wz)-weighted degree not greater

than δ and

zw,1∆ (v) = min {δ:
zwN ,1 (δ) > v, v ∈ N} (7.3)

which represents the minimal value of δ that guarantees
zwN ,1 (δ) is greater v. The

following corollaries associated with (7.2) and (7.3) are proposed:

Corollary 7.1:
zw,1∆ (v) =

zw,1deg (φaz
b
 | ord(φaz

b
) = v).

Proof: Based on section 6.2, monomial φaz
b
’s (1, wz)-lexicographic order grows based

on the growth of its (1, wz)-weighted degree. Up to monomial φaz
b

with ord(φaz
b
) = v,

there are v + 1 monomials with (1, wz)-weighted degree not greater than
zw,1deg (φaz

b
 |

ord(φaz
b
) = v). Therefore,

zw,1deg (φaz
b
 | ord(φaz

b
) = v) is the minimal value that

guarantees there are more than v monomials.

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 146

Corollary 7.2:
zwN ,1 (δ) >

zw

g

2

)(δδ −
 given δ > 2g - 1, and when δ → ∞,

zwN ,1 (δ) =

zw2

2δ
.

Proof: The proof is similar to the geometric arguments of Fig 5.2 given in Chapter 5.

In the (1, wz)-weighted degree table, the x-axis and y-axis represent index a of

monomial φa and degree b of variable z
b
 and their unit distance weights 1 and wz

respectively. Each monomial φaz
b
 occupies a unit square and therefore in the table N1,

k-1(δ) denotes the total area occupied by monomial φaz
b
 with

zw,1deg (φaz
b
) ≤ δ. Take

Table 6.1a as an example for analysis. This table can be geometrically plotted as Fig

7.1 as:

Figure 7.1 Geometric analysis of Table 6.1a

In this table,
zwN ,1 (δ) denoted as Area 1 is enclosed by the solid line shown in the

figure. The triangle defined by vertexes (0, 0), (δ - g, 0), and (0, 








zw

δ
) has area

2

1
(δ

- g) 








zw

δ
 ≅

zw

g

2

)(−δδ
, which it is denoted as Area2 =

zw

g

2

)(−δδ
. From Fig 7.1, it is

easy to be seen that Area1 > Area 2, and therefore
zwN ,1 (δ) >

zw

g

2

)(−δδ
. Also, based on

the figure, it is not difficult to realise that when δ → ∞, Area1 and Area2 approach to

be equal with each other and therefore
zwN ,1 (δ) =

zw

g

2

)(−δδ
. Since δ >> g,

zwN ,1 (δ) =

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 147

zw2

2δ
. Take the case shown in Fig 7.1 as an example, δ = 12, and

zwN ,1 (δ) =
zwN ,1 (12)

= 25, while
zw

g

2

)(−δδ
 =

42

)112(12

⋅

−
 = 16.5. Therefore,

zwN ,1 (δ) >
zw

g

2

)(−δδ
.

7.3 Review of GS Decoding Hermitian Codes

Based on Chapter 6, given hard-decision received word R = (r0, r1, …, rn-1) (ri ∈

GF(q), i = 0, 1, …, n - 1), n interpolated units can be formed by combining each

received symbol with its respective affine point used in encoding as: (p0, r0), (p1,

r1), …, (pn-1, rn-1). Interpolation is to build the minimal polynomial Qm = ∑
∈Nba

b

aab zQ
,

φ

(Qab ∈ GF(q)) which has a zero of multiplicity at least m over these n units.

According to section 6.3, to have a zero of multiplicity m over unit (pi, ri), Qm’s

coefficients Qab should satisfy [44]:

∑
≥

−















β

β

αγ
βba

b

ipaab r
b

Q
i

,

,, = 0, ∀ α, β ∈ N and α + β < m (7.4)

There are in total Cm =












 +

2

1m
n zero condition constraints (7.4) to coefficients Qab.

To build polynomial Qm, an iterative polynomial construction algorithm [9, 44, 65]

can be applied.

If f is the transmitted message polynomial (3.20), we define:

Λ(f, R) = |{i | f(pi) = ri, ri ∈ R}| (7.5)

as the number of uncorrupted received symbols in the hard-decision received word R.

Based on lemma 6.1, the total zero orders that Qm(x, y, f) has over all the interpolated

units is: ∑
−

=

1

0

)),,((
n

i

mp fyxQv
i

 ≥ m Λ(f, R) (6.14). m Λ(f, R) is defined as the score of

code word c as:

Sm(c) = m Λ(f, R) (7.6)

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 148

As f ∈],[yxF zw

q , then)),,((1−

∞
fyxQv mp =

zw,1deg (Qm(x, y, f)) =
zw,1deg (Qm(x, y, z)).

Hence, if Sm(c) >
zw,1deg (Qm(x, y, z)), the total zero orders of polynomial Qm(x, y, f) is

greater than its pole order as: ∑
−

=

1

0

)),,((
n

i

mp fyxQv
i

>)),,((1−

∞
fyxQv mp . According to

theorem 6.2, message polynomial f can be found out by determining polynomial Qm’s

z roots. It results the following corollary for successful list decoding.

Corollary 7.3: If the score of code word c is greater than the (1, wz)-weighted degree

of interpolated polynomial Qm:

Sm(c) >
zw,1deg (Qm(x, y, z)) (7.7)

then Qm(x, y, f) = 0 or z – f | Qm.

Based on corollary 7.3, it can be seen that large enough code word score is necessary

to guarantee successful list decoding.

7.4 Soft-Decision List Decoding

Based on Koetter and Vardy’s soft-decision scheme, this section develops a soft-

decision list decoding algorithm for Hermitian codes. In the receiver, a reliability

matrix Π of the received information is obtained instead of a hard-decision received

word R. Π is then converted to a multiplicity matrix M, based on which the

interpolated polynomial is built. It is shown that the soft-decision code word score

will be increased over hard-decision and consequently so will the list decoding

system’s error-correction capability. The algorithm that converts Π to M is presented

with introducing a stopping rule based on a designed length of output list.

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 149

7.4.1 Reliability Information

As Chapter 5, the channel is assumed to be memoryless with input alphabet χ ∈ GF(q)

and output alphabet ℜ ∈ GF(q), both of which are random variables from GF(q). χ is

uniformly distributed over GF(q) = (ρ0, ρ1, …, ρq-1). In the soft-decision list decoder,

the posteriori transition probability Pr(χ = ρi | ℜ = ιj) can be obtained from equation

(5.3) as: Pr(χ = ρi | ℜ = ιj) =
∑
∈)(

)|(

)|(

qGF

j

ij

p

p

ρ

ρι

ρι
. Pr(χ = ρi | ℜ = ιj) represents the

probability that code word χ = ρi was transmitted given ℜ = ιj is observed as a

received word. Under continuous channel, p(⋅ | ρ) is the probability-density function

and ℜ is continuous. Under discrete channel, p(⋅ | ρ) is the probability-mass function

and ℜ is discrete.

As the transmitted code word can be chosen from the q finite field elements, for every

random received variable ιj, there are q posteriori transition probability values.

Therefore, for the received vectorℜ = (ι0, ι1, …, ιn-1), a q × n reliability matrix Π can

be obtained:

Π =



























−−−−

−

−

1,11,10,1

,

1,11,10,1

1,01,00,0

nqqq

ji

n

n

πππ

π

πππ

πππ

LLL

MOM

MM

MOM

LLL

 (7.8)

where entry πi,j represents the probability that ρi was transmitted given ιj is observed:

πi , j = Pr(χ = ρi | ℜ = ιj) (i = 0, 1, …, q - 1 and j = 0, 1, …, n - 1) (7.9)

Reliability matrix Π represents every possible transmitted code word symbol’s

transition probability. This received information’s reliability matrix Π is then

converted to a q × n multiplicity matrix M, based on which the interpolated

polynomial QM ∈Fq[x, y, z] is built (Note: in this chapter, QM denotes the soft-decision

interpolated polynomial and Qm denotes the hard-decision interpolated polynomial).

The method for obtaining this reliability matrix based on channel output observation

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 150

is presented in section 5.3. The difference between soft-decision list decoding of

Reed-Solomon codes and Hermitian codes is in the size of the reliability matrix. For

soft-decision list decoding of Reed-Solomon code, the reliability matrix Π (5.4) has

size q × n, where n = q - 1. For soft-decision list decoding of Hermitian code, the

reliability matrix Π (7.8) has size q × n, where n = 2/3q .

7.4.2 System Solution

The reliability matrix Π is then converted to the multiplicity matrix M, for which

algorithm 5.1 is applied. This algorithm will be presented later in this subsection with

introducing a stopping rule based on the designed length of output list.

According to corollary 7.3, high code word score is necessary for successful list

decoding. In this subsection, the code word score with respect to matrix M is analysed

so as to present the system solution for this soft-decision list decoder. It is shown that

the soft-decision scheme provides a higher code word score than the hard-decision

scheme.

The resulting multiplicity matrix M can be written as:

M =



























−−−−

−

−

1,11,10,1

,

1,11,10,1

1,01,00,0

nqqq

ji

n

n

mmm

m

mmm

mmm

LLL

MOM

MM

MOM

LLL

 (7.10)

where entry mi, j represents the multiplicity for unit (pj, ρi). Different to the

multiplicity matrix M (5.8) with size q × q - 1, multiplicity matrix M (7.10) has size q

× 2/3q . Interpolation is to build the minimal polynomial QM ∈ Fq[x, y, z] which has a

zero of multiplicity at least mi, j (mi, j ≠ 0) over all the associated units (pj, ρi).

Following from (7.4), with respect to interpolated unit (pj, ρi), QM’s coefficients Qab

should satisfy:

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 151

∑
≥

−















β

β

α ργ
βba

b

ipaab j

b
Q

,

,, = 0, ∀ α, β ∈ N and α + β < mi, j (7.11)

For this soft-decision interpolation, the number of interpolated units covered by QM is:

|{ mi, j ≠ 0 | mi, j ∈ M, i = 0, 1, …, q - 1 and j = 0, 1, …, n - 1}| (7.12)

and the cost CM of multiplicity matrix M is:

 CM = ∑∑
−

=

−

=

+
1

0

1

0

,,)1(
2

1 q

i

n

j

jiji mm (7.13)

which represents the number of constraints (7.11) to QM’s coefficients Qab. They can

be imposed by the iterative polynomial construction algorithm [9, 44, 65] in CM

iterations. Notice that equation (7.12) and (7.13) has the same expression as equation

(5.9) and (5.11) respectively, except in equations (7.12) and (7.13) n = q
3/2

.

Based on lemma 6.1, the following units’ multiplicities will contribute to the code

word score: (p0, c0), (p1, c1), …, and (pn-1, cn-1). Referring to the multiplicity matrix

(7.10), the interpolated polynomial QM can be explained as passing through these

units with multiplicity at least m0 = mi, 0 (ρi = c0), m1 = mi, 1 (ρi = c1), …, and mn-1 = mi,

n-1 (ρi = cn-1) respectively. If f ∈],[yxF zw

q is the transmitted message polynomial that

f(pi) = ci, the total zero order of QM(x, y, f) over units {(p0, c0), (p1, c1), …, (pn-1, cn-1)}

is at least:

 m0 + m1 + ⋅ ⋅ ⋅ + mn-1 = ∑
−

=

−==
1

0

, }1,,1,0,|{
n

j

jiji qicm Kρ (7.14)

And therefore, the code word score SM(c) with respect to multiplicity matrix M is:

SM(c) = ∑
−

=

−==
1

0

, }1,,1,0,|{
n

j

jiji qicm Kρ (7.15)

If SM(c) >
zw,1deg (QM(x, y, z)), then ∑

−

=

1

0

)),,((
n

i

Mp fyxQv
i

>)),,((1−

∞
fyxQv p

and QM(x, y, f) = 0. f can be found out by determining QM(x, y, z)’s z roots. It results

the following corollary for successful soft-decision list decoding.

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 152

Corollary 7.4: If the code word score with respect to multiplicity matrix M is greater

than the interpolated polynomial QM’s (1, wz)-weighted degree, as:

SM(c) >
zw,1deg (QM(x, y, z)) (7.16)

then QM(x, y, f) = 0 or z – f | QM(x, y, z).

To compare the soft-decision’s code word score SM(c) with the hard-decision’s code

word score Sm(c), denote the index of the maximal element in each column of Π as:

ij = index (max{πi , j | i = 0, 1, …, q-1}) (7.17)

that ji j ,π > πi, j (i ≠ ij). The hard-decision received word R can be written as:

R = (r0, r1, …, rn-1) = (
0i

ρ ,
1i

ρ , …,
1−ni

ρ) (7.18)

For hard-decision list decoding, in the multiplicity matrix (7.10), only those entries

that correspond to the reliability value ji j ,π will be assigned a multiplicity as ji j
m , =

m, and therefore the score in (7.6) of hard-decision can also be written with respect to

multiplicity matrix M as:

Sm(c) = SM(c) = ∑
−

=

=
1

0

, }|{
n

j

jiji cm
jj

ρ (7.19)

Comparing (7.15) and (7.19), the soft-decision list decoder gains its improvements by

increasing its code word score. This is done by increasing the total number of

interpolated units (7.12) so that it can increase the possibility of covering more

interpolated units which include the corresponding code word symbols.

If the (1, wz)-weighted degree of interpolated polynomial QM is δ*
, based on (7.2), QM

has at most
zwN ,1 (δ*

) nonzero coefficients. The interpolation procedure generates a

system of CM linear equations of type (7.11). The system will be solvable if [8]:

zwN ,1 (δ*
) > CM (7.20)

Based on (7.3), in order to guarantee the solution, the (1, wz)-weighted degree δ*
 of

the interpolated polynomial QM should be large enough so that:

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 153

zw,1deg (QM(x, y, z)) = δ*
 =

zw,1∆ (CM) (7.21)

Therefore, based on corollary 7.4, given the soft-decision code word score (7.15) and

the (1, wz)-weighted degree of the interpolated polynomial QM (7.21), message

polynomial f can be found out if:

SM(c) >
zw,1∆ (CM) (7.22)

The factorisation output list contains the z roots of polynomial QM. Therefore, the

maximal length of output list lM should be equal to polynomial QM’s z degree (degzQM)

as:

lM = zdeg (QM(x, y, z)) = 








z

Mw

w

zyxQ
z

)),,((deg ,1
 = 







∆

z

Mw

w

C
z

)(,1
 (7.23)

During converting matrix Π to matrix M, based on a designed length of output list l,

algorithm 5.1 will stop once lM is greater than l. According to corollary 7.1,
zw,1∆ (CM)

can be determined by finding the monomial with (1, wz)-lexicographic order CM as:

zw,1∆ (CM) =
zw,1deg (φaz

b
 | ord(φaz

b
) = CM) (7.24)

Therefore, in order to assess the soft-decision list decoding algorithm’s performance

with a designed length of output list l, a large enough value is set for s when

initialising algorithm 5.1. In the algorithm, after step (v), we can determine the cost

CM (7.13) of the updated matrix M and apply (7.24) to determine
zw,1∆ (CM). Then the

maximal length of output list lM can be determined by (7.23). Stop algorithm 5.1 once

lM is greater than l and output the updated matrix M.

Here algorithm 5.1 is again presented with introducing this stopping rule. This

presented version is used in the author’s practical simulations.

Algorithm 7.1: Convert reliability matrix Π to multiplicity matrix M.

Input: Reliability matrix Π, a high enough desired value of s = ∑∑
−

=

−

=

1

0

1

0

,

q

i

n

j

jim , and

designed output length l.

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 154

Initialisation: Set Π
*
 = Π and q × n all-zero multiplicity matrix M

(i): While (s > 0 or  Ml < l) {

(ii): Find the maximal entry *

, jiπ in Π
*
 with position (i, j)

(iii): Update *

, jiπ in Π
*
 as *

, jiπ =
2,

,

+ji

ji

m

π

(iv): Update mi, j in M as mi, j = mi, j + 1

(v): s = s – 1

(vi): For the updated M, calculate its interpolation cost CM by (7.13)

(vii): Determine)(,1 Mw C
z

∆ by (7.24)

(viii): Calculate lM by (7.23)

}

Again, this algorithm gives priority to those interpolated points which correspond to a

higher reliability values πi, j to be assigned with a higher multiplicity values mi, j. For

example, if
11 jiπ <

22 jiπ , then
2211 jiji mm ≤ .

7.5 Complexity reduction Interpolation and Factorisation

To implement the following interpolation and factorisation processes, algorithm 6.2

and 6.3 are applied respectively. Algorithm 6.2 produces the interpolated polynomial

QM(x, y, z) which has a zero of multiplicity at least mi, j (mi, j ≠ 0) over all the

associated interpolated units (pj, ρi). This section presents some modifications for

algorithm 6.2 for the soft-decision interpolation process while the factorisation

process remains the same.

As mentioned in Chapter 6, to efficiently implement algorithm 6.2, algorithm 6.1

needs to be applied first to determine all the necessary corresponding coefficients

αγ ,, jpa (with respect to affine point pj). The interpolated polynomial’s (1, wz)-

weighted degree upper bound can be determined by (7.21) based on knowing the

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 155

iteration number CM. Therefore, the maximum pole basis that might exist in the

interpolated polynomial can be determined by:
∞pv (φmax

-1
) =

zw,1deg (QM(x, y, z)) =

zw,1∆ (CM). Algorithm 6.1 is applied to determine the corresponding coefficients

αγ ,,0 jp ~ αγ ,max, jp for all the affine points (p0, p1, …, pn-1). Based on the above

description of algorithm 7.1, if ij (7.17) is the index of the maximal entry πi, j in

column j of matrix ∏∏∏∏, then ji j
m , is the maximal entry in column j of matrix M. With

respect to affine point pj, only corresponding coefficients αγ ,,0 jp ~ αγ ,max, jp (α < ji j
m ,)

will be stored for use in the following interpolation process.

Based on the pre-determined corresponding coefficients, algorithm 6.2 will run

through all the interpolated units (pj, ρi) with interpolation multiplicity mi, j (mi, j ≠ 0).

If l is the designed length of output list, at the beginning of algorithm 6.2, the

polynomial group initialisation (6.28) should be written as:

G = {Qj = Qλ + wδ = y
λ
z
δ
, 0 ≤ λ < w, 0 ≤ δ ≤ l} (7.25)

According to Chapter 6, the complexity reduction scheme [52] is also valid for the

interpolation process of Hermitian codes. The chosen interpolated polynomial QM’s

leading order will not be greater than the iteration number CM:

lod(QM) ≤ CM (7.26)

and as a result

zw,1deg (QM(x, y, z)) ≤
zw,1∆ (CM) (7.27)

which indicates (7.21) is the (1, wz)-weighted degree upper bound for the interpolated

polynomial QM. Therefore, the complexity reduction modification (6.29) of algorithm

6.2 can be written as:

G = {Qj | lod(Qj) ≤ CM} (7.28)

in which iteration number CM can be determined by (7.13) after the multiplicity

matrix M is obtained from algorithm 7.1. With respect to interpolated unit (pj, ρi), the

zero condition test ∆j performed by (6.30) is redefined by equation (7.11). Also, in the

polynomial modification (6.33), xi should be replaced by xj which is the x-coordinate

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 156

of the affine point pj in the current interpolated unit (pj, ρi). It is worthy to mention

that index j needs to be distinguished when it is applied as an index for polynomials

Qj in the group and when it is applied as an index for affine point pj. After CM

iterations, the minimal polynomial is chosen from the group G as:

QM =
)(

min
jQlod

 (Qj | Qj ∈ G) (7.29)

Fig 7.2 shows how much computational complexity can be reduced by modification

scheme (7.28) for soft-decision interpolation of Hermitian code (64, 19, 40) with

output length l = 2 and l = 3. Again, as no hard-decision received word is obtained in

the soft-decision decoder, the complexity analysis is measured against the SNR values.

For Fig 7.2, it can be seen that in high SNR value situations, complexity reduction is

more significant. It can be reduced up to 21.76% when l = 3 and 15.10% when l = 2.

1.0E+05

1.0E+06

1.0E+07

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SNR (Eb/N0)

C
o
m
p
u
ta
ti
o
n
 C
o
m
p
le
x
it
y

Original Interpolation (l = 2)

Complexity Reducing Interpolation (l = 2)

Original Interpolation (l = 3)

Complexity Reducing Interpolation (l = 3)

4.32%

3.52%

15.08%

15.10% 13.93%

3.71%

2.71%

17.26%

21.76% 21.38%

percentage of complexity reduction

Figure 7.2 Complexity reduction analysis for soft-decision list decoding of Hermitian

code (64, 19, 40)

7.6 Simulation Results Discussion

Applying the above soft-decision list decoder, this section assesses the performance

for Hermitian codes defined in GF(16) and GF(64), whose hard-decision list decoding

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 157

performances are presented in section 6.7. Figs 7.3, 7.4 and 7.5 present the

performances of Hermitian codes (64, 19, 40), (64, 29, 30) and (64, 39, 20)

respectively, while Figs 7.6 and 7.7 present the performances of Hermitian codes (512,

153, 332) and (512, 289, 196) respectively. Performance is evaluated over AWGN

and Rayleigh fading channels using the QPSK modulation scheme. The Rayleigh

fading channel is frequency nonselective with Doppler frequency 126.67 Hz. The

fading profile is generated using Jakes’ method [64]. The fading coefficients have

mean value 1.55 and variance 0.60. During simulation, quasi-static fading is assumed

in which the fading amplitude changes for each code word block. For combating the

fading effect, 64 × 64 and 100 × 512 block interleavers are employed for codes

defined in GF(16) and GF(64) respectively. Analyses of Figs 7.3 to 7.7 emphasise the

following three aspects: a complexity based comparison with hard-decision decoding,

soft-decision decoding performance assessment with a large length of output list and

its asymptotically optimal performance.

7.6.1 Complexity Based Comparison with Hard-Decision

This subsection assesses the soft-decision decoding performance comparison with

hard-decision decoding based on similar decoding complexity. This comparison is

made by having the same designed length of output list l which is the main parameter

that decides the decoding complexity. According to section 7.5, there are w(l + 1)

polynomials initialised at the beginning to take part in the iterative polynomial

construction process for interpolation. According to (7.23), for a higher value of l, the

interpolated polynomial should have a higher (1, wz)-weighted degree which is built in

a higher number of iterations (Cm for hard-decision, CM for soft-decision). Both the

number of polynomial w(l + 1) and the number of iterations (Cm, CM) significantly

affect the decoding complexity.

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 158

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10

Eb/N0 [dB]

B
E

R
Uncoded

Sakata

list hard (l=2, m=1)

list hard (l=3, m=2)

list hard (Optimal)

list soft (l=2)

list soft (l=3)

list soft (l=5)

list soft (l=10)

list soft (l=20)

list soft (l=30)

list soft (Optimal)

(a) over AWGN channel

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10

Eb/N0 [dB]

B
E

R

uncoded

Sakata

list hard (l=2, m=1)

list hard (l=3, m=2)

list hard (Optimal)

list soft (l=2)

list soft (l=3)

list soft (l=5)

list soft (l=10)

list soft (l=20)

list soft (l=30)

list soft (Optimal)

(b) over Rayleigh fading channel

Figure 7.3 Soft-decision list decoding of Hermitian code (64, 19, 40)

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 159

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10

Eb/N0 [dB]

B
E

R

Uncoded
Sakata
list hard (l=1, m=1)
list hard (l=2, m=2)
list hard (optimal)
list soft (l=1)
list soft (l=2)
list soft (l=5)
list soft (l=10)
list soft (l=20)
list soft (l=30)
list soft (Optimal)

(a) over AWGN channel

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10

Eb/N0 [dB]

B
E

R

uncoded
Sakata
list hard (l=1, m=1)
list hard (l=2, m=2)
list hard (Optimal)
list soft (l=1)
list soft (l=2)
list soft (l=5)
list soft (l=10)
list soft (l=20)
list soft (l=30)
list soft (Optimal)

(b) over Rayleigh fading channel

Figure 7.4 Soft-decision list decoding of Hermitian code (64, 29, 30)

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 160

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10

Eb/N0 [dB]

B
E

R
Uncoded
Sakata
list hard (l=1, m=1)
list hard (l=2, m=2)
list hard (Optimal)
list soft (l=1)
list soft (l=2)
list soft (l=5)
list soft (l=10)
list soft (l=20)
list soft (l=30)
list soft (Optimal)

(a) over AWGN channel

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10

Eb/N0 [dB]

B
E

R

uncoded
Sakata
list hard (l=1, m=1)
list hard (l=2, m=2)
list hard (Optimal)
list soft (l=1)
list soft (l=2)
list soft (l=5)
list soft (l=10)
list soft (l=20)
list soft (l=30)
list soft (Optimal)

(b) over Rayleigh fading channel

Figure 7.5 Soft-decision list decoding of Hermitian code (64, 39, 20)

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 161

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10

Eb/N0 [dB]

B
E

R

Uncoded
Sakata
list hard (l=2, m=1)
list hard (l=3, m=2)
list hard (Optimal)
list soft (l=2)
list soft (l=3)
list soft (l=5)
list soft (l=10)
list soft (l=20)
list soft (l=30)
list soft (Optimal)

(a) over AWGN channel

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10

Eb/N0 [dB]

B
E

R

uncoded
Sakata
list hard (l=2, m=1)
list hard (l=3, m=2)
list hard (Optimal)
list soft (l=2)
list soft (l=3)
list soft (l=5)
list soft (l=10)
list soft (l=20)
list soft (l=30)
list soft (Optimal)

(b) over Rayleigh fading channel

Figure 7.6 Soft-decision list decoding of Hermitian code (512, 153, 332)

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 162

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10

Eb/N0 [dB]

B
E

R
Uncoded
Sakata
list hard (l=1, m=1)
list hard (l=2, m=2)
list hard (Optimal)
list soft (l=1)
list soft (l=2)
list soft (l=5)
list soft (l=10)
list soft (l=20)
list soft (l=30)
list soft (Optimal)

(a) over AWGN channel

1.0E-06

1.0E-05

1.0E-04

1.0E-03

1.0E-02

1.0E-01

1.0E+00

0 1 2 3 4 5 6 7 8 9 10

Eb/N0 [dB]

B
E

R

uncoded
Sakata
list hard (l=1, m=1)
list hard (l=2, m=2)
list hard (Optimal)
list soft (l=1)
list soft (l=2)
list soft (l=5)
list soft (l=10)
list soft (l=20)
list soft (l=30)
list soft (Optimal)

(b) over Rayleigh fading channel

Figure 7.7 Soft-decision list decoding of Hermitian code (512, 289, 196)

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 163

Hermitian

codes

Designed

length of

output list l

Number of

polynomials

w(l + 1)

Hard-decision

iterations

Cm(m)

Soft-decision

iterations CM

(64, 19, 40)

2 12 64 (m = 1) 127

3 16 192 (m = 2) 218

5 24 384 (m = 3) 468

(64, 29, 30)

1 8 64 (m = 1) 90

3 16 192 (m = 2) 317

5 24 640 (m = 4) 680

(64, 39, 20)

1 8 64 (m = 1) 120

2 12 192 (m = 2) 246

3 16 384 (m = 3) 418

(512, 153,

332)

2 24 512 (m = 1) 997

3 32 1536 (m = 2) 1688

5 48 3072 (m = 3) 3612

(512, 289,

196)

1 16 512 (m = 1) 892

2 24 1536 (m = 2) 1813

4 40 3072 (m = 3) 4602

Note: Iteration number CM for soft-decision is an average value observed from

simulations.

Table 7.1 Interpolation complexity comparison for soft-decision and hard-decision list

decoding

Table 7.1 shows, for list decoding of these 5 Hermitian codes, based on a designed

length of output list l, the number of polynomials w(l + 1) and the number of

iterations (Cm, CM) for both hard-decision and soft-decision. From Table 7.1, it can be

observed that based on the same value of l, CM is higher than Cm, which indicates soft-

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 164

decision list decoder has higher decoding complexity. But a significant change of

iterations is due to the change of designed length l. From these simulation results, it

can be seen that based on the same length of output list, soft-decision list decoding

can outperform hard-decision. At BER of 10
-5

, the coding gain is very significant,

especially over the Rayleigh fading channel.

According to simulation result discussion of hard-decision list decoding given in

section 6.7, using hard-decision decoding to achieve its optimal results remains almost

infeasible. For example, to list decode Hermitian codes (64, 19, 40), (64, 29, 30), (64,

39, 20), (512, 153, 332) and (512, 289, 196) at the boundary τGS (3.32), the designed

length of output list l

= 28, 48, 13, 359 and 118 is required respectively. However,

based on the performances of Figs 7.3 to 7.7, it can be observed that the soft-decision

with small length of output list can outperform the hard-decision’s optimal result,

especially over the Rayleigh fading channel. For example, for the Hermitian code

(512, 153, 332) over the Rayleigh fading channel, soft-decision list decoding with

designed length l = 2 can outperform hard-decision decoding’s optimal result. This

phenomenon indicates that hard-decision’s prohibitive optimal result can easily be

achieved by using the soft-decision algorithm without very high decoding complexity.

7.6.2 Performance Assessment with a Large Length of Output List

According to the above analysis, a large length of output list demands high decoding

complexity and it would be infeasible to achieve by simulation. In this thesis’s

analysis, l
 ≥ 5 is considered to be a large length for the output list. However, the

performance can still be assessed without applying the interpolation and factorisation

processes. Assessments are made based on (7.22). After the reliability matrix ΠΠΠΠ is

obtained, algorithm 7.1 is performed based on a designed length of output list l.

Assuming the receiver acknowledges the transmitted code word c and based on the

resulting multiplicity matrix M, the code word score SM(c) can be determined by

(7.15). Based on matrix M, its cost CM can be determined by (7.13) and so can the

interpolated polynomial QM’s (1, wz)-weighted degree
zw,1deg (QM(x, y, z)) by (7.21). If

SM(c) >
zw,1∆ (CM), then SM(c) >

zw,1deg (QM(x, y, z)). According to corollary 7.4,

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 165

decoding is successful and the transmitted message polynomial f can be found out.

Otherwise if SM(c) ≤
zw,1∆ (CM), decoding is a failure. From the performances

presented in Figs 7.3 to 7.7, it can be observed that soft-decision list decoding

achieves its performance improvement as the designed length of output list l increases.

It should be noticed that these performance assessments are slightly worse compared

to the practical results. Because based on (7.27),
zw,1∆ (CM) is the interpolated

polynomials QM’s (1, wz)-weighted degree upper bound. Assessing the performance

by (7.22), decoding is claimed to be failed if SM(c) ≤
zw,1∆ (CM). However, according

to (7.27), SM(c) might still be greater than
zw,1deg (QM(x, y, z)). Based on corollary 7.4,

it should result in a successful list decoding.

7.6.3 Asymptotically Optimal Performance Assessment

As soft-decision list decoding achieves its performance improvement by increasing

the designed length of output list l, its optimal performance could be achieved when l

→ ∞. In algorithm 7.1, if l → ∞, s → ∞ and multiplicity matrix M’s entries mi, j → ∞.

As a result, cost CM → ∞ as well as
zw,1∆ (CM) → ∞. Based on corollary 7.2,

zw,1∆ (CM)

=))((2 ,1,1 Mwwz CNw
zz

∆ = MzCw2 . Therefore, when l
 → ∞, successful list

decoding assessment (7.22) can be written as:

SM(c) > MzCw2 (7.30)

Based on (7.13) and (7.15), (7.30) could be equivalently written as:

∑
−

=

−==
1

0

, }1,,1,0,|{
n

j

jiji qicm Kρ > ∑∑
−

=

−

=

+
1

0

1

0

,,)1(
q

i

n

j

jijiz mmw (7.31)

According to lemma 5.4, when s → ∞,
s

m

n

jiji ,,
≅

π
. Substituting mi, j = ji

n

s
,π into

(7.31) results in:

∑ ∑∑
−

=

−

=

−

=

+>−==
1

0

1

0

1

0

,,,)(}1,,1,0,|{
n

j

q

i

n

j

jijizjiji
s

n
w

n

s
qic

n

s
ππρπ K (7.32)

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 166

As
s

n
 ≅ 0 when s → ∞, (7.32) can be approximately simplified as:

∑ ∑∑
−

=

−

=

−

=

>−==
1

0

1

0

1

0

2

,, }1,,1,0,|{
n

j

q

i

n

j

jizjiji wqic πρπ K (7.33)

Therefore, the soft-decision’s optimal performance can be assessed based on (7.33).

From the above analysis, it can be seen that the soft-decision’s optimal performance is

decided as far as the reliability matrix Π is obtained. Practical performance

degradation is due to the designed length of output list constraint. Figs 7.3 to 7.7 show

that the soft-decision approaches its optimal performance as the designed length of the

output list increases. (7.33) also indicates that soft-decision list decoding has more

potential improvements for low rate codes as they have lower wz values. This is

proven by the presented results. For example, over the AWGN channel, for Hermitian

code (64, 19, 40), soft-decision decoding’s optimal result has 1.4 dB coding gain at

BER = 10
-5

 compared with hard-decision decoding’s optimal result. For Hermitian

code (64, 39, 20), soft-decision decoding’s optimal result has about 1 dB coding gain.

7.7 Conclusion

Based on Koetter and Vardy’s soft-decision scheme for Reed-Solomon codes, this

chapter presented a soft-decision list decoding algorithm for one of the best

performing algebraic-geometric codes – Hermitian codes. Different to the hard-

decision list decoding algorithm, the received information’s probabilistic reliability

values are obtained by the receiver. The reliability values are then converted into

multiplicity values based on which the interpolation is processed. During this

conversion, a practical method for implementing the algorithm’s stopping rule based

on a designed length of the output list was suggested. It was shown that the soft-

decision algorithm can produce a higher code word score for Hermitian codes than the

hard-decision algorithm, and therefore increase the system’s error-correction

capability. For the soft-decision interpolation process, it was shown that the

complexity could be reduced by identifying unnecessary polynomials and eliminating

them during the iterations. Performances presented in this chapter showed that, based

on the same length of output list, soft-decision list decoding has a significant coding

gain over hard-decision but with higher decoding complexity. According to Chapter 6,

Chapter 7 Soft-Decision List Decoding of Hermitian Codes

 167

achieving the hard-decision decoding optimal result remained infeasible because of

high decoding complexity. However, this prohibitive result can be achieved by using

the soft-decision list decoder with a short output list, especially over the Rayleigh

fading channel. This soft-decision scheme can achieve further improvements by

increasing the designed length of the output list. An asymptotic analysis of the soft-

decision scheme showed that its optimal performance is decided by the probabilistic

reliability value. Practical performance degradation is due to the length of output list

constraint. This asymptotic analysis also showed that the soft-decision scheme has

greater improvement for low rate codes.

Chapter 8 Conclusion and Future Work

 168

Chapter 8

Conclusion and Future

Work

Chapter 8 Conclusion and Future Work

 169

8.1 Conclusion of the Thesis

The thesis presented an efficient list decoding system for Reed-Solomon and

algebraic-geometric codes. The system was implemented using both hard-decision

and soft-decision schemes. Under the hard-decision scheme, a received word is

obtained and followed by the interpolation and factorisation processes in order to

determine the list of most likely transmitted code words. The simulation results

presented in the thesis showed that the hard-decision list decoding algorithm can

outperform conventional unique decoding algorithms, namely the Berlekamp-Massey

algorithm for Reed-Solomon codes and Sakata’s algorithm with majority voting for

Hermitian codes. This performance improvement is more significant for low rate

codes. While under the soft-decision scheme, the received word’s posterior transition

probability information is obtained, which is then converted into multiplicity

information and followed by the interpolation and factorisation processes as in hard-

decision GS algorithm. It was shown that the soft-decision scheme can provide

significant coding gains over the hard-decision scheme. It is more important to point

out that by using the soft-decision scheme, the prohibitive optimal result of hard-

decision list decoding can be achieved at a moderate decoding complexity. Therefore,

the soft-decision list decoding scheme would be more suitable for decoding Reed-

Solomon and Hermitian codes, instead of the GS algorithm.

To reduce the list decoding system’s high complexity, an original modification

scheme for the complexity dominant interpolation process was proposed in Chapter 4.

As those polynomials with leading order greater than the total iteration number will

not be chosen as the interpolated polynomial and have no information contributing to

the chosen interpolated polynomial, they can be eliminated during the iterations. This

scheme identifies and eliminates those polynomials during the iterations in order to

avoid unnecessary calculations. This modification is a general scheme which can be

later applied to both hard-decision and soft-decision list decoding systems for Reed-

Solomon and algebraic-geometric codes provided the iteration number is known by

the decoder. This modification scheme was adopted by the later chapters to improve

the system’s decoding efficiency.

Chapter 8 Conclusion and Future Work

 170

A modified hard-decision list decoding scheme for algebraic-geometric codes was

presented in Chapter 6, in which Hermitian codes are using as an algebraic-geometric

coding scheme. Modification for list decoding of Hermitian codes is three-fold: First,

a new algorithm to determine the corresponding coefficients between a Hermitian

curve’s pole basis monomials and zero basis functions is presented. This algorithm is

performed a priori to the interpolation process. With the knowledge of these

corresponding coefficients, the interpolation efficiency can be greatly improved.

Second, the complexity reduction modification introduced in Chapter 4 was applied to

the interpolation process. Third, a more general factorisation algorithm which can be

applied to both Reed-Solomon and algebraic-geometric codes was presented from an

implementation point of view. With these modifications, the author has achieved the

first simulation results on list decoding of Hermitian codes which are defined in

GF(16) and GF(64).

The thesis has also developed the first soft-decision list decoding algorithm for

Hermitian codes, which is presented by Chapter 7. Similar to the soft-decision list

decoding of Reed-Solomon codes, received word’s posterior transition probabilities

are obtained by the receiver rather than a hard-decision received word. These

probabilities are then converted into multiplicity values based on which interpolation

and factorisation processes for Hermitian codes are performed. It was shown that,

based on the same designed length of output list, the soft-decision scheme has

significant coding gains over the hard-decision scheme. By using the soft-decision

scheme with small output length, the prohibitive optimal result of hard-decision list

decoding can easily be achieved with only moderate decoding complexity.

8.2 Future Work

Although the list decoding system can provide improved decoding performance, it is

at the expense of higher decoding complexity compared to the conventional unique

decoding algorithms. When applying the list decoding system, there is a trade off

between performance improvement and complexity. Firstly, the list decoding system

has better performance than the unique decoding algorithms, but it is more

complicated to implement. Secondly, for the list decoding system itself, performance

Chapter 8 Conclusion and Future Work

 171

can be improved by increasing the interpolation multiplicity or the length of the

designed output list for the soft-decision scheme. However, decoding complexity also

increases exponentially. Even though the complexity problem has been addressed in

this thesis, the list decoding system’s complexity is still high compared to the unique

decoding algorithms. Therefore, in order to make the list decoding system more

practical for industrial application, more work on reducing the system’s decoding

complexity should be investigated.

So far, only the mathematical framework for list decoding of Hermitian codes has

been developed, while for other types of algebraic-geometric codes it is still unknown.

Based on this thesis demonstration, it should not be difficult to develop a list decoding

scheme for other algebraic-geometric codes provided the code’s pole basis and zero

basis can be defined. With the knowledge of these two bases functions, the zero

condition of this code’s interpolated polynomials can be defined so that valid

interpolation and factorisation processes can be performed. The soft-decision list

decoding scheme for other classes of algebraic-geometric codes can then be further

developed.

Reference

 172

Reference:

[1] V. D. Goppa, "Codes on algebraic curves," Soviet math, vol. Dok. 24, pp. 75-

91, 1981.

[2] I. S. Reed and G. Solomon, "Polynomial codes over certain finite fields," J.

Soc. Industrial Appl. Math, vol. 8, pp. 300-304, 1960.

[3] E. R. Berlekamp, Algebraic Coding Theory. New York: McGraw Hill, 1968.

[4] J. L. Massey, "Shift register synthesis and BCH decoding," IEEE Trans.

Inform. Theory, vol. 15, pp. 122-127, 1969.

[5] S. Sakata, J. Justesen, Y. Madelung, H. E. Jensen, and T. Høholdt, "Fast

decoding of algebraic-geometric codes up to the designed minimum distance,"

IEEE Trans. Inform. Theory, vol. 41, pp. 1672-1677, 1995.

[6] G. L. Feng and T. R. N. Rao, "Decoding algebraic-geometric codes up to the

designed minimum distance," IEEE Trans. Inform. Theory, vol. 39, pp. 37-46,

1993.

[7] V. Guruswami and M. Sudan, "Improved decoding of Reed-Solomon and

algebraic-geometric codes," IEEE Trans. Inform. Theory, vol. 45, pp. 1757-

1767, 1999.

[8] R. Koetter and A. Vardy, "Algebraic soft-decision decoding of Reed-Solomon

codes," IEEE Trans. Inform. Theory, vol. 49, pp. 2809-2825, 2003.

[9] T. Høholdt and R. R. Nielsen, "Decoding Hermitian codes with Sudan's

algorithm," in Applied Algebra, Algebraic Algorithms and Error-Correcting

Codes (Lecture Notes in Computer Science), vol. 1719, H. I. N. Fossorier, S.

Lin, and A. Pole, Ed. Berlin, Germany: Springer-Verlag, 1999, pp. 260-270.

[10] R. Roth and G. Ruckenstein, "Efficient decoding of Reed-Solomon codes

beyond half the minimum distance," IEEE Trans. Inform. Theory, vol. 46, pp.

246-257, 2000.

[11] X.-W. Wu, "An algorithm for finding the roots of the polynomials over order

domains," presented at ISIT 2002, Lausanne, Switzerland, 2002.

[12] X.-W. Wu and P. Siegel, "Efficient root-finding algorithm with application to

list decoding of algebraic-geometric codes," IEEE Trans. Inform. Theory, vol.

47, pp. 2579-2587, 2001.

[13] O. Pretzel, Codes and Algebraic Curves. Oxford: Clarendon Press, 1998.

Reference

 173

[14] M. A. Tsfasman, S. G. Vladut, and T. Zink, "Modular curves, Shimura curves

and Goppa codes, better than Varshamov-Gilbert bound," Math. Nachtrichten,

vol. 109, pp. 21-28, 1982.

[15] J. Justesen, K. J. Larsen, H. E. Jensen, A. Havemose, and T. Høholdt,

"Construction and decoding of a class of algebraic geometry codes," IEEE

Trans. Inform. Theory, vol. IT-35, pp. 811-821, 1989.

[16] G.-L. Feng and T. R. N. Rao, "A simple approach for construction of

algebraic-geometric codes from affine plane curves," IEEE Trans. Inform.

Theory, vol. 40, pp. 1003-1012, 1994.

[17] C. Xing, H. Niederreiter, and K. Y. Lam, "Constructions of algebraic-

geometry codes," IEEE Trans. Inform. Theory, vol. 45, pp. 1186-1193, 1999.

[18] C. Heegard, J. Little, and K. Saints, "Systematic encoding via Grobner Bases

for a class of algebraic-geometric Goppa codes," IEEE Trans. Inform. Theory,

vol. 41, pp. 1752-1761, 1995.

[19] I. Blake, C. Heegard, T. Høholdt, and V. Wei, "Algebraic-geometric codes,"

IEEE Trans. Inform. Theory, vol. 44, pp. 2596-2618, 1998.

[20] Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, "A method for

solving key equations for decoding Goppa codes," Inform Contr, vol. 27, pp.

87-99, 1975.

[21] D. M. Mandelbaum, "Decoding beyond the designed distance for certain

algebraic codes," Inform Contr, vol. 29, pp. 207-228, 1977.

[22] W. W. Peterson, "Encoding and error-correction procedures for Bose-

Chaudhuri codes," IRE Transactions on Information Theory, pp. 459-470,

1960.

[23] D. C. Gorenstein and N. Zierler, "A class of error-correcting codes in p
m

symbols," J. Soc. Industrial Appl. Math, vol. 9, pp. 207-214, 1960.

[24] A. N. Skorobogatov and S. G. Vladut, "On decoding of algebraic geometric

codes," IEEE Trans. Inform. Theory, vol. IT-36, pp. 1051-1060, 1990.

[25] S. Sakata, "Finding a minimal set of linear recurring relations capable of

generating a given finite two-dimensional array," J. Symbol. Comput, vol. 5,

pp. 321-337, 1998.

[26] S. Sakata, "Extension of the Berlekamp-Massey algorithm to N dimensions,"

Inform. Computat, vol. 84, pp. 207-239, 1990.

Reference

 174

[27] J. Justesen, K. J. Larsen, H. E. Jensen, and T. Høholdt, "Fast decoding of

codes from algebraic plane curves," IEEE Trans. Inform. Theory, vol. IT-38,

pp. 1663-1676, 1992.

[28] C.-W. Liu, "Determination of error values for decodign Hermitian codes with

inverser affine Fourier transform," IEICE Trans. Fundamentals, vol. E82-A,

pp. 2302-2305, 1999.

[29] M. Johnston and R. A. Carrasco, "Construction and performance of algebraic-

geometric codes over AWGN and fading channels," IEE Proc Commun, vol.

152, pp. 713-722, 2005.

[30] M. Johnston, R. A. Carrasco, and B. L. Burrows, "Design of new algebraic-

geometric codes over fading channels," IEE Electronic Letters, 2004.

[31] M. Johnston, "Design and implementation of algebraic-geometric codes over

AWGN and fading channels," in School of electrical, electronic and computer

engineering. Newcastle-upon-Tyne: Newcastle University, 2006, pp. 190.

[32] G.-L. Feng and T. R. N. Rao, "Erasures-and-errors decoding of algebraic-

geometric codes," presented at Proceeding of 1993 IEEE Inform. Theory

workshop, 1993.

[33] S. Sakata, D. A. Leonard, H. E. Jensen, and T. Høholdt, "Fast erasure-and-

error decoding of algebraic geometry codes up to teh Feng-Rao bound," IEEE

Trans. Inform. Theory, vol. IT-44, pp. 1558-1564, 1998.

[34] M. Johnston and R. A. Carrasco, "Performance of Hermitian codes using

combined error and erasure decoding," IEE Proc Commun, vol. 153, pp. 21 -

30, 2006.

[35] P. Elias, "LIst decoding for noisy channels," Res. Lab. Electron, MIT,

Cambridge, MA 1957.

[36] P. Elias, "Error-correcting codes for list decoding," Information Theory, IEEE

Transactions on, vol. 37, pp. 5-12, 1991.

[37] J. M. Wozencraft, "List decoding," Res. Lab. Electron, MIT, Cambridge, MA

Jan 1958.

[38] S. Ar, R. Lipton, and M. Sudan, "Reconstructing algebraic functions from

mixed data," SIAM Journal on computing, vol. 28, pp. 488-511, 1999.

[39] M. Sudan, "Decoding of Reed-Solomon codes beyond the error-correction

bound," J. Complexity, vol. 13, pp. 180-193, 1997.

Reference

 175

[40] M. Sudan, "Decoding of Reed-Solomon codes beyond the error-corrction

diameter," presented at 35th Annual Allerton conference on communication,

control and computing, 1997.

[41] M. Shokrollahi and H. Wasserman, "List decoding of algebraic-geometric

codes," IEEE Trans. Inform. Theory, vol. 45, pp. 432-437, 1999.

[42] M. A. Shokrollahi and H. Wasserman, "Decoding algebraic-geometric codes

beyond the error-correction bound," presented at 29th annual ACM

symposium on theory of computing, 1998.

[43] V. Guruswami, List decoding of error-correcting codes. Berlin Heidelberg:

Springer-Verlag, 2004.

[44] R. R. Nielsen, "List decoding of linear block codes." Lyngby, Denmark: Tech.

Univ. Denmark, 2001.

[45] T. K. Moon, Error correction coding - mathematical and algorithms: Wiley

Interscience, 2005.

[46] R. J. McEliece, "The Guruswami-Sudan decoding algorithm for Reed-

Solomon codes," California Institute. Tech, Pasadena, California, IPN

Progress Rep 42-153, 2003.

[47] G.-L. Feng and K. K. Tzeng, "A generalization of the Berlekamp-Massey

algorithm for multisequence shift-register synthesis with application to

decoding cyclic codes," IEEE Trans. Inform. Theory, vol. 37, pp. 1274-1287,

1991.

[48] S. H. Gao and M. A. Shokrollahi, "Computing roots of polynomials over

function fields of curves," preprint, 1998.

[49] R. R. Nielsen, "A class of Sudan-decodable codes," IEEE Trans. Inform.

Theory, vol. 46, pp. 1564-1572, 2000.

[50] R. Koetter and A. Vardy, "A complexity reducing transformation in algebraic

list decoding of Reed-Solomon codes," presented at ITW-2003, Paris, France,

2003.

[51] T. Yaghoobian and I. F. Blake, "Reed-Solomon and Algebraic Geometry

Codes," in Reed-Solomon Codes and their Applications, vol. Chapter 13, I. C.

S. a. I. I. T. Society, Ed. Piscataway, NJ: IEEE Press, 1994, pp. 293-314.

[52] L. Chen, R. A. Carrasco, and E. G. Chester, "Performance of Reed-Solomon

codes using the Guruswami-Sudan algorithm with improved interpolation

efficiency," IET Commun, vol. 1, pp. 241 - 250, 2007.

Reference

 176

[53] L. Chen, R. A. Carrasco, and E. G. Chester, "Decoding Reed-Solomon codes

using the Guruswami-Sudan algorithm," presented at CSNDSP 2006, Patras

Greece, 2006.

[54] D. Cox, J. Little, and D. O'Shea, Ideals, Varieties and Algorithms. New York:

Springer-Verlag, 1992.

[55] G. D. Forney, "Generalised minimum distance decoding," IEEE Trans. Inform.

Theory, vol. 12, pp. 125-131, 1966.

[56] H. Hasse, "Theorie der hoheren differentiale in einem algebraishen

funcktionenkorper mit vollkommenem konstantenkorper nei beliebeger

charakteristic," J. Reine. Aug. Math, vol. 175, pp. 50-54, 1936.

[57] W. C. Huffman and V. Pless, Fundamentals of error-correcting codes:

Cambridge University Press, 2003.

[58] R. Koetter, "On algebraic decoding of algebraic-geometric and cyclic codes."

Linkoping, Sweden: Univ. Linkoping, 1996.

[59] Y. Cassuto and J. Bruck, "On the average complexity of Reed-Solomon

algebraic list decoder," presented at 8th International Symposium on

Communication Theory and Applications (ISCTA), Ambleside, Lake district,

UK, 2005.

[60] W. J. Gross, F. R. Kschischang, R. Koetter, and P. G. Gulak, "Application of

algebraic soft-decision decoding of Reed-Solomon codes," IEEE Trans.

Commun, vol. 54, pp. 1224-1234, 2006.

[61] W. J. Gross, F. R. Kschischang, R. Koetter, and P. G. Gulak, "Towards a

VLSI architecture for interpolation-based soft-decision Reed-Solomon

decoders," J. VLSI Signal Process, vol. 39, pp. 93-111, 2005.

[62] E. R. Berlekamp, R. E. Peile, and S. P. Pope, "The application of error control

to communications," IEEE Commun. Mag, vol. 25, pp. 44-57, 1987.

[63] A. Vardy and Y. Be'ery, "Bit-level soft-decision decoding of Reed-Solomon

codes," IEEE Trans. Inform. Theory, vol. 39, pp. 440-444, 1991.

[64] J. G. Proakis, Digital Communications, Fourth ed: McGraw-Hill International,

2000.

[65] L. Chen, R. A. Carrasco, and M. Johnston, "List decoding performance of

algebraic geometric codes," IET Electronic Letters, vol. 42, 2006.

Reference

 177

[66] L. Chen, R. A. Carrasco, and M. Johnston, "Reduced complexity interpolation

for list decoding Hermitian codes," IEEE Trans. Wireless Commmun,

Accepted for publication.

[67] L. Chen, R. A. Carrasco, M. Johnston, and E. G. Chester, "Efficient

factorisation algorithm for list decoding algebraic-geometric and Reed-

Solomon codes," presented at ICC 2007, Glasgow, UK, 2007.

[68] L. Chen and R. A. Carrasco, "Efficient list decoder for algebraic-geometric

codes," presented at 9th International Symposium on Communication Theory

and Application (ISCTA'07), Ambleside, Lake district, UK, 2007.

[69] L. Chen, R. A. Carrasco, and M. Johnston, "Soft-decision list decoding of

Hermitian codes," IEEE Trans. Commun, Submitted for publication.

List of Symbols

 178

List of Symbols

Symbols Definitions

d The minimal Hamming distance

d
*

The designed minimal distance

k Dimension of a code

n Length of a code

r Code rate / degree of an algebraic curve

κ Relative minimum distance rate

R / ℜ Received word (vector)

τ Error-correction capability of a code

τGS Error-correction capability of the Guruswami-Sudan algorithm

τ unique Error-correction capability of the unique decoding algorithm

GF(q) Galois field with size q

w Positive integers with any power of base number 2

χ General algebraic curve

Hw Hermitian curve defined in GF(w
2
)

pi Affine point on an algebraic curve

p∞ Point of infinity of an algebraic curve

N Total number of affine points and point of infinity on an

algebraic curve / Nonnegative integers

σ Primitive element of a Galois field

v Order (pole/zero) of a rational function

D, G Divisors of an algebraic-geometric code

L A sequence of rational functions

l(G) Dimension of a code defined by devisor G

g Genus of an algebraic curve

GRS Generator matrix for a Reed-Solomon code

GHerm Generator matrix for a Hermitian code

f(x) Message polynomial

c Code word

ψ Zero basis functions

List of Symbols

 179

φ Pole basis functions

Q(x, y) / Q(x, y, z) Interpolated polynomial

m Interpolation multiplicity

α, β Zero parameters for interpolation

Fq[x, y] / Fq[x, y, z] A ring or polynomials with variables x, y, (z) and coefficients

are chosen from Galois field GF(q)

deg1, k-1(x
a
y

b
) (1, k - 1)-weighted degree of monomial x

a
y

b

zw,1deg (φaz
b
) (1, wz)-weighted degree of monomial φaz

b

wz Weighted-degree of variable z

Sx(T), Sy(T) Parameters for hard-decision list decoding of Reed-Solomon

codes

ord Lexicographic order of a monomial (x
a
y

b
/ φaz

b
)

lod Leading order of an interpolated polynomial (Q(x, y) / Q(x, y, z))

Cm / CM Total number of iterations in interpolation with respect to

multiplicity m (hard-decision) / Total number of iterations in

interpolation with respect to multiplicity matrix M (soft-

decision)

τm Error-correction capability of the list decoding algorithm by

using interpolation multiplicity m

lm The maximal number of output list of the hard-decision list

decoding algorithm using multiplicity m

lM The maximal number of output list of the soft decision list

decoding algorithm using multiplicity matrix M

ik Iteration index of the interpolation process

∆ Hasse derivative evaluation of polynomial Q(x, y) / zero

condition evaluation of polynomial Q(x, y, z)

)(
),(

QD ii yx

αβ (α, β) Hasse derivative evaluation of polynomial Q(x, y) at point

(xi, yi)

)(
),(

QD ii rp

αβ (α, β) Hasse derivative evaluation of polynomial Q(x, y, z) at

point (pi, ri)

p / h Candidate message polynomial from factorisation

Λ(p, R) / Λ(h, R) Number of code word symbols that the evaluation of p / h

List of Symbols

 180

matches received word R

e Error weighted of a hard-decision received word

γ(e) Error dependent interpolation cost of an interpolated polynomial

ia(e) Error dependent index for the complexity reduction scheme

N1, k-1(δ) The number of bivariate monomial x
a
y

b
 with (1, k-1)-weighted

degree not greater than a nonnegative integer δ

∆1, k-1(v) The minimal value of δ that guarantees N1, k-1(δ) is greater than a

nonnegative integer v

p(· | ·) Probability density / mass function

Pr(· | ·) Probability value

Π Reliability matrix

πi, j Entries of the reliability matrix

M Multiplicity matrix

mi, j Entries of the multiplicity matrix

S Modulated symbols

N0 Power of noise

s A desire value for initialization of Algorithm 5.1 / Algorithm

7.1

SM(c) Code word score with respect to multiplicity matrix M

αγ ,, ipa The corresponding coefficient between a Hermitian curve’s pole

basis function φa and zero basis function αψ ,ip

tm Hard-decision list decoding parameter for Hermitian code

V Classes of interpolated polynomial for Algorithm 6.2

δ, u, λ Nonnegative integers for defining classes V

)(s

Lφ /)(s

LC Leading monomial / leading coefficient of polynomial Q
(s)

during the factorisation process for Hermitian codes

zwN ,1 (δ) The number of monomials with (1, wz)-weighted degree not

greater than δ

zw,1∆ (v) The minimal value of δ that guarantees
zwN ,1 (δ) is greater v

List of Abbreviations

 181

List of Abbreviations

Abbreviations Definitions

AG Algebraic-geometric codes

AWGN Additive white Gaussian noise

BM Berlekamp-Massey algorithm

BPSK Binary phase shift keying

CD Compact disc

DVD Digital versatile disc

GS Guruswami-Sudan algorithm

GMD Generalised minimum distance

KV Koetter-Vardy algorithm

LC Leading coefficient

LM Leading monomial

QPSK Quadrature phase shift keying

RS Reed-Solomon codes

RCS Recursive coefficient search

List of Figures

 182

List of Figures

Figures Page

Figure 3.1 Idea of list decoding 35

Figure 3.2 Geometric illustration of list decoding 36

Figure 4.1 Coefficients deduction in the Roth-Ruckenstein’s algorithm 61

Figure 4.2 (a)(b) Computational complexity analyses for the modified GS

algorithm

65

Figure 4.3 (a)(b)Hard-decision list decoding performance of Reed-Solomon

code (63, 15)

69

Figure 4.4 (a)(b) Hard-decision list decoding performance of Reed-Solomon

code (63, 31)

70

Figure 5.1 Soft-decision list decoding scheme 73

Figure 5.2 Geometric analysis of table 4.1a 75

Figure 5.3 QPSK modulation mapping scheme 78

Figure 5.4 Complexity reduction analysis for soft-decision list decoding of

Reed-Solomon code (63, 15)

91

Figure 5.5 (a)(b) Soft-decision list decoding of Reed-Solomon code (63, 15) 92

Figure 5.6 (a)(b) Soft-decision list decoding of Reed-Solomon code (63, 31) 93

Figure 6.1 Complexity analysis for the interpolation of GS decoding Hermitian

code (64, 19, 40)

114

Figure 6.2 Recursive coefficient search 123

Figure 6.3 Efficiency improved list decoding structure for Hermitian codes 128

Figure 6.4 (a)(b) Hard-decision list decoding performance of Hermitian code

(64, 19, 20)

130

Figure 6.5 (a)(b) Hard-decision list decoding performance of Hermitian code

(64, 29, 30)

131

Figure 6.6 (a)(b) Hard-decision list decoding performance of Hermitian code

(64, 39, 20)

132

Figure 6.7 (a)(b) Hard-decision list decoding performance of Hermitian code

(512, 153, 332)

133

Figure 6.8 (a)(b) Hard-decision list decoding performance of Hermitian code

(512, 289, 196)

134

List of Figures

 183

Figure 6.9 (a)(b) Hard-decision list decoding performance comparison of

Hermitian code (512, 153, 332) and Reed-Solomon code (64, 19, 45)

136-

137

Figure 6.10 (a)(b) Hard-decision list decoding performance comparison of

Hermitian code (512, 153, 332) and Reed-Solomon code (255, 76, 180)

138

Figure 6.11 (a)(b) Hard-decision list decoding performance comparison of

Hermitian code (512, 289, 196) and Reed-Solomon code (255, 144, 112)

139

Figure 7.1 Geometric analysis of Table 6.1a 146

Figure 7.2 Complexity reduction analysis for soft-decision list decoding of

Hermitian code (64, 19, 40)

156

Figure 7.3 (a)(b) Soft-decision list decoding of Hermitian code (64, 19, 40) 158

Figure 7.4 (a)(b) Soft-decision list decoding of Hermitian code (64, 29, 30) 159

Figure 7.5 (a)(b) Soft-decision list decoding of Hermitian code (64, 39, 20) 160

Figure 7.6 (a)(b) Soft-decision list decoding of Hermitian code (512, 153, 332) 161

Figure 7.7 (a)(b) Soft-decision list decoding of Hermitian code (512, 289, 196) 162

List of Tables

 184

List of Tables

Tables Page

Table 3.1 projective points on y = 0 in the (x, y, 1) system 22

Table 3.2 projective points on y = 0 in the (1, y, z) system 22

Table 3.3 projective points on x
3
 + y

2
z + yz

2
 = 0 in the (x, y, 1) system 22

Table 3.4 projective points on x
3
 + y

2
z + yz

2
 = 0 in the (x, 1, z) system 22

Table 3.5 projective points on x
3
 + y

2
z + yz

2
 = 0 in the (1, y, z) system 23

Table 4.1a (1, 4) – weighted degree of monomial x
a
y

b
 44

Table 4.1b (1, 4) – lexicographic order of monomial x
a
y

b
 45

Table 4.2 Iterative process of example 4.4 57

Table 4.3a Computational complexity for Reed-Solomon code (63, 15) 63

Table 4.3b Computational complexity for Reed-Solomon code (63, 31) 64

Table 4.4a ia(e) for Reed-Solomon code (63, 15) 67

Table 4.4b ia(e) for Reed-Solomon code (63, 31) 67

Table 5.1 Decoding complexity comparison for soft-decision and hard-

decision list decoding of Reed-Solomon code (63, 15)

94

Table 5.2 Decoding complexity comparison for soft-decision and hard-

decision list decoding of Reed-Solomon code (63, 31)

94

Table 6.1a (1, 4)-weighted degree of monomial φaz
b
 (φa ∈ L2) 101

Table 6.1b (1, 4)-lexicographic order of monomial φaz
b
 (φa ∈ L2) 101

Table 6.2 Corresponding coefficients αγ ,, pa given p = (1, σ) 104

Table 6.3 Pre-determined corresponding coefficients for example 6.3 117

Table 6.4 Recursive coefficient search from h3 = 0 125

Table 6.5 Recursive coefficient search from h3 = σ 126

Table 6.6 List decoding parameters 129

Table 6.7 Simulation results (Figs. 6.4 to 6.8) analysis 135

Table 6.8 Simulation results (Figs. 6.10 to 6.11) analysis 140

Table 7.1 Interpolation complexity comparison for soft-decision and hard- 163

List of Tables

 185

decision list decoding

Appendix A: Finite Field Calculation of GF(4)

 186

Appendix A:

Finite Field Calculation of

GF(4)

Appendix A: Finite Field Calculation of GF(4)

 187

σ is a primitive element in GF(4) satisfying σ2
 + σ + 1 =0.

Addition Table:

+ 0 1 σσσσ σσσσ2

0 0 1 σ σ2

1 1 0 σ2
 σ

σσσσ σ σ2
 0 1

σσσσ2 σ2
 σ 1 0

Multiplication Table:

×××× 0 1 σσσσ σσσσ2

0 0 0 0 0

1 0 1 σ σ2

σσσσ 0 σ σ2
 1

σσσσ2 0 σ2
 1 σ

Appendix B: Finite Field Calculation of GF(8)

 188

Appendix B:

Finite Field Calculation of

GF(8)

Appendix B: Finite Field Calculation of GF(8)

 189

σ is a primitive element in GF(8) satisfying σ3
 + σ + 1 =0.

Addition Table:

+ 0 1 σσσσ σσσσ3 σσσσ2 σσσσ6 σσσσ4 σσσσ5

0 0 1 σ σ3
 σ2

 σ6
 σ4

 σ5

1 1 0 σ3
 σ σ6

 σ2
 σ5

 σ4

σσσσ σ σ3
 0 1 σ4

 σ5
 σ2

 σ6

σσσσ3 σ3
 σ 1 0 σ5

 σ4
 σ6

 σ2

σσσσ2 σ2
 σ6

 σ4
 σ5

 0 1 σ σ3

σσσσ6 σ6
 σ2

 σ5
 σ4

 1 0 σ3
 σ

σσσσ4 σ4
 σ5

 σ2
 σ6 σ σ3

 0 1

σσσσ5 σ5
 σ4

 σ6
 σ2

 σ3
 σ 1 0

Multiplication Table:

×××× 0 1 σσσσ σσσσ3 σσσσ2 σσσσ6 σσσσ4 σσσσ5

0 0 0 0 0 0 0 0 0

1 0 1 σ σ3
 σ2

 σ6
 σ4

 σ5

σσσσ 0 σ σ2
 σ4 σ3

 1 σ5
 σ6

σσσσ3 0 σ3
 σ4

 σ7
 σ5

 σ2
 1 σ

σσσσ2 0 σ2
 σ3

 σ5
 σ4

 σ σ6 1

σσσσ6 0 σ6
 1 σ2

 σ σ5 σ3
 σ4

σσσσ4 0 σ4
 σ5

 1 σ6
 σ3

 σ σ2

σσσσ5 0 σ5 σ6 σ 1 σ4
 σ2

 σ3

Appendix C: Finite Field Calculation of GF(16)

 190

Appendix C:

Finite Field Calculation of

GF(16)

Appendix C: Finite Field Calculation of GF(16)

 191

σ is a primitive element in GF(16) satisfying σ4
 + σ + 1 = 0.

Addition Table:

+ 0 1 σσσσ σσσσ4 σσσσ2 σσσσ8 σσσσ5 σσσσ10 σσσσ3 σσσσ14 σσσσ9 σσσσ7 σσσσ6 σσσσ13 σσσσ11 σσσσ12

0 0 1 σ σ4
 σ2

 σ8
 σ5

 σ10
 σ3

 σ14
 σ9

 σ7
 σ6

 σ13
 σ11

 σ12

1 1 0 σ4
 σ σ8

 σ2
 σ10 σ5

 σ14 σ3
 σ7

 σ9 σ13 σ6
 σ12 σ11

σσσσ σ σ4
 0 1 σ5

 σ10
 σ2

 σ8
 σ9

 σ7
 σ3

 σ14
 σ11

 σ12
 σ6

 σ13

σσσσ4 σ4
 σ 1 0 σ10 σ5

 σ8
 σ2

 σ7
 σ9

 σ14 σ3
 σ12 σ11 σ13 σ6

σσσσ2 σ2
 σ8

 σ5
 σ10 0 1 σ σ4

 σ6
 σ13 σ11 σ12 σ3

 σ14 σ9
 σ7

σσσσ8 σ8
 σ2 σ10

 σ5
 1 0 σ4

 σ σ13 σ6
 σ12 σ11 σ14 σ3

 σ7
 σ9

σσσσ5 σ5
 σ10

 σ2
 σ8

 σ σ4
 0 1 σ11 σ12 σ6

 σ13 σ9
 σ7

 σ3
 σ14

σσσσ10 σ10
 σ5

 σ8
 σ2

 σ4
 σ 1 0 σ12 σ11 σ13 σ6

 σ7
 σ9

 σ14 σ3

σσσσ3 σ3
 σ14

 σ9
 σ7

 σ6
 σ13 σ11 σ12 0 1 σ σ3 σ2

 σ8
 σ5

 σ10

σσσσ14 σ14
 σ3

 σ7
 σ9

 σ13 σ6
 σ12 σ11 1 0 σ4 σ σ8

 σ2
 σ10 σ5

σσσσ9 σ9
 σ7

 σ3
 σ14 σ11 σ12 σ6

 σ13 σ σ4 0 1 σ5 σ10
 σ2

 σ8

σσσσ7 σ7
 σ9

 σ14
 σ3

 σ12 σ11 σ13 σ6 σ4 σ 1 0 σ10 σ5 σ8
 σ2

σσσσ6 σ6
 σ13 σ11 σ12 σ3 σ14 σ9

 σ7
 σ2

 σ8
 σ5

 σ10 0 1 σ σ4

σσσσ13 σ13
 σ6

 σ12 σ11 σ14 σ3
 σ7

 σ9
 σ8

 σ2 σ10 σ5
 1 0 σ4

 σ

σσσσ11 σ11
 σ12 σ6

 σ13 σ9
 σ7

 σ3
 σ14 σ5

 σ10
 σ2

 σ8
 σ σ4

 0 1

σσσσ12 σ12 σ11 σ13 σ6
 σ7

 σ9
 σ14 σ3

 σ10
 σ5

 σ8
 σ2

 σ4
 σ 1 0

Appendix C: Finite Field Calculation of GF(16)

 192

Multiplication Table:

×××× 0 1 σσσσ σσσσ4 σσσσ2 σσσσ8 σσσσ5 σσσσ10 σσσσ3 σσσσ14 σσσσ9 σσσσ7 σσσσ6 σσσσ13 σσσσ11 σσσσ12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 σ σ4
 σ2

 σ8
 σ5

 σ10
 σ3

 σ14
 σ9

 σ7
 σ6

 σ13
 σ11

 σ12

σσσσ 0 σ σ2
 σ5

 σ3
 σ9

 σ6
 σ11 σ4

 1 σ10
 σ8

 σ7
 σ14

 σ12 σ13

σσσσ4 0 σ4
 σ5

 σ8
 σ6

 σ12
 σ9

 σ14 σ7 σ3
 σ13 σ11 σ10

 σ2 1 σ

σσσσ2 0 σ2
 σ3

 σ6
 σ4

 σ10 σ7
 σ12 σ5

 σ σ11 σ9
 σ8

 1 σ13 σ14

σσσσ8 0 σ8
 σ9

 σ12 σ10
 σ σ13 σ3

 σ11 σ7
 σ2 1 σ14 σ6 σ4 σ5

σσσσ5 0 σ5
 σ6

 σ9 σ7
 σ13 σ10 1 σ8

 σ4
 σ14 σ12 σ11 σ3 σ σ2

σσσσ10 0 σ10
 σ11 σ14 σ12 σ3 1 σ5 σ13 σ9

 σ4 σ2 σ σ8
 σ6

 σ7

σσσσ3 0 σ3
 σ4 σ7 σ5 σ11 σ8 σ13 σ6 σ2 σ12 σ10 σ9

 σ σ14 1

σσσσ14 0 σ14
 1 σ3 σ σ7

 σ4 σ9
 σ2 σ13 σ8 σ6 σ5 σ12 σ10 σ11

σσσσ9 0 σ9
 σ10 σ13 σ11 σ2 σ14 σ4 σ12 σ8 σ3 σ 1 σ7 σ5 σ6

σσσσ7 0 σ7
 σ8

 σ11 σ9 1 σ12 σ2 σ10 σ6 σ σ14 σ13 σ5 σ3 σ4

σσσσ6 0 σ6
 σ7 σ10 σ8 σ14 σ11 σ σ9 σ5 1 σ13 σ12 σ4

 σ2 σ3

σσσσ13 0 σ13
 σ14 σ2 1 σ6 σ3 σ8 σ σ12 σ7 σ5 σ4 σ11 σ9 σ10

σσσσ11 0 σ11
 σ12 1 σ13 σ4 σ σ6 σ14 σ10 σ5 σ3 σ2 σ9 σ7 σ8

σσσσ12 0 σ12 σ13 σ σ14 σ5 σ2 σ7 1 σ11 σ6 σ4 σ3 σ10 σ8 σ9

Appendix D: Hard-Decision List Decoding Parameters of Some Hermitian codes

 193

Appendix D:

Hard-Decision List

Decoding Parameters of

Some Hermitian Codes

Appendix D: Hard-Decision List Decoding Parameters of Some Hermitian codes

 194

Hermitian code (64, 19, 40):

∞pv (z
-1

) =
∞pv (φ18

-1
) =

∞pv ((xy
4
)
-1

) = 24, τGS = 24, and

m 1 2 3 4 5 8 17

lm 2 3 5 7 8 13 28

tm 2 18 9 1 16 14 7

τm 13 18 20 21 22 23 24 = τGS

Hermitian code (64, 29, 30):

∞pv (z
-1

) =
∞pv (φ28

-1
) =

∞pv ((xy
6
)
-1

) = 34, τGS = 17, and

m 1 2 3 4 5 9 35

lm 1 3 4 5 7 12 48

tm 21 2 14 27 6 23 12

τm 8 11 13 14 15 16 17 = τGS

Hermitian code (64, 39, 20):

∞pv (z
-1

) =
∞pv (φ38

-1
) =

∞pv ((xy
8
)
-1

) = 44, τGS = 10, and

m 1 2 3 4 6 11

lm 1 2 3 5 7 13

tm 16 26 36 2 20 21

τm 3 6 7 8 9 10 = τGS

Appendix D: Hard-Decision List Decoding Parameters of Some Hermitian codes

 195

Hermitian code (512, 153, 332):

∞pv (z
-1

) =
∞pv (φ152

-1
) =

∞pv ((y
20

)
-1

) = 180, τGS = 208, and

m 1 2 3 4 5 6 7 8 9 10 11 12

lm 2 3 5 7 8 10 12 13 15 17 19 20

tm 13 142 90 37 161 105 50 174 118 62 6 129

τm 138 170 181 187 191 194 196 197 198 199 200 201

m 14 17 20 26 37 63 213

lm 24 29 34 44 62 106 359

tm 17 28 39 61 161 134 131

τm 202 203 204 205 206 207 208 = τGS

Hermitian code (512, 289, 196):

∞pv (z
-1

) =
∞pv (φ288

-1
) =

∞pv ((x
8
y

28
)
-1

) = 316, τGS = 109, and

m 1 2 3 4 5 6 7 8 9 11 12 15

lm 1 2 4 5 6 7 9 10 11 14 15 19

tm 126 224 6 91 177 266 39 123 210 68 154 98

τm 69 83 88 94 97 98 100 101 102 103 104 105

m 19 26 40 93

lm 24 33 51 118

tm 127 99 43 190

τm 106 107 108 109 = τGS

Note: multiplicity m listed in the above tables are the minimal value in order to have

the corresponding error-correction capability lower bound τm for hard-decision list

decoding of Hermitian codes.

	Abstract
	Chapter 1
	Introduction
	1.1 Introduction
	1.2 Motivation and Challenges
	1.3 Aims and Objectives
	1.4 Statement of Originality
	1.5 Organisation of the Thesis
	1.6 Publications Arising From This Project

	Chapter 2
	Literature Survey
	2.1 Introduction
	2.2 Construction of Reed-Solomon Codes and Algebraic-Geometric Codes
	2.3 Unique Decoding Algorithms
	2.4 List Decoding Algorithms
	2.5 Conclusion

	Chapter 3
	Theoretical Background
	3.1 Introduction
	3.2 Algebraic-Geometric Codes
	3.3 Reed-Solomon Codes
	3.4 Hermitian Codes
	3.5 List Decoding
	3.6 Conclusions

	Chapter 4
	Hard-Decision List Decoding of Reed-Solomon Codes
	4.1 Introduction
	4.2 Overview of the GS Algorithm
	4.2.1 Interpolation and Factorisation
	4.2.2 Decoding Parameters

	4.3. Interpolation
	4.3.1. Interpolation Theorem
	4.3.2. Iterative Polynomial Construction
	4.3.3. Complexity Reduced Modification

	4.4 Factorisation
	4.4.1 Factorisation Theorem
	4.4.2 Recursive Coefficient Search

	4.5 Complexity Analysis
	4.6 Simulation Results
	4.7 Conclusion

	Chapter 5
	Soft-Decision List Decoding of Reed-Solomon Codes
	5.1 Introduction
	5.2 Prerequisite Knowledge
	5.3 Reliability Information
	5.4 From Reliability Values to Multiplicity Values
	5.5 Soft-Decision Solution
	5.6 Complexity reduction Interpolation and Factorisation
	5.7 Simulation Results Discussion
	5.8 Conclusion

	Chapter 6
	Hard-Decision List Decoding of Hermitian Codes
	6.1 Introduction
	6.2 Prerequisite Knowledge
	6.3 GS Decoding of Hermitian Codes
	6.4 Determining the Corresponding Coefficients
	6.5 Complexity reduction Interpolation
	6.6 General Factorisation
	6.7 Simulation Results Discussion
	6.7.1 Comparison with Unique Decoding Algorithm
	6.7.2 Comparison with Reed-Solomon Codes

	6.8 Conclusion

	Chapter 7
	Soft-Decision List Decoding of Hermitian Codes
	
	7.4.1 Reliability Information
	7.4.2 System Solution
	7.6.1 Complexity Based Comparison with Hard-Decision
	7.6.2 Performance Assessment with a Large Length of Output List
	7.6.3 Asymptotically Optimal Performance Assessment

	Chapter 8
	Conclusion and Future Work
	8.1 Conclusion of the Thesis
	8.2 Future Work

	Reference:
	List of Symbols
	List of Abbreviations
	List of Figures
	List of Tables
	Appendix A:
	Finite Field Calculation of GF(4)
	Appendix B:
	Finite Field Calculation of GF(8)
	Appendix C:
	Finite Field Calculation of GF(16)
	Appendix D:
	Hard-Decision List Decoding Parameters of Some Hermitian Codes

