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Abstract

Abstract

This thesis presents an efficient list decoding system for Reed-Solomon codes and
algebraic-geometric codes. Reed-Solomon codes are non-binary block codes, which
are widely used in communication and storage systems. However, the availability of
the codes and their performance are limited by the code length which can not exceed
the size of finite field. Compared with Reed-Solomon codes which are defined in the
same finite field, algebraic-geometric codes are usually longer and there are more
available codes. Their longer code length results larger designed minimum distance
which enables the code to correct more errors in a code word frame. Therefore,
algebraic-geometric codes tend to be a suitable replacement for Reed-Solomon codes

in future applications.

The list decoding system can correct errors beyond the half distance boundary which
is the capability bottleneck for the conventional unique decoding algorithm. This
project’s research produces three main contributions to the list decoding system with
respect to its decoding efficiency and wider application to algebraic-geometric codes.
First, a general complexity reduction scheme for the complexity dominant
interpolation process is proposed. The scheme can be applied list decoding of Reed-
Solomon and algebraic-geometric codes, as well as hard and soft decision decoding
systems. Second, the list decoding process of Hermitian code has been engineered
with a clear mathematical framework. The first simulation results for list decoding of
Hermitian codes are presented, showing significant coding gains can be achieved over
the unique decoding algorithm. For improving the efficiency of list decoding of
Hermitian codes, a supported algorithm for calculating the key parameters (the
corresponding coefficients between a Hermitian curve’s pole basis monomials and
zero basis functions) is proposed. Third, the first soft-decision list decoder for
Hermitian codes has been developed, in which a priori process that obtains the
received information’s reliability values and converts them into interpolation
multiplicity values is introduced. During this conversion, a practical stopping rule
based on the designed length of output list is proposed. The obtained simulation
results show that further improvement can be achieved with over the hard-decision

decoding scheme, but with only small increase in decoding complexity.
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Chapter 1 Introduction

1.1 Introduction

Algebraic-geometric codes were first introduced by Goppa [1], showing error-
correction codes can be constructed from algebraic curves. Among them, Reed-
Solomon codes [2] which were introduced in the 1960s are in fact the simplest
algebraic-geometric codes and are constructed from a straight line. Today, Reed-
Solomon codes are widely used in both communications and storage systems.
Compared with Reed-Solomon codes, general algebraic-geometric codes that are
constructed from the same finite field have longer code lengths, resulting in a larger
minimum distance of the code and hence more errors can be corrected in a code word
frame. Therefore, algebraic-geometry codes are suitable to replace Reed-Solomon

codes in future advanced applications.

To apply algebraic-geometric and Reed-Solomon codes, developing a decoding
algorithm with good error-correction capability and low decoding complexity is
important. For algebraic-geometric and Reed-Solomon codes, the most conventional
and efficient decoding algorithms are called unique decoding algorithms. Specifically,
for Reed-Solomon codes, the best unique decoding algorithm is the Berlekamp-
Massey algorithm [3, 4], while for algebraic-geometric codes, the best unique
decoding algorithm is the Sakata algorithm [5] with Feng and Rao’s majority voting
[6]. The unique decoding algorithm determines syndromes from the received word.
Then based on the syndromes, error locations and magnitudes are calculated in order
to recover the correct transmitted code word. The main limitation of the unique

decoding algorithms is their error-correction which cannot exceed the half distance

bound L%J , where d indicates the minimum Hamming distance of the code.

To achieve better error-correction capability for algebraic-geometric and Reed-
Solomon codes, the list decoding algorithm is an alternative choice. An improved list
decoding scheme which can correct errors beyond the half distance bound for both
algebraic-geometric and Reed-Solomon codes was introduced by Guruswami and
Sudan [7] in 1999. This decoding algorithm can provide better performance than the

conventional unique decoding algorithms. Based on Guruswami-Sudan’s list decoding
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scheme, further improvements can be achieved by the soft-decision list decoding
algorithm, which was introduced by Koetter and Vardy [8] in 2003 for Reed-Solomon

codes.

1.2 Motivation and Challenges

Reed-Solomon codes are widely applied by the communication and storage industry,
such as deep-space satellite communications, high-speed modems, compact disc (CD),
hard drive, digital versatile disc (DVD) etc. As they are constructed from the affine
points on a straight line, the size of Reed-Solomon codes cannot exceed the size of the
finite field over which it is defined. Therefore, for more advanced applications, long
codes with better error-correction capability are required. To achieve this, Reed-
Solomon codes must be defined over a larger finite field. But as a consequence, the
decoding complexity will be increased exponentially. Another solution is to use more
advanced coding schemes — algebraic-geometric codes. Compared with Reed-
Solomon codes defined over the same finite field, algebraic-geometric codes are
longer as they are constructed from the affine points of an algebraic curve rather than
a straight line, resulting in greater errors can be corrected in a code word frame.
Therefore, more powerful algebraic-geometric codes can be constructed from a

moderate size of finite field.

Before 1999, the best known decoding algorithms for Reed-Solomon and algebraic-
geometric codes could only correct errors up to the half distance bound, limiting these
codes’ performance over deeply corrupted scenarios. In 1999, Guruswami and
Sudan’s list decoding scheme [7] exceeded this bound for both Reed-Solomon and
algebraic-geometric codes. The general idea of Guruswami-Sudan’s list decoding
scheme is to reconstruct a list of most likely transmitted code words based on a given
received word. This code word reconstruction is performed by two processes:
interpolation and factorisation. Building on the work of Guruswami and Sudan,
Hoholdt and Nielsen [9] presented a mathematical framework for the list decoding of
one of the best performing algebraic-geometric codes — Hermitian codes. Koetter and
Vardy [8] showed that further list decoding improvements for Reed-Solomon codes

can be achieved by a soft-decision scheme. It is also realised that this performance
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improvement only introduces a small increase in complexity compared with

Guruswami-Sudan’s hard-decision list decoding scheme.

Although the list decoding algorithm can produce better performance, it is at the
expense of higher decoding complexity compared to the conventional unique
decoding algorithms. So far, few papers in the literature have addressed this problem
as it is still a new decoding algorithm which is not well known by many researchers.
The only performance evaluation on soft-decision and hard-decision list decoding of
Reed-Solomon codes appeared in Koetter and Vardy’s paper [8], but there is still a
lack of analysis on how decoding complexity changes with regards to the critical
decoding parameter — interpolation multiplicity. For list decoding of algebraic-
geometric codes, a soft-decision scheme is yet to be developed and there is no
performance evaluation with regards to any type of algebraic-geometric code. This is
mainly due to the algorithm’s high decoding complexity and the mathematical
explanation of the algorithm being not well defined. For example, to list decode of
Hermitian codes, some parameters (corresponding coefficients of the code) of the
codes are necessary for efficient implementation of the interpolation process.

However, there is no suggested method on how to determine these parameters.

1.3 Aims and Objectives

This thesis aims to design an efficient decoding algorithm for both Reed-Solomon and
algebraic-geometric codes and develop a software platform using the C programming
language to evaluate the decoder’s performance over both additive white Gaussian
noise (AWGN) and Rayleigh fading channels. List decoding for algebraic-geometric
codes is a new algorithm with better error-correction potential. In this thesis, both the
hard-decision and soft-decision list decoding algorithms will be investigated for Reed-
Solomon and algebraic-geometric codes. The achieved simulation results will be
compared with the conventional unique decoding algorithms to show how much

improvement can be gained.

The objectives of this research are:
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e Reduce the decoding complexity for both hard-decision and soft-decision list

decoding algorithms.
e Develop a soft-decision list decoding algorithm for algebraic-geometric codes.

e Develop a software platform for the efficient list decoder to evaluate its

performance for both Reed-Solomon and algebraic-geometric codes.

1.4 Statement of Originality

This research project has investigated a complexity reduction scheme for the hard-
decision list decoding of Reed-Solomon codes. This scheme reduces decoding
complexity based on identifying and eliminating some unnecessary polynomials
during the interpolation process. In fact, this is a general scheme which can also be
applied to both soft-decision and hard-decision list decoding of Reed-Solomon and
algebraic-geometric codes. Decoding complexity can be reduced by up to

approximately 40%.

Further developing the mathematical framework for list decoding of Hermitian codes
[9], this project produced the following modifications to it in order to obtain the first
simulation results: First, an algorithm is proposed to determine the important
parameters — corresponding coefficients of Hermitian codes. With the knowledge of
these corresponding coefficients, the interpolation process can be efficiently
implemented. Second, the developed complexity reduction scheme for interpolation is
applied. Finally, based on the work of [10-12], a general factorisation algorithm is
proposed, which can be efficiently implemented for both Reed-Solomon and

algebraic-geometric codes.

This research project has also developed the first soft-decision list decoding algorithm
for one of the best performing algebraic-geometric codes — Hermitian codes. It is
shown that significant coding gains can be further achieved over the hard-decision list

decoding scheme.
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1.5 Organisation of the Thesis

The following chapters of the thesis are organised as follows: Chapter 2 will give a
literature survey on the construction of algebraic-geometric codes, the conventional
unique decoding algorithms and the list decoding algorithms which will be the main
content of the thesis. Chapter 3 presents a theoretical background of this thesis,
including some important parameters for constructing an algebraic-geometric code
and the corresponding list decoding algorithm. Chapter 4 presents a hard-decision list
decoding algorithm for Reed-Solomon codes introducing an original complexity
reduction scheme while Chapter 5 presents a soft-decision list decoding algorithm for
Reed-Solomon codes. Chapter 6 presents a hard-decision list decoding algorithm for
Hermitian codes suggesting complexity reduction modifications while Chapter 7
presents the soft-decision list decoding algorithm for Hermitian codes. The
conclusions of this thesis and some future research suggestions are presented in

Chapter 8.

1.6 Publications Arising From This Project

So far, this project has resulted in 1 IET proceeding paper, 1 IET electronic letter and
3 conference papers being published. In addition, there is 1 IEEE transaction paper
being accepted for publication and 1 IEEE transaction paper being submitted for

review. These accepted and submitted publications are listed below as:

e L. Chen, R. A. Carrasco, and E. G. Chester, "Performance of Reed-Solomon

codes using the Guruswami-Sudan algorithm with improved interpolation

efficiency," IET Commun, vol. 1, pp. 241 - 250, 2007.

e L. Chen, R. A. Carrasco, and M. Johnston, "List decoding performance of
algebraic geometric codes," IET Electronic Letters, vol. 42, 2006.

e L. Chen, R. A. Carrasco, M. Johnston, and E. G. Chester, "Efficient
factorisation algorithm for list decoding algebraic-geometric and Reed-
Solomon codes," presented at International Conference of Communications

(ICC) 2007, Glasgow, UK, 2007.

e L. Chen, R. A. Carrasco, and E. G. Chester, "Decoding Reed-Solomon codes

using the Guruswami-Sudan algorithm," presented at Communication Systems,

10
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Networks, and Digital Signal Processing (CSNDSP) 2006, Patras Greece,
2006.

L. Chen and R. A. Carrasco, "Efficient list decoder for algebraic-geometric
codes," presented at 9th International Symposium on Communication Theory
and Application (ISCTA'07), Ambleside, Lake district, UK, 2007.

L. Chen, R. A. Carrasco, and M. Johnston, "Reduced complexity interpolation
for list decoding Hermitian codes," IEEE Trans. Wireless Commmun, accepted

for publication.

L. Chen, R. A. Carrasco, and M. Johnston, "Soft-decision list decoding of

Hermitian codes," IEEE Trans. Commun, Submitted for publication.

11
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Chapter 2 Literature Survey

2.1 Introduction

This chapter presents a literature survey for the thesis. It starts from the construction
of Reed-Solomon codes and general algebraic-geometric codes. Most of the important
papers in the literature which give construction methods for general algebraic-
geometric codes will be summarised in this chapter. Following that, the decoding
methods for Reed-Solomon and algebraic-geometric codes will be briefly reviewed.
There are mainly two types of decoding methods: unique decoding algorithms and list
decoding algorithms. The unique decoding algorithms are conventional methods
which are well developed and widely used nowadays. List decoding algorithms were
only rediscovered in 1990s for their use with Reed-Solomon and algebraic-geometric
codes. This type of algorithms tends to have greater performance than the unique

decoding algorithms but with a higher complexity.

2.2 Construction of Reed-Solomon Codes and Algebraic-Geometric

Codes

Reed-Solomon codes were introduced in the 1960s by Reed and Solomon [2]. They
are non-binary block codes constructed from a generator polynomial defined over a
finite field [13]. Reed-Solomon codes are widely used in wireless communication and
storage systems and are still considered to be one of the most powerful error-
correction codes. Goppa [1] introduced algebraic-geometric codes in the 1980s.
Algebraic-geometric codes are constructed from an algebraic curve defined over a
finite field. In fact, Reed-Solomon codes can be considered as a special case of

algebraic-geometric codes constructed from a straight line.

The Gilbert-Varshamov bound [3, 13] defines a lower bound for a code’s code rate r
= k/n and its relative minimum distance rate x = d/n, where k, n and d are positive
integers, and they are the dimension, length and minimum distance of the code
respectively. Any code with parameters meeting this bound is said to be
asymptotically good. Tsfasman, Vladut and Zink [14] presented method to construct
asymptotically good algebraic-geometric codes from modular curves that exceed the

Gilbert-Varshamov bound.

13
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Justesen et al [15] presented a construction method for a class of algebraic-geometric
codes which require simple algebraic geometry knowledge. Feng and Rao [16] later
also presented a simple approach for construction of algebraic-geometric codes from
affine plane curve. Following on, Xing ef al [17] presented two constructions of linear
codes from a local expansion of functions at a fixed rational point. They showed that
their constructed codes have the same bound on their parameters as Goppa’s geometry
codes. Additionally, they showed linear codes constructed from the maximal curves
can have better parameters than Goppa’s geometry codes constructed from maximal
curves. Heegard et al [18] showed how to construct systematic algebraic-geometric
codes based on using the cyclic properties of automorphisms of the points on the
curve. Blake et al [19] reviewed how to construct different algebraic-geometric codes
constructed from different classes of curves, such as Klein quartic curve, elliptic curve,

hyperelliptic curves and Hermitian curves.

2.3 Unique Decoding Algorithms

The conventional decoding algorithms for Reed-Solomon and algebraic-geometric
codes result in one unique decoded message, the so-called unique decoding
algorithms. The unique decoding algorithms are well developed and efficient in terms
of running time. However, these unique decoding algorithms’ error-correction

capability is limited by the half-distance boundary L%J .

For Reed-Solomon codes, the most important unique decoding algorithms include: the
Berlekamp-Massey decoding algorithm [3, 4], Euclid’s decoding algorithm [20, 21],
and the Peterson-Gorenstein-Zierler decoding algorithm [22, 23]. These algorithms
first calculate the syndromes based on the received information. Then, error locations
and error magnitudes are to be calculated in order to recover the corrected transmitted

code word.

For algebraic-geometric codes, Justesen et al [15] gave the first decoding algorithm

for codes derived from algebraic plane curve. This algorithm is a generalisation of

14
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Peterson’s algorithm [22]. However, the error-correction capability of the algorithm
of [15] cannot reach the half designed distance bound. Skorobogatov and Vladut [24]
generalised [15] for decoding codes arising from arbitrary algebraic curves. Especially
for codes derived from elliptic and hyperelliptic curves, [24] can correct errors up to
the half designed distance. Based on the Berlekamp-Massey algorithm [3, 4], Sakata
[25] extended it to determine the error location using a two-dimensional array of
syndromes which is suitable for applying to algebraic-geometric codes. Sakata later
[26] extended [25] for higher dimensional arrays. Following on, Justesen et al [27]
improved [25] for codes from an arbitrary regular plane curve. The improvement in

[27] reduced the algorithm complexity to 0(;17/3

). However, the above decoding
algorithms still cannot reach the half designed distance bound for most algebraic-

geometric codes.

Feng and Rao [6] presented a generalisation of the Peterson’s algorithm [22] for
algebraic-geometric codes. A majority voting scheme was introduced to determine the
unknown syndromes so that the half designed distance bound is reached. The
decoding complexity of Feng and Rao’s algorithm is O(x’). Using Feng and Rao’s
majority voting scheme [6] and Sakata’s generalisation [25] of the Berlekamp-Massey
algorithm, Sakata [5] later presented a more efficient decoding algorithm, with

7). Based on the above work, given a received word with

complexity reduced to O(n
the number of errors not greater than the half designed distance bound, the error
locations can be successfully determined. To determine the error magnitudes, Liu [28]
presented a modified affine Fourier transform. Building upon the above literature,
Johnston [29-31] investigated Hermitian code performance on the additive white
Gaussian noise (AWGN) and fading channels, as well developing a clearer
mathematical framework to make construction and decoding of algebraic-geometric
codes more accessible. In [29] Hermitian codes can outperform similar code rate
Reed-Solomon codes which are defined in the same finite field. Further, a basic soft-
decision unique decoding algorithm for algebraic-geometric codes is presented in [32,
33] which introduced a fast erasure-and-error decoding algorithm. This algorithm’s

performance is later investigated by [34] showing further improvement can be

achieved.

15
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2.4 List Decoding Algorithms

The list decoding algorithm was first defined by Elias [35, 36] and Wozencraft [37]
independently in the 1950s. The idea of the decoding algorithm is as follows: Given a
received word R, reconstruct a list of code words with distance 7z to R. Some later
developments of the list decoding algorithm showed that 7 can be greater than the half
distance bound for both Reed-Solomon and algebraic-geometric codes, indicating

better performance can be offered by the algorithm.

Building upon the work of Ar et al/ [38], Sudan [39, 40] proposed the first list
decoding algorithm for Reed-Solomon codes which can correct errors beyond the half
distance bound, provided the rate of the code is not greater than 1/3. Sudan’s
algorithm constructs an interpolated polynomial which passes through a set of points
obtained from the received word and finds the transmitted message from the
interpolated polynomial. In fact, the output transmitted message polynomial is the
root of the interpolated polynomial. These two processes are called interpolation and
factorisation respectively. Later, Roth and Ruckenstein [10] presented an efficient
version of Sudan’s algorithm, by which the same number of errors can be corrected
and the complexity is reduced to O(n210g2n). Another more important contribution of
Roth and Ruckenstein’s work [10] is an efficient method to implement the
factorisation process of Sudan’s algorithm, the recursive coefficient search method.
Shokrollahi and Wasserman [41, 42] extended Sudan’s algorithm to decode low rate
algebraic-geometric codes. Also, they designed a factorisation algorithm that reduced
the factorisation of polynomials defined over a larger finite field to the factorisation of

polynomials defined over a smaller finite field.

The above list decoding algorithms for Reed-Solomon and algebraic-geometric codes
can only correct errors beyond the half distance bound for low rate codes. In 1999,
Guruswami and Sudan [7, 43] proposed an improved list decoding algorithm
developed from the work of [39, 40]. The main contribution of Guruswami and
Sudan’s work is the definition of the interpolated polynomials as a polynomial that
intersects a certain number of times over the set of points obtained from the received

word R. As a result, the degree of the interpolated polynomials can be increased and

16
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so does the number of factorised outputs. By using Guruswami and Sudan’s list
decoding algorithm, almost all code rate Reed-Solomon codes and algebraic-
geometric codes can be decoded beyond the half distance boundary. For
implementing the interpolation process, an iterative polynomial construction
algorithm [9, 44-47] can be applied. In fact, this process’s complexity dominates the
total list decoder complexity. Compared to interpolation, factorisation complexity is
marginal. For implementation of factorisation, the most popular and efficient
algorithm is the recursive coefficient search algorithm [10], which is later extended to
factorise polynomials defined over the pole basis of an algebraic plane curve by [11,
12, 48]. Also, there are other alternatives, such as Shokrollahi and Wasserman [41]’s
suggested method mentioned above, and Heholdt and Nielsen [9]’s suggested method
that transfers the problem into factorising a univariate polynomial defined over a

larger finite field.

To list decode one of the best performing algebraic-geometric codes — Hermitian
codes, Hoholdt and Nielsen [9, 44, 49] have presented a mathematical framework in
terms of defining the zero condition of a polynomial defined over the pole basis of a
Hermitian curve. However in the literature, there is still lack of knowledge on how to
use Guruswami and Sudan’s algorithm to decode other classes of algebraic-geometric

codes.

One major development of Guruswami and Sudan’s list decoding algorithm was
achieved by Koetter and Vardy [8]. In [8], a soft-decision list decoding algorithm is
presented for Reed-Solomon codes and its extension to algebraic-geometric codes
seems obvious. Building upon the interpolation and factorisation processes, a priori
process that converts the soft received information into interpolation information
(multiplicity) is introduced. It is shown that this soft-decision scheme can offer

significant coding gain compared to Guruswami and Sudan’s hard-decision scheme.

Even though the list decoding algorithm can offer better performance than the
conventional unique decoding algorithm, however, its complexity is higher and this

probably is the reason why it is still not adopted in industrial applications. Therefore,
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any efficiency improved modification will be valuable in future research. One of the
few suggestions was given by Koetter and Vardy [50] in which a transformation for

the interpolation process was proposed.

2.5 Conclusion

This chapter has briefly reviewed the construction of Reed-Solomon and algebraic-
geometric codes, as well as their decoding algorithms. For the decoding algorithms, it
can be seen that the list decoding algorithm can offer better performance than the
conventional and well developed unique decoding algorithm. List decoding
algorithms could be the alternative choice for future industrial applications. One of the
big challenges that lie ahead is on improving this decoding algorithm’s efficiency. In
the literature, there is still a lack of knowledge on how the list decoding algorithm
performs for algebraic-geometric codes in different communication and storage
environments. Therefore, further performance investigations seem to be valuable.
Also, a soft-decision list decoding algorithm was only developed for Reed-Solomon
codes. It is believed that greater performance improvement can be achieved by

developing a soft-decision list decoding algorithm for algebraic-geometric codes.
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3.1 Introduction

This chapter presents the theoretical background of the thesis. It starts with a general
description of algebraic-geometric codes. An algebraic-geometric code is constructed
from an irreducible affine smooth curve. To define an algebraic-geometric code, we
need to define the affine curve as well as the affine points and rational functions
associated with the curve. Following that, two kinds of algebraic-geometric codes,
Reed-Solomon codes and Hermitian codes, will be introduced as they are being
investigated in the list decoding system which is described in the thesis. To clearly
demonstrate the code construction process, two worked examples will be presented.
For the purpose of supporting the list decoding system description, the pole basis and
zero basis relating to these two codes will also be introduced. At the end of this
chapter, a brief description of the list decoding algorithm and its application to Reed-

Solomon codes and general algebraic-geometric codes will be presented.

3.2 Algebraic-Geometric Codes

An Algebraic-geometric code is constructed from an irreducible affine smooth curve
[13, 19]. The construction of an algebraic-geometric code requires a set of points that

satisfy the irreducible affine curve and a set of rational functions defined on the curve.

3.2.1 Projective and Affine Curves

A projective curve is a (n + 1) dimensional curve, where n is a natural number,
defined by projective points. Associated with this projective curve, there are n + 1
affine curves defined in different coordinate systems. For example, y(x, y, z) is a 3
dimensional projective curve. Associated with it, there are x(x, y, 1), x(x, 1, z) and % (1,

¥, z) affine curves.

If a curve cannot be expressed as a product of curves with lower degree, it is an
irreducible curve. For example, y(x, y) = X+ y3 is irreducible over GF(2). (Note:
GF(g) denotes a Galois field with size ¢ which is a prime number of a power of the

prime number, its g elements can be written as: 0, 1, o , o s eens 0‘1'1, where o is a
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primitive element of the field.) A point is non-singular if not all partial derivatives of
the curve vanish at this point. A curve is said to be smooth if all points on the curve
are non-singular. One important class of irreducible smooth curves is the Hermitian

curve. A Hermitian curve defined over GF(w?) (w = 2, i is a positive integer) can be

written as:
206y, 2) =x" )2+ y2” (3.1)
It is irreducible and it is smooth because partial derivatives m =(w+ 1" =
X
x", Z(*3:2) ()(;’ »3) _ wy*lz + 2% =2", and x(*3:2) (2’ »2) _ 3"+ wyz"! = 3", The only point
Y z

that makes all the three derivatives vanish is (0, 0, 0). However, (0, 0, 0) does not
exist in projective space [13]. Therefore, all points are non-singular and the curve is

smooth.

3.2.2 Points on an Affine Curve

The points (e, £, ) that satisfies the projective curve y(x, y, z) = 0 are called
projective points, where a, f, @ € GF(q). For construction of an algebraic-geometric
code, an affine point of the form p; = (e, £, 1) and a point at infinity of the form p,, =
(a, B, 0) are needed. Codes constructed from curves with one point at infinity are
called one-point algebraic-geometric codes or Goppa codes [13]. Reed-Solomon
codes and Hermitian codes which are investigated in this thesis are classified as these
codes. To find the affine points and the point at infinity, we need to define different

affine components of the projective curve.

The Hasse-Weil bound [19] defines the number of points N (affine points and points
at infinity) that satisfy a curve defined over GF(q) as:

INI < (r-1)(r-2)4Jg +1+¢ (3.2)

where 7 is the degree of the curve. Curves that meet this bound are called maximal

curves.
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Here two case studies are shown to find affine points and the point at infinity.

Case study 1: Find the points on the straight line y = 0 defined over GF(4).

o is a primitive element in GF(4) that satisfies o + o+ 1 = 0. Addition and

multiplication table of GF(4) is shown in Appendix A.

In the (x, y, 1) system, projective points are:

po=1(0,0,1) p1=(1,0,1) p2=(0,0,1) p3=(0%,0,1)

Table 3.1 projective points on y = 0 in the (x, y, 1) system
In the (x, 1, y) system, there is no projective points as y = 0.

In the (1, y, z) system, the projective points are:

pO:(lsos 0) pl:(laoa 1) pz:(laoa O-) p3:(15 Oa 02)

Table 3.2 projective points on y = 0 in the (1, y, z) system
Therefore, on line y = 0, there are 4 affine points as: po = (0,0, 1), p1 =(1,0, 1), po =
(0,0, 1), p3 = (6% 0, 1), and 1 point at infinity as: p., = (1, 0, 0). For the straight line y
= 0 defined over GF(4), Hasse-Weil bound is |N| < 1+ 4 = 5. Therefore, line y=01is a

maximal curve.

Case study 2: Find the points on Hermitian curve x> + y°z + yz* = 0 define over GF(4).

In the (x, y, 1) system, projective points are:

po=(0,0,1) p1=(0,1,1) p2=(1,0,1) p=(1, 0% 1)

ps=(0, 0, 1) ps=(c, &, 1) ps=(, 0, 1) p1=(, 1)

Table 3.3 projective points on x° +°z + yz* = 0 in the (x, y, 1) system

In the (x, 1, z) system, projective points are:

pO:(Ooloo) pl:(ovlvl) p2:(1,1> O-) P3:(1,1, 02)

pa=(0, 1, 0) ps=(0, 1, &) pe=(0, 1, 0) pr=(0% 1, 0%

Table 3.4 projective points on x° + y°z + yz> = 0 in the (x, 1, z) system
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In the (1, y, z) system, projective points are:

po=(,01) pi=(1, 0 0) p=(1,,1) p3=(1,, 0

Table 3.5 projective points on x° +y°z + yz° = 0 in the (1, y, z) system

Therefore, on curve x° + y*z + yz* = 0, there are 8 affine points as: po = (0, 0, 1), p; =

O, 1, 1), p2=(1, 0, 1), p3=(1, &, 1), ps = (0, 5, 1), ps = (0, &, 1), ps = (&, &, 1), p7

=(c%, 6%, 1), and 1 point at infinity p., = (0, 1, 0). For this Hermitian curve, the Hasse-

Weil bound is: [N < (3-1)3 - 2)\/2 +1+4 =9 and it is a maximal curve.

The above two case studies illustrate that over the same Galois field, there are more
points on a Hermitian curve than on a straight line. This enables Hermitian codes to
have longer code lengths than the Reed-Solomon codes which are constructed from a

straight line.

3.2.3 Rational Functions on the Curves

Rational functions are a quotient of two other functions both of which have the same

2 = g(x,y,z)

. The order of rational function f{x, y, z) (denoted as
h(x,y,z2)

degree as: flx, y,

v(fix, v, ))) at a point is a sum of its zero orders and pole orders [13]. To construct an
algebraic-geometric code, each rational function is evaluated at the set of affine points
to form a row of the generator matrix, which will be described in later of this chapter.
These rational functions should have a pole at the point of infinity but not other affine
points. Again, here gives two case studies to define that rational functions on the

straight line y = 0 and Hermitian curve x"™' + "z + yz" = 0.

Case study 3: Define the rational functions on straight line y = 0.

. . . x'
The set of rational functions defined on y = 0 can be written as: {—l} ,120. Based on

z

case study 1, the point at infinity on y = 0 is p, = (1, 0, 0), x_l has pole at p, as z = 0.
z
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i

However, as all the affine points has z = 1, x_l has not pole at all the affine points. It
z

. . x! . ,
is easy to realise that — has no zero orders at p. since x = I, but pole order i.
z

i i

: : X . . X )

Therefore, rational functions — have increasing orders at p, as: v(—) = i.
z z

Case study 4: Define rational functions on Hermitian curve x**' + "z + yz* = 0.

The set of rational functions defined on the Hermitian curve can be generally written
X'y

i+j
ZJ

as:

0<i<wandj=>0[19, 51]. Based on case study 2, the point at infinity on

J

this Hermitian curve is p,, = (0, 1, 0). Rational function has pole at p,, as z =0

x'y

Zi+j

. . . X'y’

but not other affine points as for other affine points z = 1. To define functions I,):j ’S
z

order at p.,, it is important to realise that:

x " +yzW’1
- w

z X z X

w+l 2 _w-l
and L=2 TV 2 Tyz

w+1

As for p, x=0and y = 1, % has no zero order at P, but has pole order w, while L
z z

has no zero order at p.., but has pole order w + 1. Therefore, at p, v(f) =w and v(l)
z z

i [

. . . X : . X
=w + 1. Therefore, given a general rational function 2 , its order at p, is: V(——
Zz+] Zl+]

)

=iw+jw+1).

A devisor of a curve assigns an integer value to every point on the curve. An
algebraic-geometric code is defined by two kinds of devisor: divisors D and G.
Devisor D assigns a value D(p;) = 1 to every affine point and is a sum of all the affine

points [19]:

n—1 n—l1
D=5 D(p)r=3p, (33)
i=0 i=0
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n—1
ZD( p;) 1s the degree of D, denoted as d(D). Devisor G assigns an integer value

i=0
D(p-) to the point at infinity p... For curves with one point at infinity:
G=d(G) p» (3.4)

where d(G) = D(ps). Therefore, L(G) defines the sequence of rational functions with
order at p., not greater than d(G). Take the rational functions shown by case study 4 as

an example, if d(G) = 13, then

1 x ¥2 Xy yz xzy xyz y3 xzyz xy3 y4 x2y3
L(G)ZL(13poo)={ - A

20729 > 20 2 29237 3 30

3.2.4 Construction of Algebraic-Geometric Codes

Based on the above study, it is sufficient to define an algebraic-geometric code’s

parameters and its construction method.

The Riemann-Roch theorem [13] defines the number of rational functions in L(G)
with order at p,, not greater than d(G), and therefore defines the dimension of the code,

/(G). Based on the Riemann-Roch theorem, there exists a nonnegative integer g that:
(G)-dG)=1-¢g (3.5)

given d(G) > 2g — 2. The nonnegative integer g is called the genus of the curve,

defined as:

g= (r—1)2(r—2) (3.6)

where r is the degree of the curve. The nonnegative integers that match the order
numbers of rational functions in L(G) are called nongaps. Otherwise, they are gaps.

The maximal number of gaps is g.

For constructing an (n, k) algebraic-geometric code, the message length k is the

dimension of L(G). Based on (3.5),
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k=IG)=dG)+1-g (3.7)

The code word length » is decided by the number of affine points n. This code has

designed minimal distance d:

d=n-k-g+1 (3.8)
When g =0, d” becomes the optimal Hamming distance:

d=n—-k+1 (3.9)

Reed-Solomon codes have optimal Hamming distance as it is constructed from a
straight line with genus g = 0. Compared with it, Hermitian codes suffer from genus
penalty. However, Hermitian codes have larger designed minimal distance as there are

more affine points on a Hermitian curve than on a straight line.

A k x n generator matrix is formed to construct a (n, k) algebraic-geometric codes. In
the generator matrix, & rows are formed by evaluating the k& rational function in L(G)
(d(G) = k-1 + g) over the n affine points. Then, a code word vector with length 7 is
generated by multiplying a message vector with length & to the generator matrix. The
construction of Reed-Solomon codes and Hermitian codes will be described in the

following sections 3.3 and 3.4 respectively.

3.3 Reed-Solomon Codes

As a special kind of algebraic-geometric codes, Reed-Solomon codes are constructed
from a straight line y = 0 [2]. Based on case study 1, the affine points pi(x, y, z) on a
straight line has y = 0 and z = 1, and they can be distinctively denoted by their x-

i

coordinates (finite field elements). The rational functions — (i > 0) introduced in
z

case study 3 can be simplified as: x' (i > 0). Therefore, the sequence of rational

functions for Reed-Solomon codes can be defined as:
L(opo) = {1, x, 2%, °, 5%, ...} (3.10)

L(Sp«) 1s a subset of L(agp.) with order of functions in L(ogp.,) not greater than the

nonnegative integer S. For construction of a (n, k) (k < n) Reed-Solomon code defined
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over GF(q) (n = ¢q - 1), the generator matrix Ggg can be formed by evaluating the first

k functions of (3.10) at n finite field elements xo, x1, ..., x,.1 € GF(¢)\{0} as:

1 1 1
X X X
Grs=| . ! " (3.11)
k-1 k-1 k-1
X9 X X

Then the message vector f = (fo, fi, ..., fi1) € GFE(g) is multiplied to Gzsto generate

a code word as:

c = (C(), Cly eeny Cn—l): f X GRS (312)

The encoding process can also be equivalently described in a polynomial evaluation

manner. Defining the message polynomial f(x) as:

f(x):ﬁ).]+ﬁ.x+...+fk_l.xk'l (3.13)

-1
1 are the

where coefficients fy, f1, ..., fi-1 € GF(q) are message symbols and 1, x, ..., x
rational functions in L((k — 1)p.). Code word ¢ is generated by evaluating f(x) over

the n finite field elements as:

c = (C(), Cly eons Cn-l) = (f(X()),f(xl), ...,f(xn_1)) (314)

In the list decoding system, this encoding manner is used and so as in the following

description of the thesis.

Based on (3.9), a (n, k) Reed-Solomon code has Hamming distance d = n — k + 1. This

code has error-correction capability:

_|d-1
r—{ : J (3.15)

This is the error-correction bound applied to the conventional unique decoding
algorithms [3, 4, 20-22] for Reed-Solomon codes. However, in later of this thesis, the

list decoding algorithm can perform beyond this bound.

27



Chapter 3 Theoretical Background

3.3.1 Example: Construct a (15, 9) Reed-Solomon Code Defined in GF(16)

o is a primitive element in GF(16) that satisfies ¢ + o + 1 = 0. Addition and

multiplication table of GF(16) is shown in Appendix C.
Given the message polynomial f{x) as:

fx)y=o0+ ox+ o+t +dxt++ X+ 1x+ fx

;
The 15 finite field elements in GF(16)\{0} are:

o, X1y o110 = (1, 0, &, A &, &, 00, &, 34, &, I, &, 72, 0, .

Evaluate them in f{x), we have:

co=fxo) =f1) =1, c1 =flx)) =fl0) = &, e2 = flrz) =fl6") = &, ¢3 = fixs) = f0") = 0,
ca=flxg) =f0") = 0, ¢s = flxs) = f0") = 0", c6 = fixe) =10 = &,

¢7=flxr) =f0") = 0, ¢y = flx) = fl0'*) = &, ¢9 = flxy) = fl o) = &,

c10=flx10) =fl0)) = 0, en1 = flen) =l0°) = &, cin = fixin) = o) = &,

ci3 =flxi) =fl6') = &, ey =flrig) = fla'?) = o'

Therefore, the code word ¢ = (1, 08, 0'8, 0, 0'14, 0'10, 0'6, 0'14, 0'4, 0'6, 0, 0'2, oj, o‘g, 0'12).

The error-correction bound for this code is 7= 3.

3.3.2 Pole Basis and Zero Basis

Pole basis contains a set of monomials with increasing pole orders at the point of
infinity p.. Based on the above description, the pole basis is defined by the sequence
of rational functions L(op.) (3.10). Pole basis is introduced because it defines the
polynomials associated with the corresponding algebraic curves when performing
Guruswami-Sudan’s list decoding algorithm [7, 43]. For Reed-Solomon codes,

polynomials introduced in the algorithm can generally be written as: flx, y) =

> fux“y", where f, € GF(g).

a,beN
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With respect to every finite field element, there also exists a basis of functions y with

increasing zero orders at p; v, (). v, () can be evaluated by dividing y by (x - x;)

until a unit (a function which evaluates to a non-zero value at x;) is obtained. The zero
order is equal to the number of division in order to obtain the unit. In general, with

respect to x;, i can be written as:
v=x-x)* (axeN) (3.16)
It is easy to realise that, v, () = « as unit (evaluation value equals to 1) can be

obtained after « divisions.

Pole basis and zero basis functions are introduced because they are used to define a
polynomial’s zero conditions (the singularity of the interpolated unit) in the list

decoding algorithm.

3.4 Hermitian Codes

Hermitian codes are constructed from Hermitian curves x*™' + 3" + y = 0. Based on
case study 2, the affine points have z-coordinate equals to 1 and they can be
distinctively denotes as: po = (xo, 10), p1 = (X1, Y1), ..., and p,.1 = (X4-1, Vu-1), Where n =
w’. From case study 4, we also know that the rational functions for Hermitian codes
can be simply denoted as: x'y/ (0 <i < w and j > 0). Therefore, the sequence L(oop.,)

for Hermitian codes can be written as:

L(oops) = {dx, ) | dx, ) =1,x,p, ....,x¥, ..., 0<i<wandj> 0} (3.17)

In order to distinguish different rational functions sequence associated with different
Hermitian curve, we denote the rational functions sequence associated with curve x"*'
+ " + y =0 as L,(op,). Here gives two examples showing difference rational

functions sequences derived from different Hermitian curves.

Example 3.1 For Hermitian curve x° + y* +y =0, w =2 and Ly(oop,) = {1, x, y, x°, x,

2 2 2 3 2.2 3 4
VXY, X, YL XYLy, Y, )
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Example 3.2 For Hermitian curve X+ y4 +y =0, w=4 and L4(oops,) = {1, x, y, x2, Xy,

2 3 .2 2.3 .4 3 22 3 4 4 32 23 4 5
y’x’xy’xy ’y ’x’xy’xy ny Jy nyny JXy ’xy ’y""}'

L,(Sp) 1s a subset of L,,(oop.,) with order of functions in L(oop.) not greater than the

nonnegative integer S. For example, L>(9p.) = {1, x, y, x°, xp, V*, x°y, )7, " }.

For the construction of a (1, k) Hermitian code from curve x"™' + " + y = 0, the k
rational functions in L,(/ p.) (given [ >2g — 1, k=1— g + 1) are evaluated over the n

affine points to form a k& x n generator matrix as:

b (Poy) $(p) - B(p,y)

¢| (;Do) ¢| (pl) ¢| (pn—l) (3.18)

GHerm =

¢ (py) S (p) - a(p,)

Then the message vector f = (fo, fi, ..., fi1) € GF(q) is multiplied to Gy to

generate a code word as:

c :(C(), Cy, ---,Cn-l): f X GHerm (319)

To describe the encoding process in a polynomial evaluation manner, we have the

message polynomial f written as:

) =fo-dtfi- gt ot fir d (3.20)

and the code word is generated as:

c = (C(), Cly eons Cn-l) = (f(po),f(pl), ,f(pn1)) (321)

Based on (3.8), this Hermitian code has designed minimal distance d =n —k— g + 1
and its error-correction capability for the conventional unique decoding algorithm [5,

6, 25] is defined as:

r= LE J (3.22)
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Do notice that for high rate Hermitian codes, their minimal distance is greater than the

designed distance and therefore (3.22) is not a tight bound for those codes.

3.4.1 Example: Construct a (8, 4) Hermitian Code Defined in GF(4)

The Hermitian curve defined in GF(4) and its associated rational functions are given
in example 3.1. On this curve, the 8 affine points are: py = (0, 0), p1 = (0, 1), p> = (1,
0),p3 = (1, &), ps= (0, 0), ps = (5, &), ps = (&, 0) and p; = (¢, ).

The message polynomial is given as: flx, y) =1 + ox + y + o*x%.
Evaluating f{x, y) over the 8 affine points, we have:

co=fpo) =f0,0) =1, c1 =fip1) =0, 1) =0, c2 = fip2) = (1, 0) = o,
es=fps) =1, @) = &, cs=fps) = R0, 0) = 7, ¢s = fips) = flo, &) = &,
cs = flps) =%, 0) = 0%, and ¢7 = fip7) =, &) = o

Therefore, the code word ¢ =(1, 0, o, 02, o, 0'2, 0'2, 0).

The designed minimal distance for the code is d = 4 and its error-correction

capability is 7= 1.

3.4.2 Pole Basis and Zero Basis

The sequence of rational functions L,(oop,) defines the pole basis monomials
associated with Hermitian curve x*™ + 3" + y = 0. These pole basis monomials have

increasing pole order at the point of infinity p,, as:
Lu(op) = {4, ) | v, (47) <V, (¢un”),a € N} (3.23)

When applying the Guruswami-Sudan list decoding algorithm [7, 43], polynomials
can be generally written as: f{x, y, z) = Z f..8.(x,y)z" , where £, € GF(g).

a,beN

With respect to every affine point p; = (x;, y;), there also exists a zero basis which

contains rational functions with increasing zero orders at p; as [9]:
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Zw,p, = {l//pi,a (‘xﬁ y) | Vpl_ (Wp,,a) < Vp, (l//pi,aﬂ )7 ae N} (324)

functiony, , has zero order v, (v, ,) = a at p;. To evaluate the zero order, v, , is

divided by (x - x;) until a unit has been obtained. Again, the zero order is equal to the

number of divisions. In general, v, , can be written as [44]:
Vo @)=V s (6 0) = =) [0 =) =563l (3.29)

where 4, 6 € N, 0 <1 <w and 0 > 0. In the following, example 3.3 lists some zero

basis functions with respect to an affine point. Example 3.4 illustrates how to evaluate

the zero order of functions in (3.25).

Example 3.3 Given p; = (1, o) as an affine point on curve x° + y* + y = 0, list the first

8 zero basis functions with respect to this point.
Based on (3.25), ¥/, , (5, ) = ¥, 155(x,3) = (x = [y — 0) = I’(x = DI’, where 4,

€ N, 0<A<2andd>0. Therefore,

Vo)== -0 - Pa-1]"=1

v, 06 =6c-D'[-0)-1x-D]"=1+x

W, .50 == 1Y[(y-0)- Pa-D]"=1+x’

W, (6)=-D[p-0)-1Px—-1]' = +x+y

v, (6)=-D-0)-1Px-D]'=+ox+y+x +x
v, (60 == [-0) - Px—D]' = +x+ o +)7 +xy
Vo6 = -1 [p-0) - Px—DP =c+x’+)7

v, 5= D'[r-0)- Px- D= o+ ox+y+2+ 07

Example 3.4 Based on the example 3.3, justify zero basis function y, ; has zero

order 3 at p;.
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To evaluate a function’s zero order at an affine point of Hermitian curve ™' + 3" + y

=0, it is important to notice the following equation associated with the curve [9]:

B B W _ w-1 w
y=y _ =x)" #x(x-x)" +x (3.26)

X—X, e
where e = (y - ;)" + 1. It can be seen that e(p;) = (v;— ;)" + 1= 1.

From example 3.3, it can be seen that y, ;(x,y)=(—o0)—(x—1)ande=(y- o) + 1.
Initialise y/”(x,») = v, ;(x,») =@ —0)— (x—1).

(0) . 12 B
The 1st division: y"(x, y) = ¥ (X{Y) - 229 - (=D’ +@-D+1
- . ;

_ x-)’+(x-D+1-(y-0)-1 _
e

(x-De'+ - o)e! +(x- 1.
We have y"(p)=(1- 1)1+ (o- o)1 +(1-1)>1=0.

) _
The 2nd division: l//z)(x, y) = uxiy) =e!- %e‘l +(x-Del=e'—[(x- 1)+
xX— xX—

(x-D+1]e?+@x-De' =" —e))—(x-1)e*—e")—(x- 1)’

We have y?(p)=(1-1)—(1-1)-(1-1)-(1-1)>*1=0.

2) -1 -2
The 3rd division: yP(x, y) = ¥ (xiy ) _ ¢ ‘i S ey - (- et =
X — X —

e—1

(@) x-1)et= L (@ e~ (k- e =[(x- 1)+ (x- 1)
(x—1De x—1

+1le’ —(e?—e)—(x-De?=(e’—e*+e)+(x- 1)’ —e?) + (x - 1)’e”.

We have P (p)=(1-1+1)+(1-1)-A-1)+(1-1)*1=1=%0.

There are 3 divisions in order obtain a unit. Therefore, the zero order of v, ; at p; is 3
as: v, (y, ;) =3. y, ; can also be written as: v/, ; = (x - [’ -e*+eh)+ (x -

e —e?)+ (x- 1)e’]. A general algorithm for evaluating the zero basis functions

is presented in [9].
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3.5 List Decoding

The conventional unique decoding algorithms for Algebraic-geometric and Reed-
Solomon codes are efficient in terms of running time, but with error-correction
capability limited by the half distance boundary 7 which is defined by (3.15) for Reed-
Solomon codes and (3.22) for algebraic-geometric codes. As introduced in Chapter 2,
the list decoding algorithm is a newly rediscovered method which can correct errors
beyond the half distance boundary. This section gives a brief introduction to the list
decoding algorithm. In this section, the unique decoding algorithm’s bound 7 is
denoted as Tique In order to avoid conflicting notation when we introduce the error-

correction bound for list decoding.

3.5.1 The Idea of List Decoding

Elias [35, 36] and Wozencraft [37] first introduced the idea of list decoding which
leads to the later solution of decoding Reed-Solomon and algebraic-geometric codes
beyond boundary znique. Their idea can be described as: given a received word R,
reconstruct a list of all code words with a distance 7to the received word R, in which
7 can be greater than znique. This 1dea can be illustrated by Fig 3.1. In Fig 3.1, cl, c2,
and 3 are 3 independent code words with distance d to each other (for algebraic-
geometric codes, d is the designed minimal distance (3.8). For Reed-Solomon codes,

d 1s the Hamming distance (3.9)). For received word 1 which has distance less than

{—dz_ IJ to code word c1, it can be decoded by the unique decoding algorithm which

. . . . -1
results in c¢1. However, for received word 72 which has distance greater than [dz J

to any of the code word, the unique decoding algorithm will fail to decode it.
However, using the list decoding algorithm, a list of possible transmitted code word
will be produced. For example, decoded output list {c1, c2, c3} is produced by the
decoder. Then, the code word that has the minimal distance to 72 is chosen from the

list and decoding is completed.
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o

Figure 3.1 Idea of list decoding

3.5.2 List Decoding of Low Rate Reed-Solomon and Algebraic-Geometric
Codes

Sudan [39, 40] introduced the first list decoding algorithm for low rate (k/n < 1/3)
Reed-Solomon codes. For a (n, k) Reed-Solomon code, given the received word R =
(ro, r1y ..y u1) (ri € GF(g), i =0, 1, ..., n - 1), n interpolated units can be formed by
combining received symbol »; with the respective finite field element x; used in
encoding (3.14) as: {(xo, 70), (x1, 1), ..., (X4s-1, 7s-1)}. The first step of the algorithm is
to find polynomial Q(x, y) that passes through these # interpolated units as: O(x;, y;) =
0. The second step of the algorithm is to find polynomials f(x) with degree less than &
and f(x;) = r; for at least n - 7 values. y - f{x) is a factor of O(x, y) as: y — f(x) | O(x, y)
or O(x, f(x)) = 0. If f(x) is the transmitted message polynomial (3.13), then 7 errors in
received word R can be corrected. This process can be geometrically illustrated by Fig
3.2. For a (5, 2) Reed-Solomon code, 5 interpolated units are geometrically presented
in the figure. The polynomial to be found in the first step is O(x, y) = y* — x*. As O(x,
) =3* —x* = (y + x)(y - x). Therefore, in the second step, the output polynomial f{x) =
-x or flix) = x. From Fig 3.2, it can be seen that f{x) = x satisfies f{x;) = r; for (x1, 1), (x2,
r3), and (x3, r3), while fix) = -x satisfies f(x;) = r; for (xo, 70), (x2, 72) and (x4, 74). The

algorithm corrects 7= 2 errors.
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- \ / 7171
. / \m )

Figure 3.2 Geometric illustration of list decoding

Shokrollahi and Wasserman [41, 42] extended Sudan’s work [39, 40] for list decoding
of low rate algebraic-geometric codes. For a (n, k) algebraic-geometric code, given
received word R, n interpolated units can be formed by combining each received
symbol r; with the respective affine point p; used in encoding: {(po, 0), (P1, ¥1), .-,
(Pn-1, 1)} - The first step is the find polynomial Q(x, y, z) that passes through (p;, 7;)
(where p; = (x;, yi)) as: O(x;, yi, ;) = 0. The second step is find polynomial f(x, y)
defined in L(/ p.) (! = k+ g — 1 and p. is a point at infinity on the corresponding
algebraic curve) for which f(p;) = r; at least n - 7 values. Again, if f(x) is the

transmitted message polynomial, zerrors in the received R has been corrected.

3.5.3 The Guruswami-Sudan Algorithm

Guruswami and Sudan [7, 43] later improved their work to list decode of Reed-
Solomon and algebraic-geometric codes with nearly all rate beyond boundary zumique,

called the Guruswami-Sudan (GS) algorithm.

For Reed-Solomon codes, improvement is made based on defining (x; ;) as a
“singularity” of polynomial Q(x, y). It means Q(x, y) does not only pass point (x;, 7;),

but also intersects it by a number of times. The number of intersection is defined as
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multiplicity m (m 1s a positive integer). As mentioned in section 3.3.2, the general
polynomial for GS decoding Reed-Solomon codes can be written as:

O, y)= 2. 0,x"y" (3.27)

a,beN

where O, € GF(g). It can be seen that Q(0, 0) = 0 and (0, 0) is a point at Q(x, y). If
there is no term x“yb with total degree a + b less than m as: Q,, =0 for a + b <m, O(x,
v) has a zero of multiplicity m at (0, 0). (0, 0) is a singularity of polynomial Q(x, y).
Geometrically, O(x, y) intersects (0, 0) m times. In general, to define point (x;, 7;) as a
singularity of a polynomial O(x, y) (3.27), O(x, y) shall be able to be written as:

Q. y)= 2 O x—x)" (y-r)’ (3.28)

a,feN

where Q;Z e GF(q). It can be easily observed that (x;, ;) is a point of O“(x, y) as

0"x;, 1) =0.If Q;Z =0 for a+ f<m, 0%, y) has a zero of multiplicity m at (x;, r;)
and (x;, ;) 1s a singularity of Q(i)(x, y). Therefore, for a general polynomial QO(x, y),
determine the relationship between its coefficient O, and Q“(x, y)’s coefficients QLZ

is critical to define point (x;, ;) as a singularity. This will be further demonstrated in
Chapter 4 which presents GS decoding Reed-Solomon codes. Referring to section
3.3.2, (x - x;)” is the zero basis function with respect to x;. Similarly, (y - r;)’ is also the
zero basis function with respect to r;.. They are introduced in section 3.3.2 on the

purpose of defining a point as a singularity of a polynomial.

Therefore, the first step of the GS algorithm can be described as: to construct a
polynomial Q(x, y) which has a zero of multiplicity at least m at units (xo, 7o), (x1,
r1), ..., (Xp1, 74-1). This step is called interpolation. The second step of the GS
algorithm is the same as described in section 3.5.2, called factorisation. Using the GS

algorithm to decode a (n, k) Reed-Solomon code, the algorithm can correct up to [7]:

tos=n- |Jn(n—d)]-1 (3.29)

errors. As Hamming distance d = n — k + 1, 7gs will be increased as code rate k/n
decreases, indicating the GS algorithm has greater error-correction potential for low

rate codes.
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Similarly, for algebraic-geometric codes, polynomials operated in the GS algorithm
can generally be written as:

0, y,2)= > 0,8,z (3.30)

a,beN

where ¢, is the rational function defined in L(oop.), where p is the point at infinity on
the corresponding algebraic curve. To define interpolated unit (p;, ;) as a singularity
of O(x, y, z), the zero basis functions with respect to affine point p; and received word
r; are needed to be known. As described above, the zero basis function with respective
to r; can be written as: (z - r;)”. However, the zero basis functions with respect to the
affine points on most of the algebraic curves are still unknown. In the literature, only
the zero basis functions of the affine points on Hermitian curves have been developed
[44], which is described in section 3.4.2. Hence, it is only feasible to apply the GS
algorithm for Hermitian codes. For Hermitian codes, to define (p;, 7;) as a singularity
of O(x, v, z) (3.30), O(x, v, z) can be written as:

0, y.2)= 20w, (z=1) (3.31)

a,peN

, ” .- . . (i) _
Based on v, ,’s definition (3.25), it is not difficult to realise that O"(p;, ;) = 0. In
(3.31), if Q%) =0 for o+ B<m, then (p;, r;) is a singularity of 0(x, y, z) and 0"(x, y,
z) has a zero of multiplicity at least m at (p;, ;). The relationship between Q(x, y, z)’s
@) s

coefficients O and O"(x, », 2)’s coefficients O, is further demonstrated in Chapter

6 which presents GS decoding Hermitian codes.

Therefore, decoding Hermitian codes using the GS algorithm, interpolation is to find
the polynomial Q(x, y, z) which has a zero of multiplicity at least m at interpolation
units: (po, 70), (1, 71)s ---» (Pu-1, ¥4-1). Then factorisation is to find the transmitted
message polynomial f(x, y) defined in L,(/ p,) ({ =k + g — 1 and p. is a point at
infinity on Hermitian curve x*' + y" + y = 0). GS decoding Hermitian codes can

correct errors up to:

Gs =1 - \_\/n(n—d*)J- 1 (3.32)
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where designed minimal distance d=n—k- g + 1. Again, indicated by (3.32), the

GS algorithm has more error-correction potential for low rate codes.

3.5.4 The Koetter-Vardy Algorithm

In [7], it is demonstrated that further extension of the GS algorithm can be done by

assigning a non-negative integer weight w; to interpolated unit (x;, 7;) such that

n—1 . . .
Zi-p(x.)=r. w, > 1“"2,~=0Wi2 . The extension idea gives two releases to the GS

algorithm: first, the number of interpolated units can be greater than n. Second, with
respect to different interpolated unit (x;, #;), different multiplicity value m; can be
assigned. This idea is later developed by Koetter and Vardy [8] who presented a soft-
decision list decoding algorithm for Reed-Solomon codes, called the Koetter-Vardy

(KV) algorithm.

In the KV algorithm, before interpolation and factorisation, an extra step that converts
the received information’s posteriori transition probability values to multiplicity
values is performed. As a result of that, the number of interpolated units operated in
interpolation is increased and each of them is assigned with a rational multiplicity
value. It is shown that the KV’s algorithm can easily perform beyond 7gs (3.29) for
Reed-Solomon codes. Details of decoding Reed-Solomon codes with the KV
algorithm are presented in Chapter 5. Based on the KV algorithm, this project has also
developed a soft-decision list decoding algorithm for Hermitian codes. It is also
shown that soft-decision list decode Hermitian codes can easily perform beyond
boundary 7gs (3.32). Details of soft-decision list decoding of Hermitian codes are

presented in Chapter 7.

3.6 Conclusions

The chapter presented the fundamental knowledge of algebraic-geometric codes,
including algebraic curves, affine points on the curve and the rational functions

associated with the curve. Based on this knowledge, a general description of encoding
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an algebraic-geometric code is given. Two classes of important algebraic-geometric
codes are introduced in the chapter: Reed-Solomon codes and Hermitian codes. Their
encoding processes are described with worked examples. To demonstrate the list
decoding system, the pole basis and zero basis of these two kinds of codes are also
introduced. At the end, a brief introduction to the list decoding system was given
presenting chronological history of its development, from list decoding of low rate
codes to list decoding of all rate codes and extending to soft-decision list decoding. It
has been demonstrated that how list decoding can correct errors beyond the half
distance boundary. This prerequisite knowledge lays a foundation to explain the list
decoding of Reed-Solomon codes and Hermitian codes using hard decisions and soft

decisions later in the thesis.
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Chapter 4

Hard-Decision List
Decoding of Reed-

Solomon Codes
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4.1 Introduction

This chapter presents a hard-decision list decoding algorithm for Reed-Solomon codes,
the so-called the Guruswami-Sudan (GS) algorithm. The algorithm consists of
interpolation and factorisation, which can be implemented by an iterative polynomial
construction algorithm and a recursive coefficient search algorithm respectively. The
algorithm’s high decoding complexity is mainly dominated by the iterative
interpolation process. Therefore, a novel complexity reduction modification scheme
for the interpolation process has been developed in order to improve the algorithm’s
efficiency. The modification scheme is based on identifying any unnecessary
polynomials during the iterative process and eliminating them. A worked example of
this modification scheme is shown in the chapter for clarification. An algebraic-
geometric explanation of the GS algorithm with the complexity reduction
modification is presented with simulation results of Reed-Solomon codes for different
list decoding parameters over the additive white Gaussian noise (AWGN) and
Rayleigh fading channels. A complexity analysis is also shown comparing the GS
algorithm with our modified GS algorithm, showing the modification can reduce
complexity significantly in low error weight situations. This work is published in two

papers by the author [52, 53].

4.2 Overview of the GS Algorithm

We first denote some commonly used symbols in this chapter:

* F,[x] — the ring of polynomials with coefficients from GF(g) and variable x, which
can be generally written as: f(x) = Z f.x“, fa € GF(g).

aeN
* F,[x"] — the subset of F,[x] with x degree <w

* F,[x, y] — the ring of bivariate polynomials with coefficients from GF(g) and

variables x and y, which can be generally written as: f(x, y) = Z £.,xv" , fur € GF(q).

a,beN

The generation of a (n, k) Reed-Solomon code is defined by equations (3.13) and
(3.14) in Chapter 3.
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4.2.1 Interpolation and Factorisation

Interpolation: If the received word is R = (ry, 71, ..., n.1) (r; € GF(q),i=0,1, ..., n -
1), then combining with the finite field elements used in encoding (xo, X1, ..., X,.1) €
GF(g)\{0} , n interpolated points can be formed as: (xo, 7o), (x1, 71), ..., (Xu-1, 74-1). The

task of interpolation is to construct a bivariate polynomial: Q(x,y) = ZQabx“ y’
a,beN

(3.27), which has a zero of multiplicity at least m over these n points and with
minimal (1, k-1)-weighted degree which is explained later. Q,, € GF(gq) is the
coefficient of x“yb. Geometrically, this polynomial intersects the n points at least m

times.

Factorisation: After the bivariate polynomial Q(x, y) has been found, it is factorised in

order to find the list L of polynomials p(x) given by:

L ={p®): (v - p(x)) | O, y) and deg(p(x)) < k} 4.1)

All the polynomials in L have the possibility of being the transmitted message f(x).
The one with the minimum distance to the received word after re-encoding is chosen

by the decoder.

4.2.2 Decoding Parameters

If we define the (u, v)-weighted degree of monomial xayb as:
deg,,(xy") = au + by 4.2)

a sequence of bivariate monomials can be arranged by their weighted degrees. In
order to decode a (n, k) Reed-Solomon code by the GS algorithm, the (1, 4-1) -
lexicographic order (ord) is used. Under (1, £-1) - lexicographic order [45, 54]:

xalybl < xazybz

if degy r1(x“y™) < degy r1(x“y™), or degy r1(x“y™) = degir1(x“ y") and a; > a.
For example, in order to decode a (7, 5) RS code, (1, 4) - lexicographic order is used.
The generation of this order is shown by Table 4.1. The entries E,, in Table 4.1a and
4.1b represent the (1, 4) - weighted degree and (1, 4) — lexicographic order of
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monomials M with x degree a and y degree b respectively. Applying (4.2) with u =1
and v = 4, we can generate the (1, 4) - weighted degree of monomials M shown by
Table 4.1a. Based on Table 4.1a and applying the above lexicographic order rule, we
can generate the (1, 4) — lexicographic order of monomials M shown in Table 4.1b
and denoted as ord(M). From Table 4.1b, it is easy to observe that x* < x*y < ), since

ord(x*) = 4, ord(x’y) = 9 and ord()”) = 14.

0 0 112134 (5|6 |78 9 /|10]11]12
1 4 S516 (71819 |10]11|12

2 8 9 |10 | 11 | 12

3 12

Table 4.1a (1, 4) — weighted degree of monomial xayb

a
; 0 1123|1456 |7]|8 (9 ]10]11]12
0 0 1 23|46 |8 10|12 15|18 |21 |24
1 5 7019 |11 |13 |16 |19 |22 25
2 14 |17 |20 | 23| 26
3 27

Table 4.1b (1, 4) — lexicographic order of monomial x”yb

Based on the monomial’s weighted degree and order definition, we can define the
weighted degree of a nonzero bivariate polynomial in F[x, y] as the weighted degree
of its leading monomial M;. Any nonzero bivariate polynomial QO(x, y) can be written

as:
Q(X,J/)=Q0M0+Q1M1+"‘+QLML (4.3)

withM <M, <---<M,, Qo, O1, -+, Or € GF(q) and O, # 0. The (1, k&-1) - weighted

degree of Q(x, y) can be defined as:
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degy, 11(O(x, y)) = degy, -1(ML) (4.4)

L is called the leading order (lod) of polynomial QO(x, y), defined as:
lod(Q(x, y)) = ord(M;) = L 4.5)

For example, give polynomial O(x, y) = 1 + X+ xzy + y2, applying the above (1, 4)-
lexicographic order, it has leading monomial M; = y*. Therefore, deg; 4(Q(x, y)) =
deg1,4(y2) = 8 and lod(O(x, y)) = ord()?) = 14. Consequently, any two nonzero
polynomials Q and H (Q, H € F,[x, y]) can be compared with respect to their leading
order that:

0 < H, if lod(Q) < lod(H) (4.6)

S«(T) and S,(T) are denoted as the highest degree of x and y under the (1, &£-1) -
lexicographic order such that:
S«(T) = max {a: ord(x"y°) < T} 4.7)
S/(T) = max {b: ord(x"y") < T} (4.8)
where 7' is any nonnegative integer. It is interesting to note that under (1, k-1) -
lexicographic order x*)” is the minimal monomial with weight degree a. Therefore,

the (1, £-1) - weighted degree of any nonzero bivariate polynomial defined in (4.3)

with leading order L can be determined as:

degi, 1(Ox, ) = S(L) (4.9)

The error-correction capability #, and the maximum number of candidate messages /,,
in the output list with respect to a certain multiplicity m of the GS algorithm can be

stated as [46]:

T, = n—l—{wJ (4.10)
m
[, =S8,(C) (4.11)
where
Co m+1 412
= (4.12)
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C represents the number of iterations in the interpolation process. These parameters
will be proven in section 4.4.1 when the factorisation theorem is presented. 7, and /,

grow monotonically with multiplicity m [46]:

T <71 (4.13)
I < (4.14)

if m; <my. The GS algorithm algorithm’s error-correction upper bound zs for a (n, k)
Reed-Solomon code is defined by equation (3.29). 7gs is greater or equal to the half
distance boundary 7 defined by (3.15) and approaches to it asymptotically with code
rate k/n increases. According to the GS algorithm analysis in [7], for Reed-Solomon
codes, decoding capability of the GS algorithm merges with the conventional
algebraic decoding algorithm at about k/n = 0.9. Note that the performance of the
generalised minimum distance (GMD) decoding algorithm [55] does not depend on
the code rate and it can always outperform the conventional decoding algorithm with
marginal coding gains. Simulations results in [8] show that the GS algorithm can
outperform the GMD algorithm in relatively low code rate situations. However, as
code rate increases, the GS algorithm’s performance will approach to the conventional
decoding algorithm, and the GMD algorithm can slightly outperform the GS

algorithm.

Now two examples are given to illustrate how 7, and /,, grow with multiplicity m with
the GS algorithm. Notice that those m listed in the following examples are the

minimal values need to correct the corresponding number of errors z,.

Example 4.1: To decode Reed-Solomon code (63, 15) defined over GF(64), with code
rate 0.238 (< 1/3), we obtain:

m 1 2 4 6 26
T 27 30 31 32 33 = 155
I 2 4 8 13 55

Example 4.2: To decode Reed-Solomon code (63, 31) defined over GF(64), with code
rate 0.492 (> 1/3), we obtain:
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m 1 3 5 13
T 16 17 18 19 = 765
Ly 1 4 7 19

4.3. Interpolation

In this section, the interpolation theorem is explained from the algebraic-geometric
point of view. This is followed by a detailed description of its implementation method

and a novel modification scheme which improves its efficiency.

4.3.1. Interpolation Theorem

According to section 3.3.2, 1, x, ..., x“ are the rational functions that have increasing

pole orders [13] over the point of infinity p,, of a projective line. The interpolated

polynomial can generally be written as: Q(x,y) = ZQabx” y" (3.27).

a,beN

I, (1-x), ..., (1 -x;)* are the rational functions that have increasing zero orders [13]
over the finite field element x; used in encoding, and the received word »; € GF(q).

The interpolated polynomial with respect to point (x;, 7;) can also be written as:

O(x,y) = 20" (x=x)"(y—1)" (4.15)

a,peN
where Q') € GF(g) is the coefficient of (x - x)“ (y - ;). For (4.15), Q(x;, r7) = 0.

Based on section 3.5.3, if Q" =0 for @+ B<m, O(x, ) has a zero of multiplicity

at least m over (x;, ;).

It is important to notice that [46]:

aza

x=(x—-x,+x)" = Z[ajxiaa (x—x,)" (4.16)
a

and
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V=(-r+r) =2(bjnb‘ﬁ<y—n)ﬁ (4.17)
b>p ﬂ

Substituting (4.16) and (4.17) into (3.27), we have:

O(x,y) = ZQabZ(aj S (= x,)” 2( )b‘ﬁ(y—r,-)ﬁ

a,beN a>a b>p

=2 2 Qab(Zj(bei”“r,-”(x—xi)“(y—r,-)ﬁ (4.18)

a,peN aza,b>f ﬂ

Therefore, from (4.15):

ou =y Qab(Zj(ZJx,-”n” (4.19)

aza,b>p

This is the (&, f) - Hasse derivative evaluation on the point (x;, 7;) of the polynomial
O(x, y) defined by (3.27) [45, 56, 57]. (4.19) defines the constraints for the
coefficients of polynomial Q (3.27) in order to have a zero of multiplicity m over

point (x;, 7;).

Example 4.3 Given polynomial O(x, y) = ¢ + o’x + y + xy defined in GF(8) in which
o is a primitive element satisfying o+ o+ 1=0.Prove O, y) has a zero of
multiplicity at least m = 2 at point (1, ). Addition and multiplication table of GF(8)

is shown in Appendix B.

Based on the above study, to have a zero of multiplicity 2 at (1, o), we need Q%"

=0, 047 =0and Q" =

(10—) _ Qoo[ j(oj 190 &5)*0 + Qlo(lj (Oj 19(o5)™ + Oy (Oj (IJ 190(55)1 0 +
0 0/\0 0/)l0
Qnﬁ (lj 1) =1+1+0"+0°=0
0/\0

() — Qm[g] G] 19055y + Qn[(l)] G] 1) =1+ 1=0
(1a ) — QIO[ j [8] 11-1(0_5)0-0 + QUGJ [(1)] 11-1(0_5)1-0 _ O_s + O_s =0.
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Therefore, O(x, ) has a zero of multiplicity at least m = 2 at point (1, ).

If we use D(Q) to denote the Hasse derivative evaluation of O(x, y), then (4.19) can be

denoted as:

e ) A S

aza,bzf

Therefore, the interpolation of the GS algorithm can be generalised as: Find a minimal

(1, k1) - weighted degree polynomial Q(x, y) that satisfies:
Oz, y) = min {O(x,») € F,[x.7]| D,y 0x,.7) =0 fori=0, ..., n-1and @+ f<m

(a, e N)} (4.21)

4.3.2. Iterative Polynomial Construction

To find interpolated polynomial (4.21), an iterative polynomial construction algorithm
[9, 44-47, 58] is employed. In this algorithm, a group of polynomials are initialised,
they are tested by each of the Hasse derivative evaluations (4.19) and modified
interactively. The interactive modification between two polynomials is based on the

following two properties of the Hasse derivative [45, 56].
Property 1: Linear Functional of Hasse derivative
If H, Q € Fy[x,y], di and d,e GF(q), then
D(diH + drQ) = diD(H) + d>,D(Q) (4.22)
Property 2: Bilinear Hasse derivative
If H, Q € F,[x,y], then

[H, Olp = HD(Q) - OD(H) (4.23)

If the Hasse derivative evaluation of D(Q) = d; and D(H) = d, (d,, d» # 0), based on
Property 1 it is obvious to conclude that the Hasse derivative evaluation of (4.23) is

zero, denoted as:

D([H, Olp)=0 (4.24)
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If lod(H) > lod(Q), the new constructed polynomial from (4.23) has leading order
lod(H). Therefore, by performing the bilinear Hasse derivative over two polynomials
both of which have nonzero evaluations, we can reconstruct a polynomial which has
zero Hasse derivative evaluation. Based on this principle, implementation algorithm
for interpolation is to iteratively modify a set of polynomials through all » points and

with every possible (o, f) pair under each point.

+1
With multiplicity m, there are (mz j pairs of (e, f), which are arranged as: (o, f) =
0, 0), (0, 1), ..., (0, m-1), (1, 0), (1, 1), ..., (1, m-2), ..., (m-1, 0). Therefore, when

+1
decoding a (n, k) Reed-Solomon code with multiplicity m, there are C = n(mz j

iterations in order to construct a polynomial defined by (4.21). In order to introduce

our complexity reduction modification to this interpolation algorithm, the iterative

. . . . . . . . m +
process is presented in a sequential manner with index i such that i, = z( 5 j + 7,

where i denotes the index of points (i =0, 1, ..., n - 1), r denotes the index of (e, f)

. m+1
pairs (r=0,1, ..., ( 5 j -1).

At the beginning, a group of polynomials are initialised as

Go=1{00;=Y,j=0,1, ..., I} (4.25)

where /,, is the maximal number of messages in the output list defined by (4.11). If M,

denotes the leading monomial of polynomial Q, it is important to point out that:
Qo, ;= min{O(x, y) € Fylx, y] | deg,(My) =} (4.26)
Under i, modification, each polynomial in group G, is tested by (4.20) using:
Aj - Di,i (Qik,j) (4.27)

Those polynomials with A; = 0 do not need to be modified. However, those
polynomials with A; # 0 need to be modified based on (4.23). In order to construct a
group of polynomials which satisfy:
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Qik+1,_j =min{Q € Fy[x, y] | Dik (Qik+1,_/‘) =0, D,'k71 (Qiku,j) =0,--,D, (Qik+1,_/) =0, and
degy(M,) =/} (4.28)

the minimal polynomial among those polynomials with A; # 0 is chosen. Denote its

index asj and record itas Q :

j =index(min{Q, ;| A;#0}) (4.29)

0=0. . (4.30)

Lesd

For those polynomials with A; # 0 but j # j , modify them by (4.23) without the

leading order increasing:
Qik+1,j = [Qik,j7Q']Dik = Aj‘Qik,j - Aj Q (431)
Based on (4.24), we know that D, (O

lod(Q, ,, ;) =1od(Q, ;).

) = 0. As lod(Q, ;) > lod(Q), therefore

i+l j

For Q itself, it is modified by (4.23) with the leading order increasing:
Qi/;‘*'l,.i‘ - [xQ"Q']Dik - AJ‘* (X —X,') Q (432)
where x; is the x — coordinate of current interpolating point (x;, 7;). Aj* =D, (0)#0

and so as D, (xQ') #0, therefore, D, (Qiku,j‘ )=0. As lod(xQ") > lod(Q), lod( 0 ., )=

L)

lod(xQ) > lod( 0. ; ). Therefore whenever (4.32) is performed, we have: lod(Q, ,, .) >

i +1,j

lod( Ql.k y ).

After C iterative modifications, the minimal polynomial in group G, is the
interpolated polynomial that satisfies (4.21), and it is chosen to be factorised in the

next step:

O(x,y)=min{Q. ; | Q¢ ; € G} (4.33)
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4.3.3. Complexity Reduced Modification

Based on the above analysis, it can be observed that when decoding a (n, k) Reed-
Solomon code with multiplicity m, /,, + 1 bivariate polynomials are being interactively
modified over C iterative steps in which Hasse derivative evaluation (4.20) and
bilinear Hasse derivative modification (4.23) are being performed. This process has
complexity approximately O(n’m*) [46] and is responsible for the GS algorithm’s
high decoding complexity. Therefore, reducing the complexity of interpolation is

essential to improve the algorithm’s efficiency.

The leading order of the polynomial group G, is defined as the minimal leading order
among the group’s polynomials:

lod(G; ) =min{lod(Q, ;)| O, G } (4.34)

igsJ iy

Based on initialisation defined in (4.25), the leading order of polynomial group Gy is
lod(Go) =10d(Qo, 0) = 0. In the i, modification, if no polynomial needs to be modified,
then the polynomial group is unchanged, lod(G, ,,) = lod(G, ). Once a polynomial

needs to be modified, (4.32) must be used. If M; is the leading monomial of Q*, we

have:
. deg. O
lod(xQ ) =lod(Q ) + { 1 J +deg (M) + 1 (4.35)

and lod( G, ) will be increased if Q" is the minimal polynomial in the group G, . The

leading order increase guarantees that in the i iterative step, the leading order of the

polynomials group G, is always less than or equal to i

lod(G, ) <ix (4.36)
Based on (4.36), after C iterative steps, we have:

lod(G.)<C (4.37)

From (4.33) we know that only the minimal polynomial is chosen from the

polynomial group G, as Q(x, y) = {Q.. ;| O., ;€G. and lod(Q,, ;) = lod(G,)}, therefore:

lod(Q(x,y)) < C (4.38)
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which means the interpolated polynomial O(x, y) has leading order less than or equal
to C. Those polynomials with leading order over C will not be candidates to be QO(x, y).
Therefore, during the iterative process, we can modify the group of polynomials by

eliminating those with leading order over C as [52]:
G, ={Q,, 110d(Q, H=C} (4.39)

We now prove this modification will not affect the final result. In i iterative step, if

there is a polynomial Q, ; with lod(Q, ;) > C, it may be modified either by (4.31) or

(4.32) which will result in its leading order being unchanged or increased. Therefore,

at the end lod(Q, ;) > C and based on (4.38) it can not be O(x, y). However, if Q, ; is

the minimal polynomial defined by (4.29), this implies that those polynomials with

leading order less than C do not need to be modified. If Q, ; is not the minimal
polynomial defined by (4.29), O, ; will not be chosen to perform bilinear Hasse

derivative (4.31) with other polynomials. Therefore, O(x, y) has no information

introduced fromQ, ; since lod(Q, ;) > C. As a result, eliminating the polynomials

with leading order over C will not affect the final outcome.

This complexity modification scheme can be generally applied to the iterative
interpolation process, such as soft-decision list decoding of Reed-Solomon codes and
hard/soft-decision list decoding of Hermitian codes, both of which will be presented
in the later chapters of this thesis. Based on the total number of iterations C for
interpolation, the interpolated polynomial’s leading order always satisfies: lod(Q(x, v))
< C. It implies that those polynomials in the group G can be eliminated once their

leading order is over C.

This modification can reduce some unnecessary computation in terms of avoiding
Hasse derivative evaluation (4.27) and bilinear Hasse derivative modification (4.31)
(4.32) of polynomials with leading order over C. Based on the above analysis, the

modified interpolation process can be summarised as:
Algorithm 4.1: Interpolation for list decoding of a (n, k) Reed-Solomon code

(1) Initialise a group of polynomials by (4.25), set ix=0

53



Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

(11) Modify the polynomial group by (4.39)

(111) Perform Hasse derivative evaluation (4.27) for each polynomial in the group
(iv) If all the polynomials’ Hasse derivative evaluations are zero, go to (vii)

(v) Find the minimal polynomial defined by (4.29) (4.30)

(vi) For the minimal polynomial, modify it by (4.32). For the other polynomials with
nonzero Hasse derivative evaluation, modify them by (4.31)

(vil) ir=1ix+ 1

(viii) If iy = C, stop the process and choose Q(x, y) defined by (4.33) else go to (ii).

Here an example is given showing the modified interpolation process.

Example 4.4: Decode the (7, 2) Reed-Solomon code defined over GF(8) with

3
multiplicity m = 2. As C = 7[J =21, based on (4.10) (4.11) we have =3 and /, =

5. The transmitted codeword is generated by evaluating the message polynomial f{x) =
o+ &x over the set of points x = (1, o, o , 0'2, 0'6, 0'4, oﬁ) and the corresponding
received word is R = (oj , ou s 0'4, 0, o , 02, 0'2), where ois a primitive element in GF(8)
satisfying o + o + 1 = 0. Construct a bivariate polynomial that has a zero of

multiplicity m = 2 over the n points (x,,7.) |, .
At the beginning, 6 polynomials are initialised as:

Qo,0=1,00,1=y, Qo2 = yz, Qo3 = y3, Qo,4 = y4, and Qo 5 = ys. Their leading orders
are 1od(Qo, 0) = 0, 1od(Qy, 1) = 2, 10d(Qo, 2) = 5, lod(Qo, 3) = 9, lod(Qo, 4) = 14 and
lod(Qy, 5) = 20 respectively. lod(Go) = lod(Qy. ¢) = 0.

When ix =0, i =0 and (¢, f) = (0, 0), no polynomial is eliminated from the group Gp.

Perform Hasse derivative evaluation for each of the polynomials in Gy as:

Ao = Dik (Qik,O): D(((;C,Oo’)y(])(Qo,o): 1,A1= Dik (Qik,l): D((g,oo’)y(])(Qo,l): o
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A= D, (0, ,)= D" (Qs)= 0" A= D, (0, )= Dy (Qy)= &
A= D, (Q, )= Dgiy”(Qy.1)= &, As = D, (9, )= Digiy" (Qy5)= 0"
Find the minimal polynomial with A; # 0 as:

j’=0and Q"= Qu0

Modify polynomials in G with A; # 0 as:

01.0=Ao(x —x0)Q’ =1+ x, and lod(Q;,0) = 1

01.1=700.1-AQ’ =0 +y,and lod(Q;, 1) =2

01.2=2000.2 - MO’ = & +)7%, and 1od(Q;.5) = 5

01.3=A00.3 - A0’ = o+, and 1od(Q;.3) = 9

O1.4=0200.4- A0’ =" +* and 1od(Q,. 4) = 14

O1,5=MQo,5- AsQ’ = 0"+, and lod(Q1,5) = 20

10od(Gy) = 10d(01.0) = 1.

When iy =1,i=0and (e, p) = (0, 1), no polynomial is eliminated from the group G;.
Perform Hasse derivative evaluation for each of the polynomial in G, as:

A= D, (0, 0)= D" (Q)=0. A= D, (Q, )= D" (Q,)=1

A= D, (0, )= D (©,,)=0. A= D, (0, ,)= Dy (Q,5)= &

As= D, (0, )= Dt (Q,)=0.As= D, (0, 5)= D" (Q,5)=

Find the minimal polynomial with A; # 0 as:

j'=1land Q"= 0

AsAg=A=A4=0,

020=01,0=1+x,and lod(0,,0) =1

02,,=012=0 +)%, and lod(0>,2) = 5

054=01.4=0+)" and lod(0 4) = 14
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Modify polynomials in G with A; # 0 as:
02.1=AM(x-x0)Q =0 + ox +y(1 +x), lod(0s, 1) = 4
0,3=AM013-A0"=0cy+y", 10d(02.3) =9

01 5=A0s5-AsQ’ ="y +°, 1od(0s. 5) = 20

lod(G,) = lod(Q»,0) = 1.

When iy =2,i=0and (a, f) = (1, 0), no polynomial is eliminated from the group G,.
Perform Hasse derivative evaluation for each of the polynomial in G, as:
Ao =D, (0, 0)= D'y (Q,0)= 1. &1 = D, (0, )= D" (2,,)=0
A= D, (0,,)= Diiy" (©,.)=0. 8= D, (0, 1)= D" (0,:)=0
A= D, (0, )= Diiy" (©,)=0.85= D, (0, 5)= D" (0,5)=0
Find the minimal polynomial with A; # 0 as:

j'=0and Q'=0» 0

AsAI=A=A3=As=As=0

031=0s1= 0+ &x +3(1 +x),lod(0s,1) = 4

03.2=0r2=0 +)°, and lod(03.2) = 5

03.3=023= 0y +,10d(03,3) =9

03,4=02,4= 0" +)*, and 10d(Q3 4) = 14

03.5=0s.5=0"y+)", lod(Qs,5) =20

Modify polynomials in G> with A; # 0 as:

03,0=Ao(x —x0)Q" = 1 +x°, 1od(Qs,0) = 3

10d(Gs) = lod(0s. 0) = 3.

Based on the same process, interpolation is run through all the rest of the points (x;, 7;)

(i=1to 6). In order to illustrate the complexity reduction modification scheme, Table

56



Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

i o1 |23 [4|5|6[7]|8]09
lod(Q, )| O | 1 [ 1|3 |6]6|10]15]|15]21
lod(Q, )| 2|24 |44 |7 7|7 |11|11
lod(Q, ;)| 5|5 |5(5(5|5]|5]|5|5]|5

lod(Q, ) [ 9| 9]9]9fololo|9o]|9o]? g

lod(Q, ,) [ 14|14 |14 | 14 [ 14| 14 | 14| 14 | 14| 14
lod(Q, 5) |20 [ 20|20 | 20|20 |20 20|20 20|20
lod(G,) o |1 |1 |3 |4|5|5]5]|5]|5

i 101112 13|14 [15]|16|17 | 18|19 |20 |21

lod(Q, o) |28 |28 | 36 | 45 | 45|55 | 55|55 |55|66 |66 78

lod(Q, ;) | 11|16 |16 |16 |22 | 22|22 |22 (2222|2929

Original GS lod(Q, ,) | 5|55 |55 |58 |8|12]12]1212

| d(Q ) 99 99999 |13]13|13]13]13

lod(Q, ;) |14 |14 |14 |14 [ 14| 14 [ 14| 14 | 14| 14 | 14| 14

lod(Q, 5) {20 (20|20 [ 20|20 |20{20 2020|2020 |20

lod(G;,) |5 |5 |5|5|5|5|8 |8 |12]12]12]12

i 10|11 [ 12 13|14 [15|16| 17 [ 18] 19|20 |21

lod(Q, o) | — | —|—|—|—|—|—|—|—|—|—|—

lod(Q, ) |11 |16]16 (16| —|—|—|—|—|—|—|—

Modified GS lod(Q, ,) | 5|55 |5|5|5 8|8 |12]12]12]12

[ 1od(Qy ) | 91999999 |13)13]13|13]13

lod(Q, ,) |14 |14 |14 |14 [ 14| 14 [ 14| 14 | 14| 14 | 14| 14

lod(Q, 5) {20 (20|20 [ 20|20 |20 (2020202020 |20

lod(G;,) |5 |5 |5|5|5|5 |8 |8 |12]12]12]12

Note: — means the corresponding polynomial is eliminated.

[ means the corresponding polynomial is chosen as O(x, ).

Table 4.2 Iterative process of example 4.4
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4.2 shows the whole iterative process with respect to the polynomials’ leading order.
From Table 4.2 we can see that the modified algorithm starts to take action at iz= 10
when there is polynomial with leading order over 21 and eliminating those
polynomials will not affect the final outcome. At the end, both the original and
modified GS algorithm produce the same result: O(x, y) = min{Gz1} = Oy, 2=1 +
o'x* + x* +1%(6° + o'x?). From this example we can see that more computation can
be reduced if the modified algorithm starts to take action at earlier steps. A detailed

complexity analysis of this modified algorithm is presented in section 4.5.

4.4 Factorisation

In this section, the factorisation theorem is explained, which is followed by a detailed

description of its implementation method: the Roth-Ruckenstein’s algorithm.

4.4.1 Factorisation Theorem

As mentioned in section 4.2.2, given the interpolated polynomial Q(x, y) , the

transmitted message polynomial f{x) can be found out by determining Q(x, y)’s y roots.

Lemma 4.1 If O(x, y) has a zero of multiplicity at least m over (x; r;) and p(x) is a

polynomial in F, q[xk'l] that p(x;) = r, then (x — x;)" | O(x, p(x)) [7].

Define A(p, R) as the number of symbols in received word R that satisfy p(x;) = r; as:

A(p, R)={i: p(x))=r,i=0,1,...,n-1}] (4.40)

Lemma 4.2 p(x) is a polynomial in Fq[xk'l] and p(x;) = r; for at least A(p, R) values, if
m A(p, R) > degi 11(Q(x, ), then y — p(x) | O(x, ), or O(x, p(x)) =0 [7].
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Based on lemma 4.1, if p(x;) = r;, then (x — x;)" | O(x, y). If S is the set of i that satisfies
p() =ri.as |S| = A(p, R), then [ [(x—x)" | Ox, p(x)). Assume gi(x) = [ [(x—x,)"

ieS ieS
and g>(x) = O(x, p(x)), therefore g;(x) | g2(x). It is obvious that g;(x) has x degree m
A(p, R) and g»(x) has x degree equals to deg; «10(x, y). If m A(p, R) > deg; 10(x, y)

and gi(x) | g2(x), the only solution for these two preconditions is: g»(x) = 0. Therefore,

if m A(p, R) > degi_ 1(0O(x, )), O(x, p(x)) = 0 or equivalently, y — p(x) | O(x, y).

As Q(x, y) is the interpolated polynomial from the last step, according to (4.38), lod(Q)
< C. Based on (4.9), deg; -1(Q(x, ¥)) < Sy(O). If m A(f, R) = S«(C), then m A(f, R) >

degi, x1(QO(x, »)). Based on lemma 4.2, if A(f, R) > 1 + LM J, the transmitted

m

message polynomial f{x) can be found out by factorising Q(x, ). As A(f, R) represents
the number of points that satisfy »; = f(x;) = ¢;, those points that do not satisfy this
equation are where the errors locate. Therefore the error-correction capability of the

S.(©)

GS algorithm is 7, = n - L
m

J - 1 which is defined by (4.10). Under (1, £-1)-

lexicographic order, x°)/ is the maximal monomial with weighted degree (k - 1)j. In
polynomial QO(x, y), there should not be any monomials with y-degree over S,(C),
otherwise lod(Q) > C. As a result, max{deg,QO(x, y)} < S,(C). As the factorisation
output list contains the y roots of Q(x, y), and the number of y roots of O(x, y) should
not exceed its y degree, therefore the maximal number of candidate messages in the

output list is /,,= S,(C) which is defined by (4.11).

4.4.2 Recursive Coefficient Search

To find out the y-roots of the interpolated polynomial QO(x, y), Roth and Ruckenstein
[10] introduced an efficient algorithm for factorising these bivariate polynomials,

called Roth-Ruckenstein’s algorithm.

In general, factorisation output p(x) € F, q[xk'l] can be expressed in the form of:

p(x) = po+ prx + = + pix! (4.41)
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where po, pi, ..., pr-1 € GF(g). In order to find the polynomials p(x), we must
determine their coefficients po, pi,..., pr1 respectively. The idea of Roth-

Ruckenstein’s algorithm is to recursively deduce py, py, ..., pr.1 one at a time.

For any bivariate polynomial, if / is the highest degree such that x" | O(x, ), we can

define:

. O, »)

Q (x,y)= (4.42)

X

If we denote po = p(x) and Ou(x, y) = Q'(x, ¥), where O(x, y) is the new interpolated
polynomial (4.33), we can define the recursive updated polynomials p,(x) and QOs(x, y),

where s > 1, as:

P (x)—p,,(0) _
x

p,+tp X (s <k-1) (4.43)

p,(x)=

0,(x,)=0, ,(x,xy+p,,) (4.44)

Lemma 4.3 In this sequential deduction with p(x) and Qs(x, y) defined by (4.43) and
(4.44), when s > 1, (y - p(x)) | O(x, y) if and only if (v - ps(x)) | Os(x, y) [46].

This means that if polynomial ps(x) is a y root of QOs(x, y), we can trace back to find
the coefficients p;.1, ..., p1, po to reconstruct the polynomial p(x), which is the y root

of polynomial QO(x, ).

The first coefficient py can be determined by finding the roots of Qy(0, y) = 0. If we
assume that O(x, p(x)) = 0, then based on lemma 4.3, po(x) should satisfy Qo(x, po(x))
= 0. When x = 0, Qy(0, po(0)) = 0. According to (4.41) po(0) = po, therefore py is the
root of Oy(0, y) = 0. By finding the roots of Oy(0, y) = 0, a number of different py can
be determined. For each po, we can deduce further to find the rest of ps (s = 1,..., k- 1)

based on the recursive transformation (4.43) and (4.44).
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Assume that after s - 1 deductions, polynomial p;_i(x) is the y root of O 1(x, ). Based
on (4.43), p,.1(0) = ps.1 and a number of p,.; can be determined by finding the roots of
05.1(0, y) = 0. For each p;.;, we can deduce to find p;. As Oy.1(x, ps-1(x)) =0, (¥ - ps.1(x))
| Os.1(x, ). If we define y = xy + py.y, then (xy + ps1 - ps1(x)) | Os1(x, xy + ps.1). Based

on (4.43), xy + ps.1 - ps.1(x) = xp - xps(x). As 0 (x.y)= Q:_ (X Ep ), (xXy - xps(x))

| Os1(x, xy + ps1), and (y - ps(x)) | Os(x, ). Therefore, p; can again be determined by
finding the roots of Oy(0, y) = 0. This root finding algorithm can be explained as a tree
growing process, which is shown in Fig 4.1. There can be an exponential number of
routes for choosing coefficients p; (s = 0, 1, ..., k - 1) to construct p(x). However, the
intended p(x) should satisty: deg(p(x)) < k and (y - p(x)) | O(x, y). Based on (4.43),
when s = k, pi(x) = 0. Therefore if Qx(x, 0) = 0, or equivalently Ok(x, pi(x)) = 0, (y-
pi(x)) | Ox(x, ). According to lemma 4.3, (y-p(x)) | O(x, ¥) and p(x) is found.

n <<
pi < :
. P <:
Po :
)2 < 1?2 <:
D2 é
o, y)
1?2
P < 1;2 <:
Po
P:1 < 1?2 <:
D2 <:

Figure 4.1 Coefficients deduction in the Roth-Ruckenstein’s algorithm

Based on the above analysis, the factorisation process can be summarised as [10, 46]:
Algorithm 4.2: Factorisation of list decoding of a (n, k) Reed-Solomon code
(i) Initialise Qo(x, ) = O (x, y), s = 0

(i1) Find roots p, of O4(0,y) =0
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(111) For each py, perform Q transformation (4.44) to calculate Q+1(x, »)
(iv)s=s+1
(v) If s <k, go to (ii). If s = k and QOs(x, 0) # 0, stop this deduction route. If s = k and

Oy(x, 0) = 0, trace the deduction route to find py.y, ..., p1, po.

Here presents a work example of the Roth-Ruckenstein’s algorithm.

Example 4.5: Based on polynomial O(x, y) = 1 + o'x*+ o*x*+ 1*(0” + o'x) which is
the interpolation result of example 4.4, determine the factorisation output list L using

the Roth-Ruckenstein’s algorithm.
Initialise Qo(x, y) = O'(x, y) = 1 + o*x*+ o*x* + y*(0° + o'x*) and s = 0.
00(0, y) =1 + ¢’y* and py = ois the root of 0y(0, y) = 0.

For py = o, generate Q)(x, y) = QO*(x, Xy + po) = o+ ox* +y2(05 + 0'4x2). s=s+1=
1. As s <k, go to (ii) of the algorithm

01(0,y) =0 + 0’y* and p; = &’ is a root of 0,(0, y) = 0.
For p; = &°, generate Ox(x, y) = Ql*(x, xy+p) =10 +ox).s=s+1=2.Ass=k
and O»(x, 0) = 0, trace this deduction route to find its output py = o-and p; = &°.

As a result, factorisation output list L = {p(x) = o+ o’x}. According to example 4.4,

p(x) matches the transmitted message polynomial f(x).

4.5 Complexity Analysis

The GS algorithm’s high decoding complexity is mainly caused by interpolation.
Compared to this, the factorisation complexity cost is insignificant. This section
analyses the computational complexity (finite field arithmetic operations) for the

original and modified algorithm.

It is difficult to analyse the computational complexity precisely because the length

(number of coefficients) of the group of interpolated polynomials varies in different
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situations. We define the number of coefficients of the polynomial Q(x, y) as its

interpolation cost by:

7 = [{Qap = coeff(O(x, y)) and Qup 7 0} | (4.45)

[59] has stated that the interpolation cost is error dependent:

Q* Q Dh-Dd-1)
+—F——F=
20k-1) 2 2(k-1)

y(e) < m+1 (4.46)
where Q = em + (k-1)m, ® = Q mod (k-1) and e is the error weight. According to
section 4.3.3, we know that the interpolated polynomial QO(x, y) has leading order less
than or equal to C, therefore its interpolation cost is less than or equal to C + 1. If we
regard the interpolation process as solving a system of homogeneous linear equations
by Gaussian elimination and assume those polynomials have the same interpolation
cost as C + 1, the GS algorithm’s computational complexity can be predicted.
Interpolating the group of polynomials with interpolation cost C + 1 by C iterative
steps can be regarded as operating on a matrix of size C x (C + 1) by Gaussian

elimination and its computational complexity is approximately [59]:
2 3
3 (C+1) (4.47)

However, in most of the situations y(e) < C + 1, which means some elements in the
row of the matrix are not used and the row operation is not fully performed. Therefore,
in most cases (4.47) is an upper bound for the GS algorithm’s computational
complexity. As the interpolation cost grows with the error weight, so does the
computational complexity. Based on (4.47), Table 4.3 predicts the computational
complexity for decoding Reed-Solomon codes (63, 15) and (63, 31) both of which

were first introduced in example 4.1 and 4.2 respectively.

m C+1 | Finite field arithmetic operations
1 64 1.75x10°
2 190 4.57x10°
4 631 1.67x10°
6 | 1324 1.55x10°

Table 4.3a Computational complexity for Reed-Solomon code (63, 15)
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m C+1 | Finite field arithmetic operations
1 64 1.75% 10°
3 | 379 3.63x 10
5 | 946 5.64x10°

Table 4.3b Computational complexity for Reed-Solomon code (63, 31)

In computer simulations, the computational complexity for the two codes has been
measured, which are shown in Fig 4.2. Comparing the measurements with Table 4.3,
we can see that in most cases (4.47) is a computational complexity upper bound for
the GS algorithm and the decoding complexity grows with the error weight. With
higher multiplicity m, the GS algorithm has better error-correction capability, but at
the expense of much higher computation. Comparing the computational complexity
between the original and modified GS algorithm, it shows that the lower the error
weight, the more computation can be reduced. For Reed-Solomon code (63, 15), the
modification can reduce the computational complexity by 37.38% in low error weight
situations, but in high error weight situations the complexity is only reduced by 0.70%.
For Reed-Solomon code (63, 31), the complexity reduction varies from 21.48% to
0.00% with increasing error weight. In Fig 4.2, the conventional decoding algorithm —
Berlekamp-Massey (BM) algorithm’s decoding complexity is also measured against
the error weight. It can be seen that the conventional decoder’s efficiency is still
higher than the modified GS algorithm. Therefore, the modified GS algorithm can
outperform the BM algorithm in terms of error correction capability, but its decoding
complexity is higher. While comparing the modified GS algorithm with the GS
algorithm, its decoding efficiency is higher, but error correction capability remains the

same.
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Figure 4.2 Computational complexity analyses for the modified GS algorithm

The modification’s error dependent property is analysed as followed.
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During the iterative interpolation process, if we define the maximal leading order of

the polynomial group G, as:
maxlod(G, ) =max{lod(Q, )| 0O, ; €G, } (4.48)

The modification (4.39) will start to act when maxlod(G, ) > C. We use i, to denote

the iterative index when the modification starts to act, which can be explained as:
io= {ix| maxlod( G, ) > C and maxlod(G, )< C} (4.49)

i, 1s error dependent. Under two different situations with error weight e; and e, (ey, e>

< 17,,), decoding the same code with multiplicity m, we have:
ia(el) < ia(ez), if e1<e (450)

which means the lower the error weight, the earlier the modification starts to act.

It has been observed that Q, , is always the first polynomial in the polynomial group

to have leading order over C. Therefore, analysing the leading order increase pattern

of polynomial Q, , is useful to explain the modified algorithm’s error dependent

property (4.50). According to the polynomials’ property (4.28) and the leading order

increase relationship (4.35), we can see that, during the iterative process, Q, ,’s

leading monomial M, always satisfies deg,(M;) = 0 and (4.35) can be simplified for
0, , as:

(4.51)

de :
lod(Q, .,,)=10d(Q, ;) + {ix—QIWJ 1

At the beginning of the iterative process, lod(Qy, ¢) = 0. From (4.51), we can see that
O, o will be modified by (4.32) with lod(Q, ,,,) =lod(Q, ,) + 1 for k - 1 times until

deg(( O, ,) = k - 1. Followed by that, O, , will again be modified by (4.32) with
lod(Q, ,,,) =1od(Q, o) + 2 for k - 1 times until deg(Q, ,) = 2(k - 1). This periodic
process continues and the leading order of Q, , is accumulated as 1(k- 1) +2(k- 1) +
. @, o will be eliminated once its leading order is over C, therefore the periodic

process will stop when lod(Q, ., ,) =lod(Q, ,) + 4, where 4 is defined as:
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A =min{x| (k—l)zx:i > C) (4.52)

i=1

(k-=1)(m+1)

As there are iterative steps for each of the periodic processes, under the

zero error situation the upper bound for i,(0) can be defined as:
i (0)< M%”U (4.53)
Once i,(0) has been determined, i,(e) would always satisfy:

i (e)<i,(0)+ e(m; IJ (4.54)

which means the lower the error weight, the earlier the modification starts to act and
more computation can be reduced as a consequence. Table 4.4 shows some
experimental data of i,(e) from the authors’ implementation [52] of Reed-Solomon

codes (63, 15) and (63, 31), both of which reveal that (4.54) is being observed.

m| o | o PO ) | e | e | @ | )
bound

1 63 3 42 36 37 38 39 40 41

2 189 5 105 99 102 105 108 111 114

4 630 10 350 318 328 338 348 358 368

6 1323 14 686 651 672 693 714 735 756

Table 4.4a i,(e) for Reed-Solomon code (63, 15)

m| oo | 2 [V o | | e | w® | w@ | )
bound

1 63 2 60 47 48 49 50 51 52

3 378 5 300 271 277 283 289 295 301

5 945 8 720 673 688 703 718 733 748

Table 4.4b i,(e) for Reed-Solomon code (63, 31)
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4.6 Simulation Results

A software platform using the C programming language has been developed for the
GS algorithm with the complexity reduced modification and a few simulation results
have been achieved. The performances of the two Reed-Solomon codes which are
defined by examples 4.1 and 4.2 are shown in Fig 4.3 and 4.4. They are also published
in [52]. In the simulations, QPSK modulation scheme is employed. The performance
of a conventional unique Reed-Solomon code decoding algorithm (Berlekamp-
Massey algorithm) is used to compare with the GS algorithm. The Rayleigh fading
channel is memoryless with Doppler shift. It is a fast fading channel in which each
QPSK symbol is multiplied by a Rayleigh distributed random number with mean

value 1.26 and variance 0.5.

Fig 4.3a and 4.3b show the performance of Reed-Solomon code (63, 15) over AWGN
and Rayleigh fading channels. Over AWGN channels about 0.4 - 1.3 dB coding gain
can be achieved at BER = 10~ with different multiplicity m, while over the Rayleigh
fading channels the coding gain is about 1 - 2.8 dB. Fig 4.4a and 4.4b show the
performance of Reed-Solomon code (63, 31). For this code, the GS algorithm has no
performance advantage with multiplicity m = 1. However with multiplicity m > 1, at
BER = 10~ it can achieve 0.2 - 0.8 dB coding gain over AWGN channels and 0.5 -
1.4 dB coding gain over Rayleigh fading channels.
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Figure 4.3 Hard-decision list decoding performance of Reed-Solomon code (63, 15)

69



Chapter 4 Hard-Decision List Decoding of Reed-Solomon Codes

1.00E+00
1.00E-01 ——uncoded
—&— GS (m=1)/Berlekamp-Massey|
—a— GS (m=3)
1.00E-02 GS (m=5)
—%—GS (m=13)
& 1.00E-03 |
1]
1.00E-04
1.00E-05 A
1.00E-06
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
SNR(Eb/NO)
(a) over AWGN channel
1.00E+00
1.00E-01 3 —&—uncoded
—&— GS (m=1)/Berlekamp-Massey
—&— GS (m=3)
1.00E-02 - GS (m=5)
4
—%—GS (m=13)
4
w 1.00E-03 -
o
1.00E-04 -
1.00E-05 -
1.00E-06
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

SNR(Eb/NO)

(b) over Rayleigh fading channel
Figure 4.4 Hard-decision list decoding performance of Reed-Solomon code (63, 31)
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4.7 Conclusion

This chapter explained in detail the hard-decision list decoding algorithm for Reed-
Solomon codes. In order to improve the algorithm’s decoding efficiency, a novel
modification to the interpolation part has been presented. This modification is based
on eliminating unnecessary polynomials during the iterative interpolation process.
According to the complexity analysis, it can be seen that the decoding complexity is
error dependent and the modification can reduce the decoding complexity, especially
for low error weight situations in which complexity reduction can be up to 37.38%.
Based on this modified GS algorithm, simulation results are presented showing the
coding gains over a unique decoding algorithm with more significant gains for low
rate codes and in a fading environment. It is very important to point out that this
performance advantage is still at the cost of high decoding complexity compared with
the unique decoding algorithms. Based on the hard-decision list decoding algorithm,
further improvement can be achieved by applying a soft-decision list decoding
scheme. This soft-decision list decoding scheme for Reed-Solomon codes is to be

presented in the next chapter.
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5.1 Introduction

From Chapter 4, it was seen that Guruswami and Sudan’s hard-decision list decoding
scheme can outperform the conventional unique decoding algorithm by correcting
errors beyond the half distance boundary. Greater performance improvements can be
achieved by employing a soft-decision list decoding algorithm. This chapter presents
this soft-decision list decoding algorithm for Reed-Solomon codes. Koetter and Vardy
[8] first introduced a soft-decision list decoding scheme for Reed-Solomon codes,
which is called the Koetter-Vardy (KV) algorithm. Different to the hard-decision
scheme, the soft-decision scheme obtains the received word’s posteriori transition
probability, which is represented by a reliability matrix /Z The reliability matrix I71s
then converted into a multiplicity matrix M based on which the interpolated
polynomial is built. The interpolation and factorisation processes are the same as

described in Chapter 4. This soft decision scheme can be illustrated by Fig 5.1.

Interpolation Factorizsation
=M N .
Build {x, v) Find fix)

Figure 5.1 Soft-decision list decoding scheme

From Fig 5.1, it can be seen that this soft-decision scheme builds upon the hard-
decision scheme with an additional process that converts reliability values into
multiplicity values. In [8] it was shown that this soft-decision scheme can outperform
Guruswami-Sudan’s hard-decision scheme with significant coding gains. [8] also
showed that this soft-decision scheme can also outperform the generalised-minimum
distance (GMD) decoding algorithm [55]. Some later developments of this soft-
decision scheme’s application, very large scale integration (VLSI) design and
complexity reduction transform are presented in [60, 61] and [50] respectively. This
chapter presents the soft-decision list decoding scheme for Reed-Solomon codes. It is
shown how to obtain the reliability matrix /7 based on the received information and
how to convert the reliability matrix /7 into the multiplicity matrix M. For the

algorithm that converts /7to M, a practical method to realise the stopping rule based
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on the designed length of output list is introduced. It is shown in Chapter 4 that the
interpolation complexity can be reduced by eliminating polynomials with leading
order over the iteration number [52]. This modification scheme can also be applied to
the soft-decision scheme. Based on the resulting multiplicity matrix M, the cost of the
matrix Cys can be determined, which represents the total iteration number. Therefore,
in the following interpolation process, polynomials with leading order greater than
this number can be eliminated. It will be shown later in this chapter how the
modification performs with the soft-decision scheme. Simulation results of this soft-
decision scheme based on assigning the same length of output list as the hard-decision
shows the coding gains that can be achieved compared with hard-decision list
decoding. More importantly, it is first shown by how much the decoding complexity

increases in order to achieve this performance advantage.

5.2 Prerequisite Knowledge

This section gives some prerequisite knowledge for demonstrating the soft-decision

list decoding scheme.

Based on the (1, k-1)-weighted degree definition of monomial x“)” given in section

4.2.2, let us define the following two parameters:
N1 e1(8) ={x": a, b > 0 and deg; ;. 1(x)") < 6, 5 € N}| (5.1)

which represents the number of bivariate monomial xy” with (1, k-1)-weighted degree

not greater than a nonnegative integer 0[8]. And
Al 1(v) =min{: Ny 1.1(0) > v, v € N} (5.2)

which denotes the minimal value of & that guarantees N; r.1(0) is greater than a
nonnegative integer v [8]. Associated with these two definitions, the following two

corollaries shall be proposed.

Corollary 5.1: A, ;.1(v) = deg)_ 1.1(x" | ord(xy”) = v).
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Proof: According to section 4.2.2, monomial x“yb’s (1, k-1)-lexicographic order grows

based on its (1, &-1)-weighted degree grows. Up to monomial xayb with ord(x“yb) =,
there are in total v + 1 monomials. Therefore, its (1, k-1)-weighted degree deg;. .1(x)")
is the minimal value that guarantees there are more than v monomials with (1, k-1)-

weighted degree not greater than it.

5 S
, and when 8 — 0, N 4.1(6) =
2(k —1) 2(k-1)

Corollary 5.2: Ny .1(0) > [8].

Proof: To prove corollary 5.2, a (1, k-1)-weighted degree monomial table needs to be
taken for analysis. Take Table 4.1a which shows the (1, 4)-weighted degree of
monomial xy” as an example. This table can be geometrically plotted as Fig 5.2.

(0. (&0)

o

0 1 l2i3i4istel7ialadartiiie] | @

- ="

-

-

e

8 L ST 11012

¥

Figure 5.2 Geometric analysis of table 4.1a

In Fig 5.2, index of x-axis and y-axis represent monomial x*y”’s x degree a and y
degree b respectively. The unit distance of x-axis weights 1 and the unit distance of y-
axis weights k — 1. Each monomial x*y” occupies a unit square and therefore in this
figure, N; 11(0) denotes the total area occupied by monomial x" with deg;, (X)) <

o. It is denoted as Areal = N .1(0), which is enclosed by the solid line shown in the

figure. The triangle defined by vertexes (0, 0), (o, 0), and (0, {%J) has area %5

I

2 2
° o , which is denoted as Area2 = o . From Fig 5.2, it is easy to
k-1 2(k-1) 2(k-1)
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2

be seen that Areal > Area 2, and therefore N; 1.1(0) > 20D

. Also, based on the

figure, it is not difficult to realise that when & — oo, Areal and Area2 approach to be

2

equal with each other and therefore N; 4.1(0) = . Take the case shown in Fig

2(k-1)
5.2 as an example, 6= 12, and N; ;-1(9) = N, 1(12) = 28, while 5 = 12" =18
. ple, > 1, k-1 1, k-1 ; 2k—1) 2.4
52
Therefore, N1 i > .
L0220

5.3 Reliability Information

As mentioned in Chapter 4, the hard-decision decoder obtains a vector of received
word R = (ro, 71, ..., 'n1) (ri € GF(q),i =0, 1, ..., n - 1). However, the decoder can
also be supplied with posteriori transition probability information [8, 62, 63], or so
called the reliability information. The decoder that utilises this information is called

soft-decision decoder. This section shows how to obtain the reliability information.

Assume the channel is memoryless with input alphabet y € GF(g) and output alphabet
R € GF(q). Let Pr indicates the probability function, y is uniformly distributed over
GF(g) = (oo, p1, ..., pg-1) as Pr(y = po) = Pr(y = p1) = - = Pr(y = p,-1). If the channel
is continuous, then R is continuous and p(- | p) is the probability density function. If
the channel is discrete, then ‘R is discrete and p(- | p) is the probability mass function
[64]. For the random received alphabet R = 4 (j =0, 1, ..., n - 1), the probability that
y=pi(i=0,1,...,q-1) was being transmitted can be obtained by [8]:

Pr(y=pi| R = 1) = p(lj|pi)Pr(Z:pi) _ P(l,-|,01-)
ST e e Pr=p) D PG, | p)

peGF(q) peGF(q)

(5.3)

For Reed-Solomon codes, g = n + 1. For each random received variable g, g transition
probabilities can be obtained as: Pr(y = po| R = ), Pr(y = p1 | R = 1), ..., and Pr(y =
Pg-1| R = ). Further, for a received vector R = (w0, 11, ..., 1,.1), @ ¢ x n reliability

matrix /7 can be determined as:
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o0 o1 o
o T T na
m=| _ (54)
: T :
| g0 g1 7 g-1.n-1 |

where its entry 7; ; is:
mi=Pr(y=p|R=4)(G@=0,1,...,g-1andj=0,1,...,n-1) (5.5

Referring to Fig 5.1, matrix /7 is taken as an input to the soft-decision decoder and
converted to a multiplicity matrix M, followed by the interpolation and factorisation

processes.

In the following description, the channel is assumed to be continuous. In order to
obtain the reliability information, it is worthy to mention the probability density
function. Let us assume S, are the modulated symbols (e. g. in BPSK, they are S, 5;
in QPSK, they are S}, S,, S3, S4) and any symbol §, can be projected into V' basis
functions as S,1, Su2, ..., Sur. Given received symbol y, the probability density

function with respect to the basis functions (y;, S,;) can be given as [64]:

— 1 _ (yt B Sut)z
p()/l | Sul) \/72'70 CXp|: NO :| (56)

where Ny denotes the power of noise. Then the probability density function with

respect to symbols (y, S,) can be calculated by:

p150=TTp0, 1S )=%exp{iM} 57)
1=1 o (72N, )V/z =1 N,

Based on (5.7), the reliability information with respect to finite field alphabets can be

further obtained by applying (5.3). Here shows an example of obtaining reliability

information based on the received symbols.
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Example 5.1 Calculate all the reliability information of received alphabet symbol
which is defined in GF(16). The QPSK modulation is used with mapping scheme
shown by Fig 5.3. As each QPSK symbol carries two binary bits information and a
GF(16) symbol contains four binary bits , 7 can be obtained by demodulating two
QPSK symbols. The two received QPSK symbols are given as: y4 = (Vur, Vo) =
(0.510761, 1.925977) and yz = (va1, ¥o) = (1.733793, -0.745044). Given Signal-to-
Noise Ratio (SNR) = 3 dB and bit energy (£5) = 0.5, the noise power can be
calculated by Ny = 0.5/10°% = 0.250594.

4
Quadrature
(0, 1 (0, 0y
® ®
1 1 1 1
S _(__r_j S :(_:_}
i '\'IIE A2 : W."E "."E
Inpgase

(L (

— @

1
Sy =(-— —— 5, =
=07 JE:' * (qﬁ’ﬁ

Figure 5.3 QPSK modulation mapping scheme

Applying hard-decision to the received symbols y4 and yg, they can be demodulated
as 00 and 10 respectively by applying the mapping scheme shown in Fig 5.3.
Combining them as 0010 and it is equivalent to finite field alphabet 2 and 5 = 2.

For soft-decision, as it is QPSK modulation, applying (5.7) with V' = 2 (two basis
functions, Inphase and Quadrature). For received symbol y4, four probability density

functions can be obtained as:

=0.002899,

Va _Sn)z +(yAQ _SIQ)2
exp| —

S =
P4 lS) o N,
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I ~ 85, +(Vso = S20)°
P4l S) = exp| — W = 50)" + (49 = S20) =0.000009,
Ny, | N,
I (Vu _S31)2 +(yAQ _S3Q)2 15
S) = exp| — =3.307612 x 10",
P4l S3) N, p N,
I Va _S41)2 +(yAQ _S4Q)2 13
S)) = exp| — =8.632852 x 107,
P4 | Sq) N, p N,

4
and their summation 2 p(»,1S,) =0.002908. Therefore,

u=1

Pr(S) | y4) = M = 0.996905, Pr(S | y.4) = M = 0.003095,

> p(v.18,) > p(y.lS,)
u=1 u=1
Pr(Ss | ) = M = 1.137418 x 1072,
zp(yA | Su)
u=l
Pr(Ss | v4) = M = 2.968656 x 107",
> p(,1S)
u=1

For received symbol y3, four probability density functions can be obtained as:

POn|S)= eXp:— O =Su)’ ;:yBQ _S‘Q)Z} — 4.194589 x 10°,
p(p|S) = o exp:— Om =S ) ;:y fe _Szg)z} =1.050284 x 107,
(v | S3) = o exp:— O =5 ;O(yBQ 439)2} —5.980199 x 10",
s | Sa) = . eXp:— o _S‘”)Z;;O(yBQ _S“Q)z} =0.018812,

4
and their summation z p(yz1S,) =0.018816. Therefore,

u=1
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S
Pr(Sl ’yB): 4p(yB | 1)

Z_:p(yg 1S,)

=2.229267 x 107,

Pr(Ss | i) = M = 5.581866 x 103,

Zp(yg 1S,)

S
Pr(Ss | y5) = M = 3.178252 x 10°, Pr(S | yg) = M

Zp(yg 1S,) Zp(yg 1S,)

=0.999787.

Based on the above reliability values obtained from two received QPSK symbols, the

reliability values for received alphabet symbol 4 can be calculated as:

Pr(y=0| R = 7) = Pr(0000 | R = ) = Pr(S; | y.) - Pr(S | yp) = 2.222367 x 10,
Pr(y=1|R = 1) = Pr(0001 | R = ) = Pr(S) | y.) - Pr(Sy | y5) = 5.564590 x 107",
Pr(y=2| R = ) = Pr(0010 | R = 5) = Pr(S | y4) - Pr(Ss | yp) = 0.996693,
Pr(y=3|R =) =Pr(0011 | R = ) = Pr(S | y4) - Pr(S5 | yp) = 3.168415 x 107,
Pr(y=4|R = ) =Pr(0100 | R = 5) = Pr(S> | y4) - Pr(Si | yp) = 6.899581 x 107,
Pr(y=5|R =) =Pr(0101 | R = ) = Pr(S> | y4) - Pr(S2 | yp) = 1.727588 x 1075,
Pr(y=6|R =) =Pr(0110| R = 5) = Pr(S | y1) - Pr(Sy | yz) = 0.003094,
Pr(y=7|R=15)=Pr(0111 | R = 5) = Pr(S; | 1) - Pr(S5 | y5) = 9.741342 x 107",
Pr(y =8| R = 5) =Pr(1000 | R = 5) = Pr(Sy | 1) - Pr(S) | y5) = 6.617927 x 107,
Pr(y=9| R = 5) =Pr(1001 | R = 5) = Pr(Sy | 1) - Pr(S1 | y5) = 1.657064 x 107,
Pr(y=10| R = 1) = Pr(1010| R = z;) = Pr(Ss | y) - Pr(Ss | y5) = 2.968024 x 107",
Pr(y=11|R = 1) =Pr(1011| R = 1) = Pr(Ss | y4) - Pr(S3 | ys) = 9.435137 x 107,
Pr(y=12|R = 1) = Pr(1100 | R = 7) = Pr(S5 | y4) - Pr(Si | y5) = 2.535608 x 107'°,
Pr(y=13|R = 1) = Pr(1101 | R = 5) = Pr(S5 | y4) - Pr(S | y5) = 6.348915 x 107>,
Pr(y=14|R =) =Pr(1110| R = 1) = Pr(S | y4) - Pr(Sy | y5) = 1.137176 x 107",

Pr(y=15|R=1)=Pr(1111| R = 1) = Pr(S3 | y4) - Pr(S3 | y5) = 3.615001 x 107",
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Among the above reliability values, Pr(y = 2| R = ) is the maximal. This indicates
that received finite field alphabet i has the highest probability of being transmitted as

x =2, which matches the hard-decision result mentioned above.

5.4 From Reliability Values to Multiplicity Values

The reliability matrix I7 (5.4) is then converted into a multiplicity matrix M which
defines the interpolated points with corresponding interpolation multiplicities. One of
the core contributions of [8] is presenting the algorithm that converts 77to M. This

algorithm is described as followed:

Algorithm 5.1: Convert reliability matrix /7 to multiplicity matrix M.

q-1 n-1

Input: Reliability matrix IT and a desired value of s = z z m

i=0 j=0

i.j
Initialisation: Set /' = IT and ¢ x n all-zero multiplicity matrix M
(1): While (s > 0) {

(i1): Find the maximal entry 72': ;indl " with position (i, j)

* . % * 72-1"/'
(iii): Update 7z, ; in Il as 7, ; = ————
i Tom +2

(iv): Update m; ;in M as m; j=m; ; + 1

(v):s=s-1
h
Algorithm 5.1 results a ¢ x n multiplicity matrix M which can be written as:

Mooy My, Mo,

m m, m

M= ‘ . (5.8)
: m,; :
| M0 My My _in |
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in which its entries m; ; represents the multiplicity value of interpolated point (x;, o) (j
=0,1,...,n—1andi=0,1, ..., g - 1). x; are the finite field elements used in encoding
(3.14). In algorithm 5.1, desired value s indicates the total value of multiplicity of all
interpolated points. This algorithm gives priority to those interpolated points which
correspond to a higher reliability values 7; ; to be assigned with a higher multiplicity

values m; ;. For illustration of the algorithm, here gives a work example.

Example 5.2 For soft-decision list decoding of the (7, 2) Reed-Solomon code which is

defined in GF(8), the following 8 x 7 reliability matrix /7is obtained by the receiver:

[0.959796
0.001749
0.028559
0.000052
0.009543
0.000017
0.000284

0.214170
0.005760
0.005205
0.000140
0.736533
0.019810
0.017900
0.000481

0.005453
0.000000
0.000148
0.000000
0.968097
0.000006
0.026295
0.000000

0.461070
0.525038
0.003293
0.003750
0.003180
0.003621
0.000023
0.000026

0.001125
0.897551
0.000126
0.100855
0.000000
0.000307
0.000000
0.000035

0.000505
0.025948
0.018571
0.954880
0.000000
0.000003
0.000002
0.000092

0.691729 |
0.000209
0.020798
0.000006
0.278789
0.000084
0.008382
0.000003

1 0.000001

(Note: in the matrix J7(J7), the maximal entry is underlined)

Apply Algorithm 5.1 with a desired value s = 20.

Initialisation: Set /7 = [Tand M = 0.

As s =20 > 0, find the maximal entry m,j*= 0.968097 in 7 with position (i, /) = (4, 2)

* * T .
Update 7, as m. 2 = 42 0.968097

= =0.484048
m,,+2 0+2

Update mg o inMasmy ,=0+1=1
s=s—-1=19

Now the updated /7 is:
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10.959796
0.001749
0.028559
0.000052
0.009543
0.000017
0.000284
0.000001

0.214170
0.005760
0.005205
0.000140
0.736533
0.019810
0.017900
0.000481

0.005453
0.000000
0.000148
0.000000
0.484048
0.000006
0.026295
0.000000

0.461070
0.525038
0.003293
0.003750
0.003180
0.003621
0.000023
0.000026

0.001125
0.897551
0.000126
0.100855
0.000000
0.000307
0.000000
0.000035

0.000505
0.025948
0.018571
0.954880
0.000000
0.000003
0.000002
0.000092

0.691729 |
0.000209
0.020798
0.000006
0.278789
0.000084
0.008382

0.000003 |

and the updated M is:

S O O O O O o O
S O O O O O o O
S O O = O O O O
S O O O O O o O
S O O O O O o O
S O O O O O o O
S O O O O O o O

In the next iteration, as s = 19 > 0, find the maximal entry 7r; j* =0.959696 in IT with
position (7, j) = (0, 0)

* oo

Update m, o as m.o = ~0.959796

Mgy +2 042

=0.479898

Update mo o in Masmg o=0+1=1
s=s—1=18

Now the updated /7 is:
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10.479898
0.001749
0.028559
0.000052
0.009543
0.000017
0.000284
0.000001

S O O O O O O -
S O O O O O o O
S O O = O O O O

[0.239949
0.001749
0.028559
0.000052
0.009543
0.000017
0.000284
0.000001

0.214170
0.005760
0.005205
0.000140
0.736533
0.019810
0.017900
0.000481

and the updated M is:

S O O O O O O O
S O O O O O O O
S O O O O O o O

0.214170
0.005760
0.005205
0.000140
0.245511
0.019810
0.017900
0.000481

and the updated M is:

S O O O O O o O

0.005453
0.000000
0.000148
0.000000
0.484048
0.000006
0.026295
0.000000

0.005453
0.000000
0.000148
0.000000
0.242024
0.000006
0.026295
0.000000

0.461070
0.525038
0.003293
0.003750
0.003180
0.003621
0.000023
0.000026

0.230535
0.175013
0.003293
0.003750
0.003180
0.003621
0.000023
0.000026
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0.001125
0.897551
0.000126
0.100855
0.000000
0.000307
0.000000
0.000035

Following the same process until s = 0, the updated 77 is:

0.001125
0.224388
0.000126
0.100855
0.000000
0.000307
0.000000
0.000035

0.000505
0.025948
0.018571
0.954880
0.000000
0.000003
0.000002
0.000092

0.000505
0.025948
0.018571
0.238720
0.000000
0.000003
0.000002
0.000092

0.691729 |
0.000209
0.020798
0.000006
0.278789
0.000084
0.008382
0.000003 |

0.230576 |
0.000209
0.020798
0.000006
0.139395
0.000084
0.008382
0.000003
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S O O O O O O W
S O O DO O O O
S O O W o O O O
S O O O O O N~
S O O O O O W o
S O O O W o O O
S O O = O O O M

As

”
Il

0, the iteration stops and the algorithm outputs matrix M =

S O O O O O O W
S O O b O O O O
S O O W o O O O
S O O O O O N =
S O O O O O W o
S O O O W o o O
S O O = O O O

In the resulting multiplicity matrix M, it can be seen that the sum of its entries

7 6
Zmi) ; = 20 which is the desired value s set in the beginning. Also, take any two
i=0 j=0

entries in I7 for comparison, m 3 = 0.968097 > m , = 0.836533. In the resulting
multiplicity matrix M, m4 3= 3 = my , = 2. It indicates that the interpolated point
which corresponds to a higher reliability value 7 ; will be assigned with a higher

multiplicity value m; ;.

5.5 Soft-Decision Solution

Based on the multiplicity matrix (5.8), interpolated polynomial Q(x, y) = ZQabx” y’

a,beN
is built so that O(x, y) has a zero of multiplicity at least m; ; (m; ; # 0) over interpolated

point (x;, p;). It can be seen that the total number of interpolated points covered by O(x,
y) is:

|{m,-,_,-¢0|m,-,j EM,iZO, 1, e q - 1 andeO, 1, R 1}| (59)
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Based on the derivation of section 4.3.1, with respect to point (x;, p;), O’s coefficients

Qup should satisfy:

a\b a-a _b-p
> 0,x, " “p""=0,Ya,feNand a+ f<m; (5.10)

aza,bzp\ & B

There are in total:

g=ln

CM: %z

-
i=0 j=0

m, ;(m; ; +1) (5.11)

constraints of type (5.10) for Q’s coefficients Q.. Cy is called the cost of multiplicity

matrix M, which also denotes the number of iteration in the interpolation process.

Referring to encoding process described by equation (3.14), if xo, xi, ..., x,.1 are the
finite field elements and cy, ci,..., ¢,.1 are the corresponding encoded code word
symbols, interpolated polynomial Q(x, y) can be explained as passing through point
(0, co) with multiplicity mo = m; o (p; = co), point (x;, ¢1) with multiplicity m; = m;
(o =c1), ..., and point (x,.1, c,-1) with multiplicity m,.; = m; .1 (o = cn1). Based on
lemma 4.1 described in section 4.4.1, if f{x) is the message polynomial (3.13) that
satisfies f{x;)) =¢; (j =0, 1, ..., n - 1), polynomial Q(x, f(x)) should satisfy:

(x—xy)" (x=x)" - (x—x,.,)"" | Qx, fAx)) (5.12)

Again, if we let gi(x) = (x—x,)" (x—x,)" - (x—x, )™ and g(x) = O(x, fx)),
based on (5.12), g1(x) | 22(x). g1(x) has x degree deg,(gi(x)) = mo + m; + --- + m,;. The
x degree of g;(x) is defined as the code word score with respect to multiplicity matrix

M as:

_ n—l1
Su(c) = degdgi(¥)) = mo+ my + - +mu = Y 4m, | p, =c,,i=0l,...,g=1}(5.13)

j=0
The x degree of g»(x) is bounded by deg.(g:(x)) < deg;, »10(x, y). Therefore, if

SM(E) > degi, 1-10(x, »), then deg,(g1(x)) > deg.(g2(x)). To satistfy both deg.(gi(x)) >
deg,(g2(x)) and g;(x) | g2(x), the only solution is: g>(x) = 0 which indicates Q(x, f(x)) =
0 or equivalently y — fix) | O(x, y), and message polynomial f{x) can be found out by
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determining Q(x, y)’s y roots. As a result, drawn from [8], the following lemma is

proposed.

Lemma 5.3: If code word score with respect to multiplicity matrix M is greater than
the interpolated polynomial Q(x, y)’s (1, k-1)-weighted degree as:
Su(c) > degi, 110(x, )

then Q(x, f(x)) = 0 or equivalently y — fix) | O(x, y). Message polynomial f(x) can be
found out by determining Q(x, y)’s y roots [8].

If the (1, &-1)-weighted degree of interpolated polynomial Q is S5, based on (5.1), O

has at most NV, (6" nonzero coefficients. The interpolation procedure generates a

system of C), linear equations of type (5.10). The system will be solvable if [8]:

Ny (8)> Cy (5.14)

Based on (5.2), in order to guarantee the solution, the (1, k-1)-weighted degree & of
the interpolated polynomial Q should be large enough so that:

deg,, (O, 1) =0 = A, (Cn) (5.15)

Therefore, according to lemma 5.3, given the soft-decision code word score (5.13)
and the (1, k-1)-weighted degree of the interpolated polynomial Q (5.15), message

polynomial f'can be found out if:

Su(e) > Ay (C) (5.16)

As the (1, k-1)-weighted degree of the interpolated polynomial Q(x, y) can be
determined by (5.15) while A, (Cy) can be realised by applying corollary 5.1 as:
A4 (Cy) = degy, (X" | ord(x*y?) = Cyy), a stopping rule for algorithm 5.1 based on

the designed length of output list / can be imposed. This is more realistic for assessing
soft-decision list decoding scheme’s performance. As factorisation outputs are the y
roots of the interpolated polynomial O, the maximal number of outputs /), based on

the interpolated polynomial Q is:
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(5.17)

degl,k—l Q(an’)J _ LALIH(CM)J

lM=dego,1Q(x,y)=L 1 1

Therefore, after step (v) of algorithm 5.1, the updated multiplicity matrix M’s cost Cy,
can be determined using (5.11). As Cj has been determined, the interpolated
polynomial O(x, y)’s (1, k-1)-weighted degree can be determined by (5.15). Then
(5.17) can be applied to calculate the maximal number of factorisation outputs /y,.

Based on a designed length of output list /, stop algorithm 5.1 once /,, is greater then /.

From the above description, when designed length of output list / — oo, the soft-
decision’s asymptotically optimal result can be achieved as a high enough code word
score SM(E) can always be produced to satisty condition (5.16). When / — o0, s — o0,

the cost of multiplicity matrix Cy— o so as A, ,_(Cy) —> . Based on corollary 5.2,

we have A, (Cy) = \/2(k—1)N1’k_] (A, (Cy)) = \/2(k—1)CM . Successful list

decoding coding condition (5.16) can be written as:

Su(c) > 2(k-1)C,, (5.18)

or equivalently,

—

q-1 n—1

{m,; | p,=c,,i=0L..,q-1} > \/(k—l)ZZmi’j(mi’j +1)  (5.19)

i=0 j=0

n—

Il
(=1

J

As m; j — oo, to access equation (5.19), the following lemma is needed.

Lemma 5.4 For algorithm 5.1, when s — oo, —2 = —"/ [8].

Based on lemma 5.4, we have m; ; = i;zl.’j and substitute it into (5.19), (5.19) can be
n

re-written as:

s n—1 ) s q-1 n-1 n
_Z{”i,j | pi =C.,-,l=0,1,-~,q—1}>— (k—1) Zﬂ-i,‘/(ﬂ-i,‘j—'__) (5.20)
nj-o n i=0 j=0 S
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As when s — oo, LS 0, (5.20) can be further approximated as:
s

n-1 q-1 n-1

EHQJ“%:quthﬂ—H>JM—DZ: ) (5.21)

j=0

i=0 j=0

Therefore, soft-decision list decoding’s optimal result is determined by the received
reliability values. In practice, due to the decoding complexity restriction, soft-decision
list decoding can only perform based on a designed length of output list /. This output
length restriction in fact leads to practical decoding performance degradation. This
phenomenon can be seen later when the simulation results are discussed. Also, based
on equation (5.21), soft-decision list decoding has more performance improvement

potential for low rate codes as the & value is small.

5.6 Complexity reduction Interpolation and Factorisation

Based on the multiplicity matrix M, the following complexity reduction interpolation
and factorisation processes can be implemented by applying algorithm 4.1 and
algorithm 4.2 respectively. The interpolated polynomial Q(x, y) builds upon the
multiplicity matrix M with a zero of multiplicity at least m; ; (m; ; # 0) at all the
associated points (x;, o) j=0,1,..,n—1andi=0,1, ..., g - 1). As details of the
interpolation and factorisation processes can be referred to Chapter 4 or the author’s
publication [52, 53], this section only mentions some necessary modifications to the
interpolation process, while factorisation process remains the same. Also, an analysis
of how much decoding complexity can be reduced by the modification scheme

proposed by section 4.3.3 will be given.

As mentioned in section 5.5, to build interpolated polynomial Q(x, y), there are in
total Cy, (5.11) iterations. Therefore, the iteration index i, used in algorithm 4.1 is: i =
0, 1, ..., Cy. Based on a designed length of output list /, the initialisation at step (1)

can be modified as:

Go=1{0Q0,;=1,j=0,1,...., 1} (5.22)
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As there are in total C), iterations, based on the complexity reduction scheme’s
description given in section 4.3.3, the interpolated polynomial Q’s leading order is

less than or equal to the total number of iterations C), as:

1od(O(x, ¥)) < Cy (5.23)

This indicates the fact that (5.15) is an upper bound for the interpolated polynomial’s
(1, &-1)-weighted degree as:

degi x-10(x, ) < A, (Cyp) (5.24)

Based on (5.23), those polynomials with leading order over Cj, will neither be chosen
as the interpolated polynomial, nor be modified with the interpolated polynomial.
Therefore, they can be eliminated from the polynomial group and the modification at

step (i1) can be re-written as:
G, ={Q,; [1od(Q, ;)= Cu} (5.25)

With respect to interpolated point (x;, p;) and Hasse derivative parameter (a, f) (a+ f
< m; ;), the Hasse derivative evaluation performed at step (iii) of algorithm 4.1 can be
modified and determined by equation (5.10). For the following of the process, it is the
same as algorithm 4.1 only take a notice that for polynomial modification (4.32), the
interpolated point’s x-coordinate x; should be replaced by the x; which is the current
interpolated point’s x-coordinate. And also, distinguish index j for interpolated point’s

x-coordinate x; and polynomials O, ; in the group G, .

As discussed in section 4.5, the complexity reduction scheme is error dependent that it
can reduce interpolation complexity more significantly in low error weight situations
[52]. However, in a soft-decision decoder, no hard-decision received vector is
obtained and therefore it is impossible to measure the actual error weight (Hamming
distance between the received word and transmitted code word). In order to evaluate
the complexity modification scheme’s performance for this soft-decision list decoder,
decoding complexity of the original and modified interpolation processes is measured
against the SNR values. Fig 5.4 shows how much decoding complexity can be
reduced for soft-decision list decoding of Reed-Solomon code (63, 15) with output

length / =2 and 4. From Fig 5.4 it can be seen that more decoding complexity can be
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reduced in high SNR values which in fact correspond to low error weight situations if
hard-decision was made. Under high SNR values, complexity can be reduced up to

36.45%. However, in low SNR values, complexity reduction is not as significant.

1.00E+07

—e— Original Interpolation (1=2)
—-<- Complexity Reducing Interpolation (1=2)
—— Original Interpolation (I=4)
- - Complexity Reducing Interpolation (I=4)

% - percentage of complexity reduction

——

~ - } 36.45% 35.91%
1.00E+06 1 e

——————————————————————

Computation Complexity

1.00E+05

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
SNR (Eb/NO)

Figure 5.4 Complexity reduction analysis for soft-decision list decoding of Reed-

Solomon code (63, 15)

5.7 Simulation Results Discussion

This section presents soft-decision list decoding results for the two Reed-Solomon
codes introduced in Chapter 4: Reed-Solomon codes (63, 15) and (63, 31). They are
simulated under both AWGN and Rayleigh fading channels. The Rayleigh fading
channel is frequency nonselective with Doppler frequency [64] 126.67 Hz and data
rate 30 kb/s. The fading profile is generated using Jakes’ method [64]. The fading
coefficients have mean value 1.55 and variance 0.60. Under Rayleigh fading channel,
a block interleaver with size 63 x 63 is used to combat the fading effect. QPSK

modulation scheme is used and simulations are run using C programming language.

Soft-decision list decoding results for Reed-Solomon codes (63, 15) and (63, 31) are
shown by Fig 5.5 and 5.6 respectively. Soft-decision’s performance is compared with

the hard-decision based on giving the same maximal length of output list / (or so
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called the designed length of output list for soft-decision), which is indicated by
different patterns of ‘*’ in the figures.

1.00E+00
uncoded
—8—GS (m=1, |=2)*
1.00E-01 —&—GS (Mm=2, |I=4)**
——GS (m=4, |=8)***
—%—GS (m=6, I=13)***
—8—GS (m=26, |=55)*****
1.00E-02 - — 8- KV (=2)
— ==KV (I=3)
3 A
b — A= KV (I=4)
N — o — KV (I=8)"**
& 1.00E-03 | AN — %= KV (=13
® —© = KV (I=55)"***
— ¥ — KV (Optimal)
1.00E-04 1
1.00E-05
1.00E-06
0 1 2 3 4 5 6 7 8 9 10 11 12
SNR (Eb/N0)
(a) over AWGN channel
1.00E+00
Uncoded
—&—GS (m=1, I=2)*
5 —4&—GS (m=2, I=4)"
1.00E-01 GS (m=4, 1=8)"
—%— GS (M=6, |=13)***
—8— GS (M=26, I=55)*****
1.00E-02 | T KV(ED
—a— KV (=2)
— A=KV (I=4)*
— 0 — KV (I=8)*
i =X = KV (I=13)"*
W 1.00E-03 A
@ — © — KV (I=55)***** —
— ¥ — KV (Optimal)
1.00E-04
1.00E-05 A
1.00E-06
0 2 4 6 8 10 12 14 16 18 20
SNR (Eb/N0)

(b) over Rayleigh fading channel

Figure 5.5 Soft-decision list decoding of Reed-Solomon code (63, 15)
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1.00E+00
uncoded
1.00E-01 | =—GS (m=1,1=1)"
—a—GS (Mm=3, I=4)**
——GS (m=5, I=7)"**
—e—GS (m=13, I=19)"***
1.00E-02 8 KV(=y
———KV(=2)
— ==KV (=3)
— A= KV (I=4)"*
© e 7y
i 1.00E-03 > — KV (I=7)
@ —©— KV (I=19)=*
— ¥ — KV (Optimal)
1.00E-04
1.00E-05
1.00E-06
0 1 2 3 4 5 6 7 8 9 10 11 12
SNR (Eb/NO)
(a) over AWGN channel
1.00E+00 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

BER

1.00E-01 f= Uncoded
1 —=—GS (m=1, I=1)*
—&—GS(m=3, I=4)™
——GS(m=5, [=7)***
1.00E-02 - —e—GS (m=13, I=19)***
—a— KV (=1)
— A — KV (I=4)*
—©— KV (I=7)**
1.00E-03 - — o= KV (I=19)* — |
— ¥ — KV (Optimal)
1.00E-04 -
1.00E-05 -
1.00E-06
0 2 4 6 8 10 12 14 16 18
SNR (Eb/N0)

(b) over Rayleigh fading channel

Figure 5.6 Soft-decision list decoding of Reed-Solomon code (63, 31)
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Soft-decision Hard-decision
Designed output Number of
length / polynomials / + 1 Cy E(CM +1)° C, %(C +1)°
3 3"
2 3 84 4.09 x 10° 63 1.75 x 10°
4 5 211 6.35 x 10° 189 475 x 10°
8 9 631 1.68 x 10® 630 1.67 x 10°
13 14 1470 2.12 x 10° 1323 1.55 x 10°
55 56 22371 | 7.46 x 102 | 22113 | 7.21 x 102

Table 5.1 Decoding complexity comparison for soft-decision and hard-decision list

decoding of Reed-Solomon code (63, 15)

Soft-decision Hard-decision
Designed output Number of
length / polynomials / + 1 Cy %(CM +1)° C, %(C +1)°
3 3° "
1 2 90 5.12 x 10° 63 1.75 x 10°
4 5 451 6.17x10" | 378 | 3.63 x 10’
7 8 1082 | 848 x10% | 945 | 5.64x10°
19 20 6307 | 1.67x10'"" | 5733 | 1.26 x 10"

Table 5.2 Decoding complexity comparison for soft-decision and hard-decision list

decoding of Reed-Solomon code (63, 31)

Simulation result comparisons are made based on output length / because for output
length /, there are [/ + 1 polynomials taking part in the iterative interpolation process.
The total number of iterations (C, = (4.12) for hard-decision. Cy, (5.11) for soft-
decision) also grow with length /. Both the number of polynomials / + 1 and the
number of iterations (C,, Cj) are the important parameters that determine the
decoding complexity. As mentioned in section 4.5, by knowing the total number of

iterations, the list decoding system’s decoding complexity can be approximately
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predicted by %(Cm +1)* for hard-decision and %(CM +1)* for soft decision [52, 59].

Table 5.1 and 5.2 present the decoding complexity comparison between soft-decision
and hard-decision based on the designed output length / for Reed-Solomon codes (63,
15) and (63, 31) respectively. From Table 5.1 and 5.2, it can be observed that based
on the same value of /, soft-decision costs a bit higher decoding complexity than the
hard-decision, but remains in the same order of decoding complexity. For example,
list decoding of Reed-Solomon code (63, 15) with designed output length / = 2, soft-
decision costs 4.09 x 10’ finite field calculations while hard-decision costs 1.75 x 10°
finite field calculations. However, significant changes of decoding complexity are still
due to the changes of output length /. Notice that values C), presented in the above
two tables are the average values obtained from simulation observation. Even though
soft-decision has higher decoding complexity than the hard-decision based on the
same designed length, from Fig 5.5 and 5.6 it can be seen that soft-decision can
achieved significant coding gain over the hard-decision, especially over Rayleigh
fading channel. For example, over Rayleigh fading channel and based on designed
length / = 2, soft-decision list decoding of Reed-Solomon code (63, 15) can achieve
about 5.8 dB coding gain at BER = 10 compared with hard-decision. The
performance improvement of soft-decision list decoding over hard-decision list
decoding is achieved by insignificant complexity penalty is different to other types of
coding schemes for which soft-decision decoding does increase decoding complexity
significantly. This is because for the list decoding algorithm, the complexity is mainly
dominated by the interpolation process, compared with which the complexity
introduced by the priori process (Algorithm 5.1) is marginal. And for the interpolation
process, the important parameter that determines its complexity is the iteration
number. As the iteration number of soft-decision does not vary much from hard-
decision based on the same designed output length, the complexity of the soft-

decision list decoding is not much higher than the hard-decision.

It is important to point out that the hard-decision scheme with large designed output
length costs very high decoding complexity, as indicated by Table 5.1 and 5.2.
However, by using the soft-decision scheme with small output length can outperform

hard-decision scheme’s complexity expensive results. For example, hard-decision list
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decode Reed-Solomon code (63, 31) with designed length / = 19, referring to Table
5.2, the decoding complexity is approximately 1.26 x 10''. However, using soft-
decision scheme with output length / = 1 can already achieve better performance over
Rayleigh fading channel. The decoding complexity for / = 1 is only approximately

5.12 x 10> which is much lower than the hard-decision.

It is also worthy to mention that the soft-decision scheme’s optimal result is obtained
by using equation (5.21) without running through interpolation and factorisation
processes. Assume that the decoder acknowledges the transmitted code word symbols
Co, C1, ..., Cn.1, after the reliability matrix //has been obtained, equation (5.21) can be
used to assess the soft-decision scheme’s optimal result. If equation (5.21) is satisfied,
decoding is claimed to be successful. Otherwise, decoding fails. From Figs 5.5 and
5.6, it can be seen that soft-decision scheme approaches its optimal result with the

designed length of output list increases.

5.8 Conclusion

The chapter presented the soft-decision list decoding scheme for Reed-Solomon codes.
At the receiver, the received word’s reliability information is obtained. The
information is then converted into multiplicity information based on which the
interpolation process is performed. It was shown in the chapter how to obtain the
reliability values and how to convert them into multiplicity values. For the algorithm
that converts reliability values into multiplicity values, a practical method to realise
the stopping rule based on the designed length of output list was introduced. Applying
the complexity reduction scheme for interpolation, the soft-decision scheme’s
interpolation complexity can also be reduced based on knowing the iteration number.
Simulation results show that based on the same designed length of output list, the
soft-decision scheme has significant coding gains compared with the hard-decision
scheme, but is at the higher expense of decoding complexity. It is also shown that the
soft-decision scheme with a small output list length and lower decoding complexity
can outperform the hard-decision scheme’s optimal result which is not suitable for

practical implementation due to a very high decoding complexity.
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6.1 Introduction

This chapter presents the hard-decision list decoding algorithm which is called the
Guruswami-Sudan (GS) algorithm for one of the best performing algebraic-geometric
codes — Hermitian codes. Performance of Hermitian codes by using the conventional
unique decoding algorithm — Sakata algorithm with majority voting [5, 6, 25], has

been investigated by Johnston and Carrasco [29, 31]. However, the unique decoding

. . e e . "1
algorithm’s error-correction capability is limited by the half distance bound {d 5 J

(3.22), where d’ is the designed minimum distance of the code. The GS algorithm can
correct errors beyond this bound. This chapter presents the mathematical framework
of the GS algorithm for its application to Hermitian codes, so as to engineer the
decoding process. It consists of two processes: interpolation, to build an interpolated
polynomial based on the received information and factorisation, to find the
transmitted message information based on the interpolated polynomial. By first
defining a Hermitian curve, these processes can be implemented with an iterative
polynomial construction algorithm and a recursive coefficient search algorithm
respectively. The first simulation results of GS decoding Hermitian codes was
published by the author in [65]. However, list decoding of Hermitian codes with the
GS algorithm remains complex and limits the application of the GS algorithm to
longer codes. According to the complexity analysis in [52, 65], the GS algorithm’s
high complexity is mainly caused by the iterative interpolation, in which a group of
polynomials are tested for different zero conditions and modified interactively. In
section 3.5.3, to define the zero condition of a polynomial for Hermitian codes we
need to transfer it into a polynomial written with respect to the zero basis functions of
a Hermitian curve, which is not very efficient for implementation. However, the zero
condition of a polynomial can also be defined without this transfer based on
knowledge of the corresponding coefficients between the pole basis monomials and
zero basis functions of a Hermitian curve. Inspired by this, a new algorithm to
determine these coefficients is proposed in the chapter. These coefficients can be
applied afterwards in the interpolation process. In order to improve the list decoding
efficiency for Reed-Solomon codes, a complexity reduction scheme which identifies
any unnecessary polynomials in the group and eliminates them during the iterative

interpolation is proposed in [52] and described in Chapter 4 of the thesis. From this
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project’s research, this scheme is also valid for list decoding of Hermitian codes. In
this chapter, the modified interpolation process will be presented with applying this
complexity reduction scheme. The complexity analysis of this modification scheme
shows that it can reduce decoding complexity up to 48.83%. The above work on
reducing interpolation complexity was written in the author’s paper [66] which has
been accepted for publication. The factorisation process can be implemented by
applying the recursive coefficient search algorithm which was first introduced by
Roth and Ruckenstein [10] with application for Reed-Solomon codes, and later
extended by Wu and Siegel [11, 12] for general algebraic-geometric codes. A more
general factorisation algorithm which can be applied for both Reed-Solomon and
algebraic-geometric codes is presented by the author in [67]. Based on the complexity
reduction interpolation process and the more general factorisation process, list
decoding results for longer Hermitian codes have been achieved. This chapter
presents simulation results for the list decoding of Hermitian codes with comparisons
to the unique decoding algorithm - the Sakata algorithm with majority voting [5, 6,
25]. Also, a comparison of Hermitian codes and Reed-Solomon codes using the list

decoding algorithm is presented.

6.2 Prerequisite Knowledge

Here gives a short review for the prerequisite knowledge of Hermitian codes which

was mentioned in Chapter 3. A Hermitian curve defined over GF(g) is given as:

Hy(x, p)=x"+3" +y (6.1)

where w =,/¢q and has a genus g =

— 1 M . . .
% [19]. For simplicity, GF(q) is assumed to

be an extension field of GF(2). There are n = w’ affine points p; = (x;, ;) that satisfy

H,(x;, y;) = 0 and a point at infinity p... On curve H,, the pole order at p., (v, ) of
variable x and y are v, " =wand v . ") =w + 1 [19]. With respect to the point

at infinity p.., there exists a pole basis L,, which contains a set of bivariate monomials
@.(x, y) with coefficients 1 and increasing pole orders, defined by (3.23) as: L,, = {&(x,
Nlv, (¢ <v, (dus1™), a € N} [9, 44], where the x degree of ¢, is not greater than

w and N is the set of nonnegative integers. L,, defines the set of pole basis functions of

99



Chapter 6 Hard-Decision List Decoding of Hermitian Codes

the Hermitian curve H,. A couple of examples of L, is given in section 3.4.

Nonnegative integers can be divided into nongaps which are the pole orders of

3 .2 2 3 4
s XV XY Y, X,

Sy, 7 7, 0 Xy, By x5, 0 )7, ) shown by example 3.2 for analysis. In Ly,

monomials in L,,, and gaps otherwise. Take Ly = {1, x, y, x2, Xy, y2, X

nonnegative integers 1, 2, 3, 6, 7, and 11 are gaps while the rest of the nonnegative
integers are nongaps. With respect to every affine point p;, there exists a zero

basisZ, , which contains a set of rational functions y, , (x, y) with increasing zero
orders at p; (v, ), defined by 3.24)as: Z, , ={y, ;)| v, (¥, )<V, (¥, )
a € N} [9,44]. v, , has a zero order « at affine point p;. According to (3.25), it can
be generally written as:
Vo @) =V i (6 0) = (=2 [0 =) =" (e = x)]’, (1,0 € N, 0= 2<w, 0
>0)
The relationship between pole basis monomial ¢, and zero basis functiony, , can be

written as [44]:

¢a = zya,pi,al//pi,a (62)

aeN

wherey, , , € GF(q) are the corresponding coefficients.

The construction of a (n, k) Hermitian code can be described as evaluating the » affine
points of H,, over the message polynomial f, which is shown by equation (3.20) and

(3.21) in Chapter 3.

To decode a (n, k) Hermitian code with the GS algorithm, the pole order of variable z

. _ N -1 . . .
is defined as w. =v, (z')= v, (¢ )and w;>2g - 1. Then, any trivariate monomial

#:2"s (1, w.)-weighted degree can be defined as:
deg,, (¢z)=v, (#)+b-w. (6.3)
and a (1, w.)-lexicographic order (ord) can be defined to arrange monomials ¢,z":

b, b,
92" < $,,2"
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lf degl,wz (¢al Zbl ) < degl,wz (¢azzb2 )7 or degl,wz (¢alzbl ) = degl,wz (¢az sz ) and bl < b2
[44]. For example, to list decode Hermitian code (8, 4, 4) which is defined in GF(4),
w, = 4. The (1, 4)-weighted degree and (1, 4)-lexicographic order of monomial ¢azb

(¢, € Ly) are shown in Table 6.1a and 6.1b respectively.

a
) 0 112131456 |7|8]9]|]10]11] ....
0 0 2 1314|567 |89 |10]11]12] ...
1 4 6 |7 (8|9 101112 ...
2 8 | 1 1
3 2
Table 6.1a (1, 4)-weighted degree of monomial ¢azb (¢, € L)
a
A 0 L {23456 |7 |89 [[10]11] ....
0 0 L |23 |56 |8 1013|1518 21| ...
1 4 719 (1114161922 ...
2 12 (172023} L.
3 24

Table 6.1b (1, 4)-lexicographic order of monomial ¢,z” (¢, € L,)

Fy[x, y, z] 1s the ring of polynomials defined over the set of pole basis functions in L,,

of the Hermitian curve H,, which can be generally written as: fix, y, z)

= Z fon®,(x,»)z" , where f,, € GF(¢) and ¢, € L,,. Subsequently, F,[x, y] is a subset

a,beN

of Fy[x, y, z] with z degree equals to 0 and F,'[x, y] is a subset of Fy[x, y] with v, (4,
N<u Asw. = v, "= v, (¢k_1'1), the message polynomial (3.20) is a polynomial

in F," [x, y]. The following definition is given for polynomials defined in F[x, y, z]:

Definition 1: If ¢, 2" is the maximal monomial in polynomial f € F,[x, y, z] as:
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¢o2" = max{¢z" | fup # 0}

¢.2" is called fs leading monomial and its coefficient f,, is called fs leading

coefficient, denoted as:
LM(f) = ¢, 2", and LC(f) = fip’
and polynomial f’s (1, w.)-weighted degree (deg,,, (f)) and leading order (lod(f)) are

defined as:

deg,, ()= deg,, (¢z"), and lod(f) = ord(¢z")

For example, f'is a polynomial in Fu[x, y, z] and can be written as: f(x, y, z) = ox +
o toxytoxztyltror =0 g+ gl o g+ pz 1 pr+ o
dz’, where o is a primitive element in GF(4) satisfying o> + o+ 1 = 0. Applying the
(1, 4)-lexicographic order shown by Table 6.1b, it can be seen that the leading
monomial of f is ¢,2” = ¢z’. Therefore, LM(f) = 4z’, LC(f) = o, deg,, (f) =

deg, ,(z’) = 12 and lod(f) = ord(dz’) = 24.

Based on the above definition, for any two polynomials fand & € Fy[x, y, z], f < h if
lod(f) <lod(h).

6.3 GS Decoding of Hermitian Codes

The GS algorithm consists of two processes: interpolation and factorisation. Given a
received word R = (v, 11, ..., 1) (r; € GF(q), i =0, 1, ..., n - 1), n interpolated units
can be formed by combining each received symbol with its respective affine point
used in encoding as: (po, 70), (P1, ¥1); ---s (Pn-1, 7n-1). Interpolation is to build the

minimal polynomial Q € F,[x, y, z] which has a zero of multiplicity at least m over

the n interpolated units. In general, Q can be written as (3.30): QO = ZQab¢azb ,

a,beN
where Q,» € GF(g) and ¢, € L,,. If (p;, r;) 1s the intended interpolated unit, it can also

be written with respect to the zero basis functions inZ,, , as [44]:
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0= 204"y, .(z-1) (6.4)

a,feN

where Q(” ) e GF(q). If Q(” =0 for & + B < m, polynomial Q has a zero of
b b
multiplicity at least m at unit (p;, ) [9, 44]. As 2=z —ri+ 1)’ = > | " (z=1)’
B<b

and ¢, = z Yap.a¥ p .« » SUbStitute them into (3.30) as:

aeN

a,beN aeN B<b

0= ZQab@nMwM)(Z{ Jf‘ﬁ(z—mﬁ

b
=2 (X Qab[ﬂ}n,phan” W, o (z=1)" (6.5)

a,pfeN a,b=p

Therefore, coefficients Q(” ") of (6.4) can be written as:

oum =3 Qa{ﬂ}w, 7 (6.6)
a,b>p

(6.6) defines the zero condition constraints to the coefficients Q,; of polynomial Q, so
that O has a zero of multiplicity at least m over unit (p;, 7;). Here gives an example to

show how to define the zero condition of a polynomial in F,[x, y, z] using (6.6).

Example 6.1 Given polynomial Q(x, y, z) = 1 + oy + ox” + z°(1 + ¢°y) defined in F4[x,
v, z]. Justify it has a zero of multiplicity at least 2 over unit (p, ») = ((1, 0), 0). ois a
primitive element in GF(4) satisfying ¢* + o + 1 = 0. Addition and multiplication

tables of GF(4) is given in Appendix A.

Polynomial O(x, y, z) = 1 + oy + ox + Z2(1 + 6°y) = Ooodhz" + Orohz’ + Os0h2" +
Ondvz> + Orhz*. For supporting the zero condition calculations, the corresponding

coefficients y, , , are shown in Table 6.2 as:

103



Chapter 6 Hard-Decision List Decoding of Hermitian Codes

a
0 1 2 3

a
0 1 1 o 1
1 0 1 1 0

Table 6.2 Corresponding coefficients y, , , given p = (1, o)

Based on the above description, to justify O has a zero of multiplicity m over unit (p,

r), its coefficients O, should satisfy Q=0 for o+ f<2as: Qi =0, Off" =
and Q" =

Based on definition (6.6),

. y 0 § 0 y 2 -
s _Qoo( j}fo,p,o&)OﬂLon(oj 7/2,p,0&)0+Q30[0j %,p,o&)OﬂLQoz(Oj 70,p,0020+

Qz{ij 72,[,,00'2'0 =l+o+0+tc+c=0

; . 2 )
(p : _Qoz[ jﬂfo,p,oOZl+Q22(1j72,p,002120+020

. y 0 § 0 § 2 .
(P _Qoo[ jyo,p,1000+QZO(Ojj/Z,p,IGOO+Q3O(OJ7/3,[),IODO+QOZ[ijo,p,lo-20+

2 ]
sz(oj P10 =0+ c=0.
Therefore, polynomial Q has a zero of multiplicity at least 2 over unit (p, ) = ((1, o),

0).

If constraint (6.6) for the coefficients of polynomial Q is denoted as D(p " (Q), such

that:

Dy (Q) = O™ = . Qah[ﬁ}w 1 (6.7)

a,b>p
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then interpolation is to build a polynomial Q defined as:

0= min {Q € F[x,y,z] | D& (Q)=0fori=0,1,...,n—1 A a+B<m(a,fe

lod (Q)
N)} (6.8)
m+1
As there are permutations of (¢, p) for a+ £ < m, there are in total:
2

m+1

C=n (6.9)

2

zero condition constraints that coefficients O, of polynomial O need to satisfy. C also
represents the number of iterations in the interpolation algorithm [9, 44], in which
each iteration imposes a zero condition constraint to Q.. The (1, w,)-weighted degree

upper bound of polynomial Q is defined as [9, 44]:
max{deg,, O} =ln v, (') +tn (6.10)

where /,, is the maximal number of output candidates from factorisation, defined as:
u
ln=max{u|| |v, ()-(@u-1)g<C}-1 (6.11)
e
and parameter ¢,, is defined as:
[ +1
tw=max{u | (ln+1)u-I{u)+ v, N -1,g<C} (6.12)
5 .

where u € N and /{u) denotes the number of gaps that are less than or equal to the

nonnegative integer u [9].

If there exists a polynomial 4 € F" [x, y] such that

A, Ry ={i | h(p) =11, i=0,1,....,n-1}] (6.13)

the total zero orders of polynomial Q(x, y, &) over all the interpolated units is:

nf,vpi (O(x,y,h)) =2 m A(h, R) (6.14)

105



Chapter 6 Hard-Decision List Decoding of Hermitian Codes

To define the total zero order of polynomial QO(x, y, 4), the following lemma is applied.

Lemma 6.1 O(x, y, z) has a zero of multiplicity m over unit (p;, 7;) and 4 is a

polynomial in F,* [x, y] that satisfies 4(p;) = r;, then O(x, y, h) has a zero order at least

matp;, as v, (Q(x,y,h)) =m[9, 44].

Equation (6.13) defines the total number of affine points that satisfy A(p;) = r;, and
therefore the total zero order of polynomial Q(x, y, &) over all the affine points is

defined by equation (6.14).

Theorem 6.2 If polynomial Q(x, y, 4)’s total zero orders is greater than its pole order

as.
S, Q) > v, (©O.y.m)") 6.15)

then 4 is the z root of O: O(x, y, h) =0, or equivalently z — 4 | Q(x, y, 2) [7, 9, 44].

Ash e F) [ 3], v, (Q(x,y.h)™) = v, (Q(xy,2)") = deg,,, (O, y, 2)). Therefore,

based on (6.13) and (6.14), theorem 6.2 results the following corollary:

Corollary 6.3: If there exists a polynomial 4 € F* [x, y] such that:

m A(h, R) > deg, , (O(x, y, 2)) (6.16)

list decoding outputs /4 can be found out by factorising the interpolated polynomial
Q(x:y: Z) as:z—h | Q(xoy: Z)'

Factorisation is to find the z roots of the interpolated polynomial Q, among which the

message polynomial (3.20) is included [11, 12, 65]. If & = f, equation (6.13) defines
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the number of uncorrupted received symbols. Therefore, the GS algorithm’s error-

correction capability 7, is:
deg,
Tm=n-A(h,R)=n-[gl—’w2QJ -1 (6.17)
m

As the upper bound of deg, , O is defined by (6.10), therefore:

i N+t
TmZn-[mvp“(Z ) ’”J-l (6.18)

m

According to the theoretical background description given in Chapter 3, the GS

algorithm’s error-correction capability upper bound for a (n, k) Hermitian code is

defined by equation (3.32) as: s =7 - \_\/n(n —~ d*)J - 1.

6.4 Determining the Corresponding Coefficients

Based on equation (6.7), the corresponding coefficients y, , , are critical for defining
the zero condition of a polynomial in F[x, y, z]. Without knowing them, we have to

transfer a general polynomial (3.30) into (6.4) and find the coefficients sz;"”" ), which

is not efficient during the iterative interpolation. In fact, the corresponding
coefficients y, , , can be determined independently of the received word. And
therefore, if they can be determined beforehand and applied during the iterations, the

interpolation efficiency can be greatly improved. This section proposes an algorithm

to determine them.

The problem we intend to solve can be simply stated as: given an affine point p; = (x;,
y;) of curve H, and a pole basis monomial ¢, determine the corresponding

coefficients y, , , so that ¢, can be written as a sum of the zero basis functionsy,

o = Z7a,p,,a¥/p,,a . For any two pole basis monomials ¢, and ¢, in Ly, ¢, 4, =

aeN

ZN¢a and the zero basis function y, , (3.25) can be written as a sum of pole basis

monomials ¢, as [44]:
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V=2 0l (6.19)

aeN

where coefficients ¢, € GF(g). Based on (3.25), partition v, , (x, y) as:

Via= Voo Vi (6.20)
wherey ' = (x - x;)" and vy = [—y)—x"(x - )= —x"x— i—x"° It is
easy to recognise that l//;i . has leading monomial LM( l//;i w) = x* and leading
coefficient LC(y ,) = 1. As v, o >v, ), w 5 » has leading monomial
LM(y, ) = 3 and leading coefficient LC( v, ,) = 1. Based on (6.20), v, , has
leading monomial LM(y ;11 o) - LM( t,//j o) = x’iyg and leading coefficient LC(y ;, w)
LC( l//;‘,a) =1. As 0 <A <wand ¢ > 0, the set of leading monomials of zero basis

functions inZ, , contains all the monomials defined in pole basis L,. Summarising

the above analysis, corollary 6.4 is proposed as followed.

Corollary 6.4: If ¢, is the leading monomial of zero basis functiony, , as LM(y, )

= ¢1, the leading coefficient of y, , equals to 1 and (6.19) can be written as:

Vpus D58+ (6.21)

aeN,a<L

The set of leading monomials of zero basis functions in Z, , contains all the

monomials in L,,:

{LM( WP,,Q) = ¢L’ Wp,,a € Zw,p, } - LW (622)

Following on, by identifying the second largest pole basis monomial ¢.; with

coefficient &1 € GF(g) iny, ,, (6.21) can also be written as:

Vo™ Z Cale +C100 1+ 0, (6.23)

aeN,a<L-1
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Now it is sufficient to propose the new efficient algorithm to determine the
corresponding coefficients 7, , .
Algorithm 6.1: Determine the corresponding coefficientsy, , , between a pole basis

monomial ¢, and zero basis functions v, .

(1) Initialise all corresponding coefficients y, , ,=0

(i) Find the zero basis functiony, , with LM(y, )= ¢, andlety, , , =1
(iii) Initialise function ¥ = v, ,

(iv) While (v # &) {
(v)  Find the second largest pole basis monomial ¢, with coefficient {;.; in

(viy InZ find a zero basis function y, , whose leading monomial LM(y, ,) =

w,p; 2

¢1-1, and let the corresponding coefficient y, , = i1

(vii) Update y =y +7,, .V, .,

}

Proof: Notice that functions y, , with LM(y, ,) > ¢, will not contribute to the sum
calculation of (6.2) and their corresponding coefficients y, , ,= 0. The zero basis
functiony, , found at (ii) has leading monomial ¢, = ¢,. Based on (6.23), it can be

written as:

Y pa = z oy +C 10, + 9, (6.24)

a'eNa<L-1
(6.24) indicates the corresponding coefficient between ¢, and v, , is 1: y, , , = L.
Polynomial i initialised by (iii) is an accumulated polynomial resulting in ¢,. While
W # ¢, in (6.24), the second largest monomial ¢, with coefficient ¢ is identified
by (v). Then, find another zero basis function y, , in Z,  that LM(y, ,) = ¢

According to corollary 6.4, this zero basis function always exists and it can be written

as: y, ., = Zé’a,¢a,+¢H . At (vi), the corresponding coefficient between

a'eN,a'<L-1
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monomial ¢, and the found zero basis function g, , can be determined as: y, , , =

¢r-1. As a result, the accumulated calculation of (vii) can be written as:

l/} = zga'¢a' + é/L—l¢L—1 +¢a +7/“-Pi~a tha

a'eN,a'<L-1
= Z é/a'¢a' + §L71¢L71 + ¢a + Z é/Lfl é,a'¢a' + é,L71¢L71 (625)
a'eN,a'<L-1 a'eN,a'<L-1

Therefore in the new accumulated ¥ , ;141 is eliminated while the leading
monomial ¢, is preserved. If the updated v # ¢,, its second largest monomial ¢ _; is

again eliminated while ¢, is always preserved as a leading monomial by the same
process. The algorithm terminates after all monomials that are smaller than ¢, have
been eliminated and results in ¥ = ¢,. This process is equivalent to the sum

calculation of (6.2). Here a worked example is presented to illustrate algorithm 6.1.

Example 6.2: Given p; = (¢°, ¢°) is an affine point on curve H, and a pole basis (L,)

monomial ¢ = )%, determine the corresponding coefficients Vs.p.« SO that ¢ can be

written as ¢ = ZyS,p,,al//Pna '

aeN

Based on (3.25), the first 8 zero basis functions in Z, , can be listed as:
W, o=@-0)=1 y, =@x-0)=0c+x

W, =@-0V=0+x y, =(-0)-ox-F)=c+ox+ty
W, s=0-@-0)-ox-))=1+cx+y+ox’ +xy
v,s=0-)[-0)-ox-)]=c+x+a’+ o’ +xy

Vo =L - ) - ofx- A =0 + x* + )
v,,=0-O)@-0)-ox-)' =0t x+dy+ o’ +ul

Initialise all y5, , =0.InZ, , ,as LM(y, ;) = ¢, we let y; , (= | and initialise the

2.pi°

accumulated polynomial ¥ = v, ( = o+ ox’ )7
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As v # ¢, its second largest monomial ¢, = x* with coefficient i1 = o are

identified. Among the zero basis functions inZ, , , we find v, , with LM(y, ,) =

¢ =x", and let Vspo = GL1= o’ Update y = y + Vsp2Wpa= o+

As @ # ¢k, again its second largest monomial ¢ _; = 1 with coefficient {;.; = o are

identified. Among the zero basis functions inZ, , , we find y, ,with LM(y, ;) = ¢

1=1l,andlet y; , ;= ¢i=o Update v =y + y5, ¥, =%

Now, ¥ = ¢, we can stop the algorithm and output Vspo =05 Vspo= o and Vsp6=

1. The rest of the corresponding coefficients y; , , =0 (a#0, 2, 6).

Before interpolation, monomials ¢, that exist in the interpolated polynomial Q are
unknown. However, the (1, w.)-weighted degree upper bound of polynomial Q is
defined by (6.10), from which the largest pole basis monomial @ax that might exist in
QO can be predicted by v, (fmax ) = max{ deg,, O}. Based on interpolation

multiplicity m, with parameter « < m, the corresponding coefficients that might be

used in interpolation are y, , , ~ ¥pu .« (@ < m). Therefore algorithm 6.1 can be

used to determine all the corresponding coefficients 7, , , and only 7, , ,

~
7/max,pi a

(a < m) are stored for interpolation in order to minimise the memory

~ 7max,pi,a
requirement. For example, to list decode the (8, 4, 4) Hermitian code with multiplicity

m =2, max{deg, , O} = 13. Therefore, the largest pole basis monomial that might

exist in O 1S ¢hnax = 12 = x°y° and algorithm 6.1 can be applied to calculate all the

corresponding coefficients y, , , ~ 715, o ad 7o, o ~ V12, o (@ <2) are stored.

6.5 Complexity reduction Interpolation

Interpolation is to determine polynomial Q defined by (6.8). This can be implemented
by an iterative polynomial construction algorithm [9, 44, 46, 52]. At the beginning, a
group of polynomials are initialised. During the iterations, they are tested by different

zero condition constraints and modified interactively. As mentioned in section 6.3,
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there are in total C (6.9) iterations, after which the minimal polynomial in the group is
chosen as the interpolated polynomial Q. According to the iterative process analysis
given in Chapter 4 and also paper [52], the interpolated polynomial Q has leading
order lod(Q) < C. This indicates that those polynomials with leading order over C will
not be the chosen candidates. Also, if there is a polynomial in the group with leading
order over C during the iterations, the chosen polynomial Q has not been modified
with this polynomial, otherwise lod(Q) > C. Therefore, those polynomials with
leading order greater than C can be eliminated from the group during iterations in

order to save the unnecessary computations.

Iff € Fy[x, y, z] has leading monomial LM(f) = ¢, 2", polynomials in F, 4[x, », z] can be
partitioned into the following classes according to their leading monomial’s z degree

b’ and ¢,”’s pole order v, (¢.7") as:

Views={f € Fylx, 3,21 15" = 6A v, () =uw+ 4, LM() = 2", (S u, 1) e N, A

<w} (6.26)

such that F[x, y, z] = UVMW s - According to section 6.3, the factorisation outputs
A,0eN, A<w

are the z roots of Q. Therefore, the z degree of Q is less than or equal to the maximal
number of the output list /,, (6.11) and Q is a polynomial chosen from the following

classes:
Vi=Vitws (0 A<w,0<651,) (6.27)

At the beginning of the iterative process, a group of polynomials are initialised to

represent each of the polynomial classes defined by (6.27) as:

G=1{0/=01+ws=V"2% Q; € V}} (6.28)

During the iterations, each polynomial Q; in the group G is the minimal polynomial
within its class V; that satisfies all the tested zero conditions. At the beginning of each

iteration, polynomial group G is modified by:

G={0;]10d(Q) < C} (6.29)

in order to eliminate those polynomials with leading order over C. Then the remaining

polynomials in G are tested by the zero condition constraint defined by (6.7) as:
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A, =D5"(0)) (6.30)

The determined corresponding coefficients y, , , are applied for this calculation.

Those polynomials with A, = 0 satisfy the zero condition and do not need to be
modified. However, those polynomials with A, # 0 need to be modified. Among

them, find the index of the minimal polynomial as j and record the minimal

polynomial as Q'

j =1index (/(qu(lQI}) {Qi 1A, #0}) (6.31)
Q=0 (6.32)

For @y, it is modified as:
0= (x-x)0 (6.33)

where x; is the x coordinate of affine point p; which is included in the current

interpolated unit (p;, 7;). The modified Q; satisfies D;Z""") (Q;) = 0. Based on property
1 and 2 mentioned in section 4.3.2, D;Z"”"‘) [(x-x)0]= DO([Z””‘) (x0) - xi DLZ"’F") (0)=x;
Ajr- x;A;= 0. The rest of the polynomials with A ; # 0 are modified as:

0 =4/0;- A, 0 (6.34)

The modified O satisfies D5 (Q)) = 0 because D" [AQ;- A, Q=AD" (Q;

N—

- A, DLZ"”") Q)= ApA - A; A= 0. After C iterations, the minimal polynomial in the

group G is chosen as the interpolated polynomial Q:

Q= min {Q;| Q; € G} (6.35)

lod(0;)

From the above description, it can be seen that by applying the complexity reduction
scheme (6.29), zero condition calculation (6.30) and modifications (6.33) (6.34) for
those polynomials Q; with lod(Q;) > C can be avoided, and therefore the interpolation
efficiency can be improved. According to [52] and Chapter 4, this complexity
reduction scheme is error dependent that it can reduce complexity more significantly

in low error weight situations. This is because the modification scheme (6.29) takes
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action in earlier iteration steps while in low error weight situations, and therefore
more computation can be reduced. Fig. 6.1 shows interpolation (with different
multiplicity m) complexity reduction by applying the scheme (6.29) for decoding
Hermitian code (64, 19, 40). It is shown that complexity can be reduced significantly
in low error weight situations, especially when m = 1, complexity can be reduced up
to 48.83%. However, in high error weight situations, complexity reduction is not as
significant. Based on Fig. 6.1, it can also be observed that the complexity reduction
also depends on the interpolation multiplicity m. When m = 1, complexity reduction is

the most significant; when m = 2, complexity reduction is the most marginal.

1.00E+08

{} 10.60%

o
o
m
+
o
5

—#&— original interpolation (m=1)

Computational Complexity

1.00E+06 - — 8 — complexity reducing interpolation (m=1),
—&—original interpolation (m=2)
— A — complexity reducing interpolation (m=2)
34.08% |—®— original interpolation (m=3)

— © — complexity reducing interpolation (m=3),

% -- percentage of complexity rgduction

1.00E+05

0 1 2 3 4 5 6 7 8 9 10 M1 12 13 14 15 16 17 18 19 20
Number of Errors

Figure 6.1 Complexity analysis for the interpolation of GS decoding Hermitian code

(64, 19, 40)

Summarising section 6.4 and 6.5, the modified complexity reduction interpolation

process for GS decoding Hermitian codes can be stated as:

Initial computation: Apply algorithm 6.1 to determine all the necessary

corresponding coefficients y, , , and store them to be used by the iterative

polynomial construction algorithm (algorithm 6.2)
Algorithm 6.2: Iterative Polynomial Construction

Initialisation: Initialise the group of polynomials G by (6.28)
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(1): For each interpolated unit (p;, ;) (i=0, 1, ..., n—1) {
(i1): For each pair of the zero condition parameters (a, f) (a+ f<m) {
(111): Modify polynomial group G by (6.29)

(1v): Test the zero condition A ; of each polynomial in G by (6.30)

(v): For polynomials Q; with A#0 {

(vi): Denote the minimal polynomial’s index as j ’ by (6.31) and record it as Q’
by (6.32)

(vii): Ifj=J, ©Q; is modified by (6.33)

(viii): Ifj #j , O; is modified by (6.34)

Y

At the end of the iterations, the minimal polynomial Q is chosen from the group G as

(6.35).

Here gives an example to illustrate this complexity reduction interpolation process.

Example 6.3 Decode Hermitian code (8, 4, 4) defined in GF(4) using the GS
algorithm with interpolation multiplicity m = 2. The Hermitian code word is generated

by evaluating the message polynomial over the following affine points: po = (0, 0), p;
=0, 1. p2= (1, 0. ps= (1, &), ps = (0. 0), ps = (6. @), ps = (. 0), p1 = (& &),
Given received word R = (1, 02, o, 02, o, 02, 02, 0).

3
Applying (6.9), the iteration number C = 8[2] = 24. Based on C, the length of output

list can be determined as /, = 3 and parameter #, = 1 by using (6.11) and (6.12)
respectively. As a result, the (1, 4)-weighted degree upper bound for the interpolated
polynomial can be determined by (6.10) as max{ deg,, O} = 13. Therefore, the
maximal pole basis (L,) monomial that might exist in the interpolated polynomial is
nax = $12 = X", As the interpolation multiplicity m = 2, algorithm 6.1 is applied to

determine the corresponding coefficients y, , , ~ 715, , and 75, , ~ V1o, o (@ <2)
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are stored for the following interpolation process. Table 6.3 lists all the resulted

corresponding coefficients y, , , ~ 71, o (@<2).

a
0 1 2 3 4 5 6 7 8 9 10 | 11 | 12
Do, (24
Y a,py.a 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0
a
0 1 2 3 4 5 6 7 8 9 10 | 11 | 12
pi, (24
Vapa 0 1 0 1 0 0 1 0 0 1 0 0 1 0
1 0 1 0 0 1 0 0 1 0 0 1 0 0
a
0 1 2 3 4 5 6 7 8 9 10| 11 | 12
p2, o
Yapra 0 1|1 || 1|lo|f|ol|ldf| 1|1 ]| o]l
1 0|1 ]1]0]|F|0]|1 |00
a
0 1 2 3 4 5 6 7 8 9 10 | 11 | 12
b3, o
Vapsa 0 1 1 o |1 clo| | ol 1 o | 1 o |1
1 0 1 1 0 | 0 1 cl ol 0|0 o
a
0 1 2 3 4 5 6 7 8 9 10 | 11 | 12
P4, o
Y a,psa 0 1 clo|d ||| 1 1 1 c|l ol ol
1 0|1 || 0 || 0]|o|f|a|l0]|a|l0]1
Ps, a
0 1 2 3 4 5 6 7 8 9 10 | 11 | 12
ya,ps,a a
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1 010 c|0]|oc|loll1]0]|A]0]
a
o123 |4|5|6|7]|8]9/ 10]|11]12
Ds, a
YV a,ps.a 0 11| ool 1| o 1 1 || ol o

P, o

Yapra| 0 |1 ||| o|loloc|l | 1|1 ||| o

1 |o|1|loc|lO0|oc|lO0 || ol 0] 0|1

Table 6.3 Pre-determined corresponding coefficients for example 6.3

Following on, algorithm 6.2 is performed to find the interpolated polynomial Q(x, v,

z). At the beginning, a group of polynomials is initialised as:

O=1,01=y,0r=2z, Os=yz, Qs = 2, Os = yzz, O = z, 0 = yz3. Their leading
orders are: lod(Qp) =0, lod(Q;) = 2, lod(Q>) = 4, lod(Q3) =9, lod(Q4) = 12, lod(Qs) =
20, lod(Qs) = 24, lod(Q7) = 35.

For interpolated unit (py, 7o) = ((0, 0), 1),

For zero parameter =0 and f= 0,

As lod(Q7) > C, polynomial O is eliminated from the group.

Test the zero condition of the remaining polynomials in the group as:

Ao = Dy (Q0) = 1, A = D™ (Q1) = 0, Ay = D™ (02) = 1, A3 = D" (03) =0,
A= D" (Qa) = 1, As= D" (05) = 0, A = Dy (Q) = 1

Find the minimal polynomial with A; # 0 as:

j’=0and 0'=0,

ASA1:A3:A5:O
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01 =01 =y, and lod(Q;) =2

03 =03 =yz, and lod(Q3) =9

Os = Qs = yz%, and lod(Qs) = 20

Modify polynomials in the group with A; # 0 as:
Qo= (x-0)Q’ =x, and lod(Qp) = 1

0> =N7o0; - AyQ' =1+ z, and lod(Q,) = 4
Os=NMo0s - As0° =1+ 2*, and lod(Q4) = 12

Os = MoQs - A¢Q’ =1+ 2°, and lod(Qs) = 24

For zero parameter =0 and =1,

As there is no polynomial in the group with leading order over C, no polynomial is

eliminated in this iteration.
Test the zero condition of the remaining polynomials in the group as:
Ag = D(()foJo)(QO) =0,A = D(()foﬂ‘o)(Ql) =0, A, = D((){?o,ro)(Qz) =1,A;= DéfoJo)(Q3) =0,

As= D™ (04) =0, As = D™ (0s) =0, Ag = D" (Q¢) = 1

Find the minimal polynomial with A; # 0 as:
j’=2and Q"= 0
AsAg=A1=A3=A4=As5=0,

0o = Qp=x, and lod(Qp) =1

01=01=y,and lod(Q;) =2

03=05=yz, and lod(Q5) =9

04=04=1+2", and lod(Qy) = 12

Os = 0s = yz*, and lod(Qs) = 20

Modify polynomials in the group with A; # 0 as:
O, =(x-0)Q’=x+xz, and lod(Q,) =7

06 =M0g - AsQ’ =z + 2°, and lod(Qs) = 24
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For zero parameter =1 and =0,

As there is no polynomial in the group with leading order over C, no polynomial is

eliminated in this iteration.

Test the zero condition of the remaining polynomials in the group as:
Ao= D" (Qo) = 1, A1 = D" (01) =0, Ay = Di*"(Q2) =0, As = Dig"™ (Q3) =0,
Ay= D" (Q4) =0, As = D" (Q5) = 0, A= D" (Q6) = 0
Find the minimal polynomial with A; # 0 as:

j’=0and Q' = Qo

AsAI =AM =A3=As=As=As =0,

01=01=y,and lod(Q;) =2

O,=0r=x+xz,and lod(Q,) =7

03=03=yz, and lod(Q3) =9

Q4= Q4 =1+7", and lod(Qs) = 12

Os = Os = yz*, and lod(Qs) = 20

0s= 0=z + 2", and lod(Qg) = 24

Modify polynomials in the group with A; # 0 as:

Qo= (x - 0)Q’ =x*, and lod(Qp) =3

Following the same process, interpolation runs through the rest of the interpolated
units (p1, 1) ~ (p7, r7) and with respect to all zero parameters (e, ) = (0, 0), (0, 1),
and (1, 0). After C iterations, the chosen interpolated polynomial is: O(x, y, z) = o +
ox+y+ o’ +)y + Xy + o+ oy + Y +z(x +xy + 1) + 2(6F + ox + APy
+ ox?), and lod(O(x, ¥, z)) = 23. Polynomial Q(x, y, z) has a zero of multiplicity at

least 2 over the 8 interpolated units.
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6.6 General Factorisation

Based on the interpolated polynomial, factorisation is to find the polynomial’s z roots
in order to determine the output list. Building upon the work of [10] and [12], this
section presents a generalised factorisation algorithm, or so called the recursive
coefficient search algorithm which can be applied to both Reed-Solomon codes and
algebraic-geometric codes. This section’s work is based on the author’s paper [67]. In
general, the algorithm is described with application to algebraic-geometric codes.
Therefore, it has to be stated that when applying this algorithm to Reed-Solomon
codes, the rational functions in an algebraic-geometric code’s pole basis are simplified
to univariate monomials in Reed-Solomon code’s pole basis. As a consequence

polynomials in F,[x, y] are simplified to univariate polynomials with variable x.

Based on section 6.3, those polynomials he F,™ [x, y] will be in the output list if O(x,

v, h) = 0. The outcome of the factorisation can be written as:

hl = h1,0¢0 +eeet hl,k—1¢k—1
: (6.36)

h/ = h/,o¢o +oeet hl,k—l ¢k-1

with / </,. Rational functionséy, ..., @1 are predetermined by the decoder, therefore,

to find the list of polynomials is equivalent to find their coefficients 4, ..., A1 41, ...,
hio, ..., hip1 respectively. Substituting 4 into the interpolated polynomial QO =
> 0,8,2" , we have:
a,beN
O, y, h)= ZQab¢ahb = ZQab¢a (Moo +---+ hk—1¢k—1)b (6.37)
a,beN a,beN

It is important to notice that:

(¢i¢)mody= 2 ¢ (6.38)

veN

where y is the algebraic curve (e. g. Hermitian curve H,) and ¢;, ¢, and g, are

rational functions in pole basis which is associated with the curve y (e. g. pole basis

L,, associated with curve H,,). Therefore (6.37) can be re-written as a polynomial in

Fl][xa y]
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O, y,h) = >.0,4, (6.39)

aeN

where coefficients O, are equations with unknowns hy, ..., hx1. If T=1|{0, | O, # 0}|,

the rational functions ¢, with O, # 0 can be arranged as ¢, <¢, <---<¢, and (6.39)

can again be written as:
00,y 1) = 0,8, + 0,9y, +-+0, 4, (6.40)

Again, coefficients 0,0, 5 and Q,, are equations of unknowns hy, ..., h;. To
have QO(x, y, h) =0, we need 0, = 0, == 0, = 0. Therefore, hy, ..., i1 can be

determined by solving the following simultaneous set of equations as:

0, (hyseeishy ) =0

hy,....h,_)=0
Q,, (hy, A 1) 641)

0, (hyserisy ) =0

In order to solve equation set (6.41), a recursive coefficient search algorithm is
applied to determine Ay, ..., i [11, 12]. Following on, here is to propose a more
general and efficient factorisation algorithm. Let us denote the following polynomials

with respect to recursive index s (0 <s<k-1):
KOG, y)=ho ot + it rers (6.42)

which is a candidate polynomial with coefficients Ay, .., s1.; undetermined. Update

O(x, y, z) recursively as:
e =V +h 6.43
Q (X, ya Z) Q (X, yaz k-l-S¢/€-1-S) ( . )

with 0(x, v, z) = O(x, y, z) which is the interpolated polynomial (6.8). Substitute /.-

s k15 into O9(x, v, z), we have:

0¥ (x,3) = 0" (0, », i) (6.44)

With Q(” mod y, it can be transferred into a polynomial in F[x, y] with coefficients
expressed as Zwih,i_l_s where @; € GF(g). Denote Q(” ’s leading monomial with its
ieN

leading coefficient as:
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' =LM(Q™) (6.45)
CY (h_,) =LC(O™) (6.46)

Based on (6.42), it can be seen that LM(h(S)) =@ 1.5 and LC(h(S)) = hj.1. Therefore,

for any recursive polynomial Q“)(x, y, z), we have:
LM(Q"(x, y, ) = LM(QV(x, y. hic1s f 1) = LM(O®)) = 4 (6.47)

LC(QY(x, y, i) = LC(QVx, , M5B i1) = LC(O) = CO (b, ) (6.48)

As all the candidate outputs should satisfy Q(x, y, #) = 0 and from the above
definitions it can be seen that # = A and Q(O)(x, v, z) = Q(x, v, z), therefore Q(x, y, h)
= 0 is equivalent to Q(O)(x, v, h(o)) = 0. Based on (6.47) and (6.48), in order to have
0%, y, h'”) = 0, we need to find out its leading monomial ¢ with leading
coefficient C\” (h,_,) and determine values of /. that satisfy C\”(h,_,) = 0. As a

result, the leading monomial of Q(O)(x, V, h(o)) has been eliminated. Based on each
value of /. and performing the polynomial update (6.43), 0"(x, y, z) is generated, in
which ¢{* has been eliminated. Now, O(x, y, k) = 0 is equivalent to 0"(x, y, #")=0.
Again, to have O"(x, y, ") = 0, we need C\"(h,_,) = 0. Therefore, i, can be
determined by solving C!"(h,_,) = 0. Based on each value of h;,, we can trace
further to find the rest of the coefficients. In general, after coefficients /1., (0 <s <k
- 1) have been determined from solving C'* (h,_,_,) = 0, based on each value of them,
perform the polynomial update (6.43) to generate Q(Sﬂ)(x, v, z). From Q(Sﬂ)(x, v, 2),
0" can be calculated and /. 1.;+1) can be determined by solving Ct*™ (h,_,_,.,,) =0.

This process can be illustrated in Fig. 6.2:
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i updates
gj](xh}?: Z:I S gj-'-l](xr.}?rzj

B 1.4
LIS <: .

g 141

hg 14

hgas

g 1541

Figure 6.2 Recursive coefficient search

From Fig. 6.2 it can be seen that there might be an exponential number of routes to

find coefficients 4., ..., hp. However, not every route will be able to reach 4y as
during the recursive process there maybe no solution for C™*(h, , )= 0. If hy is

produced and 0% "(x, y, hodo) = 0, this route can be traced to find the rest of the

coefficients /4y, ..., iy to construct polynomial # which will satisfy O(x, y, &) = 0. The

correctness of this judgement will be proven later.

Based on the above description, here summarises the generalised factorisation

algorithm as:
Algorithm 6.3: Recursive Coefficient Search

Initialisation: 0)(x, y, z) = O(x, v, z). The recursive index s = 0 and output candidate

index /=1
Perform: Recursive coefficient search (s) (RCS(s))
Recursive coefficient search (RCS):

Input parameter: s (0<s<k-1)
(1): Perform (6.44) to calculate Q(S) (x,»)

(ii): Find out ¢* with its coefficient C\” (h,_,_,)
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(iii): Determine /.1 by solving C(h, , ) =0

(iv): For each value of /.., do

{
V) By keres = s

(vi): Ifs=k-1,calculate Q(k'l)(x, v, ho@ o) and go to (vii). Else, go to (viii)

(vil):  If Q% V(x, y, ho ¢ o) = 0, trace this route to find coefficients hi k15 M k2 ..., and

hi o to construct the candidate polynomial /; and / =/ + 1. Else, stop this route
(viii): Perform polynomial update (6.43) to generate 0“"(x, y, z)
(ix): Perform RCS(s + 1)

}

This recursive coefficient search algorithm has the priority to search deeper
coefficients. This means if a number of /.., have been determined, the algorithm will
be based on one of them to determine the rest of the coefficients until all the possible
routes started from this %;.;.; have been traced. After this, it will be based on the other
value of /s and trace deeper again. This algorithm will terminate after all the
possible routes started from /4;.; have been traced. To prove the correctness of this
algorithm, it needs to justify the polynomial 4; produced in (vii) satisfies Q(x, y, h;) =
0.

Proof: As 0% (x, v, hogo) = 0 and 2*V(x, ) = hod, we have 0 (x, y, H*D) = 0.
Assuming /; is the previously found coefficient, then 0% "(x, y, z) is generated by
(6.43) based on it as: 0% V(x, y, z) = 0%?(x, y, z + h1 ¢ ). From 0%V (x, y, "*D) =0,
we have 0% ?(x, y, 'Y+ h; ¢ ) = 0. Based on (6.42), it can be seen that A= hyg
+hi¢,= BED 4 hi @ 1. Therefore, Q(k'z)(x, V, h(k'z)) = (. Based on the same deduction
progress, it can be deduced further to have Q(k'3)(x, v, h(k'3)) =0, ...,and Q(O)(x, v, h(o))
=0. As 09, y, z) = O(z) and hO=hopo + hi ¢ + - + hi ¢ 11 whose coefficients

have been traced as the coefficients of the output candidate 4, it can be concluded that

Q(xa Vs hl) =0.
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Here gives two worked examples to illustrate the generalised factorisation algorithm’s

application to a Hermitian code and a Reed-Solomon code respectively.

Example 6.4 List decode a (8, 4, 4) Hermitian code defined in GF(4). Given the
interpolated polynomial is: Q(x, y, z) = o Y+ o+ oxy + o y2 + o x2y + x2y2 + xy3 +
(ox + oxy + oxy))z + (x + x))z*. Apply algorithm 6.3 to find out its z roots.
Initialisation: Q(x, y, z) = O(x, y, z), s =0 and [ = |

RCS(0):

0 (x, ) = 0, y, hax®) = (& + oh3)y + P+ oxy + (P + h')y* + (0 + hy )y +
(1 + N + xp° + (ohy + k'), with ¢ = y* and C”(hy) = ohs + hs’.
Solving CEO) (hy) =0, wehave hi3=0o0r 3= o

For i3 =0, h13=h3=0. As s = 0 < 3, update 0"(x, y, z) = 0Vx, y, z + 0x*) = O(x, y,
z), and perform RCS(1)...

Based on the same progress, here summarises the outcome from RCS(1), RCS(2) and

RCS(3) in Table 6.4 as:

RCS(E) i CPN A ) ALkl = Bl
RCS(1Y 0 1+ oy g
ROS() x4 o+ ain o
ROS(D o° i 0

Table 6.4 Recursive coefficient search from 43 =0
After RCS(2), we have O®(x, y, z) = (ox + oxy + oxy))z + (x + x*)z%. In RCS(3), by
solving C\” (h,) = 0, we have ho= 0. Therefore, i1 9= ho=0. As s = 3 and o, v,
hogo) = OP(x, y, 0-1) = 0, this route can be traced to construct candidate polynomial

hi= ox + ¢°y, and update the candidate index / =17+ 1=2.
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Going back to the closest division point (when s = 0), we have:
For hs= o, hy3=h3= 0. As s =0 <3, update Q(l)(x, V,z)= Q(O)(x, v, z+ mcz) =
o+ oxy + oxtyr +x° + (ox + oxy + onP)z + (x + x2)2%, and perform RCS(1). ..

Again, here summarises the outcome of RCS(1), RCS(2) and RCS(3) in Table 6.5 as:

RCS(s) 7 CPs) | Bt =it
RCS(1) 07 1+ o
ROS(2) x4 T 0
RCS(3) P o+ iy a

Table 6.5 Recursive coefficient search from /3 = o
After RCS(2), we have O%(x, V,z)= X+ ozxy + ozxy2+ (ox + oxy + wcyz)z + (x +
x))z%. In RCS(3), by solving C¥ (h,) = 0, we have hy o= ho= o. As s =3 and 0®(x, y,
hodo) = Q(3 )x, y, oc1) = 0, this route can be traced to construct the candidate

polynomial i, = o+ o°y + ox’. As all the possible routes from /g have been traced, the

factorisation process terminates and outputs: ;= ox + 6%y, ha= o+ o’y + ox’.

Example 6.5 List decoding of a (7, 2, 6) Reed-Solomon code defined in GF(8). ois a
primitive element in GF(8) satisfying &® + ¢+ 1 = 0. Addition and multiplication
table of GF(8) is given in Appendix B. Given the interpolated polynomial as: QO(x, z)
= ox + o’x* + (6 + o°x)z + o’z”. Apply algorithm 6.3 to determine its z roots.

Initialisation: 0”(x, z) = O(x, z), s=0 and / = 1

RCS(0):

09 (x, 2) = 09, hix) = (o + Shix + (& + &y + Ph’), withg” = ¥
andC" (h,) = 6°+ &’y + o°hy”. Solving C'” (h,) = 0, we have h; = & or h; = &

For hi= &, hi,=h = c. As s =0 < 1, update 0""(x, z) = 0Vx, z + &’x) = (¢’ +
o'x)z + o°z*, and perform RCS(1)
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In RCS(1), following the same progress, we have ¢ = x and C\"(h,) = ch.

Solving C{" (h,) =0, we have /= 0.

For hy=0, h1o=ho=0. Ass =1 and Q(l)(x, hogo) = Q(l)(x, 0-1) = 0, this route can be

traced to construct candidate polynomial 4, = ¢’x. Update the output candidate index

as/=[+1=2

Going back to the closest division point (when s = 0), we have:

For hy= 0, ho = h = &°. As s =0 < 1, update 0"(x, z) = 0x, z + &°x) = ’x + (&’
+ o°x)z + 0°z*, and perform RCS(1)

In RCS(1), we haveg” = x andC'" (h,) = &' + & ho. Solving C"(h,) = 0, we have
h(): O.

For ho= o, hyg=ho= 0. As s =1 and Q(l)(x, hogo) = Q(l)(x, o:1) = 0, this route can be
traced to construct candidate polynomial 4,= o+ o°x. As all the possible routes from

ho have been traced, the factorisation process terminates and outputs: 4, = ojx, h=o0o

+ Jx.

6.7 Simulation Results Discussion

Employing the above efficiency improved interpolation algorithm and generalised
factorisation algorithm, list decoding of longer Hermitian codes is feasible and the
author has developed a software platform using the C programming language to
evaluate the performance. The evaluating list decoder structure is shown by Fig. 6.3.
Simulations are run over AWGN and Rayleigh fading channels using QPSK
modulation. The Rayleigh fading channel is frequency non-selective with Doppler
frequency 126.67 Hz and date rate of 30 kb/s. The fading profile is generated by
Jakes’ method [64]. The fading coefficients have mean value 1.56 and variance 0.60.
Over the fading channel, a block interleaver with size 100 x n is used, where 7 is the
length of the code. Simulation results are analysed with regard to the following two
aspects: performance comparison with the conventional unique decoding algorithm

and performance comparison with the Reed-Solomon codes using list decoding.
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Determine the Complexity Generalised
Corresponding Reducing Factorisation
Coefficients Interpolation (Algorithm 6.3)
(Algorithm 6.1) (Algorithm 6.2)

Received word R
Note:[] indicates the pre-calculation step of the efficient list decoder.

Figure 6.3 Efficiency improved list decoding structure for Hermitian codes

6.7.1 Comparison with Unique Decoding Algorithm

Figs. 6.4, 6.5 and 6.6 present the performance of Hermitian codes (64, 19, 40), (64, 29,
30) and (64, 39, 20) respectively, while Figs. 6.7 and 6.8 present the performance of
Hermitian codes (512, 153, 332) and (512, 289, 196) respectively. These simulation
results were first published in the author’s papers [65, 66]. Their performances are
evaluated by measuring their coding gains (dB) over the unique decoding algorithm [5,

6, 25] at a bit error rate (BER) of 10™.

According to the interpolation description in section 6.5, for interpolation with
multiplicity m, there are w(/,, + 1) polynomials being initialised taking part in C (6.9)
iterations. Even though some of them will be eliminated during the iteration by
scheme (6.29), a high value of m will still lead to infeasibility for implementation.
Therefore, some feasible results of the GS algorithm (m = 1, 2) have been achieved.
Table 6.6 presents the simulation parameters for these 5 Hermitian codes. Also,
details of more list decoding parameters of these 5 Hermitian codes are included in
Appendix D. Before interpolation, algorithm 6.1 is applied to determine the
(=10, 1) are

corresponding coefficients y, , , and only 7, , ,

~ ~
ymax,p,- o }/maX,Pi:a

stored in order to minimise the memory requirement. From Table 6.6, it can be
observed that achieving the optimal result of the GS algorithm remains prohibitive for

implementation. But if assuming the GS algorithm is able to correct zgs (3.32) errors

and the transmitted code word ¢ is known by the decoder, the theoretical optimal
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performance of the GS algorithm can also be evaluated without employing the

interpolation and factorisation processes. This is achieved by measuring the Hamming

distance between the received word R and the transmitted code word c. If it is not
greater than 7gg, decoding is claimed to be successful. Otherwise, decoding is a failure.
Figs. 6.4 to 6.8 show that the GS algorithm approaches its optimal result with
increasing interpolation multiplicity m. Among the performance evaluations, it is

worth pointing out Fig. 6.6 which shows that GS decoding of Hermitian code (64, 39,

20) with multiplicity m = 2 is close to the theoretical optimal result.

Hermitian Interpolation
c lm W(lm + 1) max{ degl w. Q} ¢max
codes multiplicity e
m=1 64 2 12 50 ="
(64,19, 40) m=2 192 3 16 90 doa ="
optimal (m = 17) 9792 28 116 — —
m=1 64 1 8 55 o ="
(64,29,30) m=2 192 3 16 104 =%
Pog = Xy
optimal (m = 35) 40320 48 196 — —
m=1 64 1 8 60 Psq ="
(64,39,20) m=2 192 2 12 114 bros = 07
optimal (m = 11) 4224 13 56 — —
m=1 512 2 24 373 s =x)"7
(512, 153,
_ _ 2.4
332) m=2 1536 3 32 682 Boss =Xy
optimal (m=213) | 11668992 | 359 2880 — —
m=1 512 1 16 442 Pia =22
(512, 289,
196) m=2 1536 2 24 856 deos = x%8
optimal (m = 93) 2237952 118 952 — —

Note: C represents the number of iterations; /,, represents the maximal length of the output list from factorisation;,

w(l,, + 1) represents the number of polynomials being initialised at the beginning of the interpolation process.
max { degl w. O} represents the interpolated polynomial’s (1, w.)-weighted degree upper bound, ¢, represents

the maximal pole basis monomial that might exist in the interpolated polynomial Q.

Table 6.6 List decoding parameters
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—%—GS (m=2)
—&—GS (Optimal)
1.0E-02
~
g 1.0E-03
1.0E-04 -
1.0E-05 4
4 3 2 1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Eb/NO[dB]
(a) over AWGN channel
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Figure 6.4 Hard-decision list decoding performance of Hermitian code (64, 19, 20)
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(a) over AWGN channel
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(b) over Rayleigh fading channel

Figure 6.5 Hard-decision list decoding performance of Hermitian code (64, 29, 30)
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Figure 6.6 Hard-decision list decoding performance of Hermitian code (64, 39, 20)
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N —8— Sakata
—A—GS (m=1)
——GS (m=2)
—6—GS (Optimal)
1.0E-02 -
o
E 1.0E-03 +
1.0E-04 -
1.0E-05 1
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12
Eb/NO[dB]
(a) over AWGN channel
\ —o— Uncoded
1.0E-01 —8— Sakata
—A—GS (m=1)
—%—GS (m=2)
—6—GS (Optimal
1.0E-02 - ©r )
5 1.0E-03 +
A e
1.0E-04 -
1.0E-05 1
-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12

Eb/NO[dB]

(b) over Rayleigh fading channel

Figure 6.7 Hard-decision list decoding performance of Hermitian code (512, 153, 332)
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—&—GS (m=1)

——GS (m=2)
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BER

1.OE-03 4

1.0E-04 -

1.0E-05 -

Eb/NO[dB]

(a) over AWGN channel
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Figure 6.8 Hard-decision list decoding performance of Hermitian code (512, 289, 196)

Table 6.7 analyses the simulation results shown by Figs. 6.4 to 6.8. Equation (6.18)

defines the GS algorithm’s error-correction capability lower bound for Hermitian
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codes. During simulations, the average number of errors Z that the GS algorithm is

able to correct in order to achieve the corresponding performance is measured. Based

on Table 6.7, it can be observed that the GS algorithm’s coding gains grow with

interpolation multiplicity m and they are especially significant over the Rayleigh

fading channel. For example, GS decoding Hermitian code (64, 19, 40) with

multiplicity m = 2 can achieve a 1.42 dB coding gain on the Rayleigh fading channel.

The GS algorithm can achieve more significant coding gains for low rate codes, but

this is at the higher expense of decoding complexity. For example, comparing

Hermitian Interpolation — Coding gains (dB)
Tﬂ‘l
codes multiplicity AWGN Rayleigh fading
m=1 20 0.17 0.71
(64, 19, 40) m=2 21 0.33 1.42
optimal (m = 17) 16s = 24 0.91 3.30
m=1 14 0.01 0.10
(64, 29, 30) m=2 15 0.15 1.0
optimal (m=35) | ws=17 0.50 2.05
m=1 9 0.10 0.01
(64, 39, 20) m=2 10 0.30 0.94
optimal (m = 11) 6s = 10 0.30 0.94
m=1 167 0.05 0.16
(512, 153,
m=72 184 0.40 0.88
332)
optimal (m =213) | 75 =208 0.88 1.84
m=1 97 0.01 0.01
(512, 289,
m=2 99 0.08 0.16
196)
optimal (m =93) | s=109 0.32 0.72

Table 6.7 Simulation results (Figs. 6.4 to 6.8) analysis
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Hermitian codes (512, 153, 332) and (512, 289, 196), more significant coding gains
can be achieved for the former. However, according to Table 6.6, GS decoding
Hermitian code (512, 153, 332) has higher decoding complexity because there are
more polynomials being initialised at the beginning to take part in the iterative

interpolation. The same result can also be found by comparing Hermitian codes

defined in GF(16).

6.7.2 Comparison with Reed-Solomon Codes

By applying the list decoding algorithm, this section presents Hermitian codes

performance comparisons with Reed-Solomon codes.

First, comparisons are made with a Reed-Solomon code which is defined over the
same finite field. Fig. 6.9 present the comparison of Hermitian code (512, 153, 332)
and Reed-Solomon code (63, 19, 45), both of which are defined in GF(64) and have

code rate 0.3. This comparison result is published in the author’s paper [67].

1.0E+00

—>— Uncoded

—&— Unique decode AG

1.0E-01 { —&— GS decode AG(m=1)

—— GS decode AG(m=2)
—— GS decode AG(optimal)
1.08-02 4 \ — A — Unique decode RS
\ — 8 — GS decode RS(m=1)

— 9 — GS decode RS(m=2)

BER

1.0E-03 -

— © — GS deocde RS(optimal)

1.0E-04

1.0E-05 A

1.0E-06

7
Eb/NO [dB]

(a) over AWGN channel
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1.0E+00

—>*— Uncoded

—&— Unique decode AG
1.0E-01 —®— GS decode AG(m=1)
—— GS decode AG(m=2)
—=8— GS decode AG(optimal)
1.08-02 1 — -4 — Unique decode RS
— 8 — GS decode RS(m=1)

— © — GS decode RS(m=2)

BER

1.0E-03 -

— © — GS decode RS(optimal)

1.0E-04

1.0E-05 -

1.0E-06

Eb/NO [dB]

(b) over Rayleigh fading channel

Figure 6.9 Hard-decision list decoding performance comparison of Hermitian code

(512, 153, 332) and Reed-Solomon code (64, 19, 45)

Comparing the list decoding performance with respect to a certain multiplicity m at
BER = 10” between Hermitian and Reed-Solomon codes, the Hermitian code can
always outperform the Reed-Solomon code. This is because over the same finite field,
longer Hermitian codes with larger minimum distances can be generated. This longer
code can correct larger number of errors within one code word block, resulting
performance advantage over Reed-Solomon codes. According to Fig. 6.9(a), over the
AWGN channel, Hermitian code (512, 153, 332) has 0.7 dB, 0.65 dB and 0.5 dB
coding gains over Reed-Solomon code (63, 19, 45) with m = 1, 2 and optimal,
respectively. According to Fig. 6.9(b), the coding gains over the Rayleigh fading
channel are more significant and are 3.7 dB, 3.3 dB and 2.9 dB with respect to m = 1,

2 and optimal.

Second, comparisons are made between Hermitian codes and Reed-Solomon codes
which are defined in a larger finite field. Two comparison schemes are proposed:

Hermitian code (512, 153, 332) compared with Reed-Solomon code (255, 76, 180),
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both of which have code rate 0.3 and Hermitian code (512, 289, 196) compared with
Reed-Solomon code (255, 144, 112), both of which have code rate 0.56. The
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m
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Eb/NO [dB]
(a) over AWGN channel
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1.OE-01 ] —&—GS decode AG (m=1)
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(b) over Rayleigh fading channel

Figure 6.10 Hard-decision list decoding performance comparison of Hermitian

code (512, 153, 332) and Reed-Solomon code (255, 76, 180)
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Figure 6.11 Hard-decision list decoding performance comparison of Hermitian

code (512, 289, 196) and Reed-Solomon code (255, 144, 112)
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Hermitian codes are defined in GF(64) while the Reed-Solomon codes are defined in
GF(256). This comparison result is later published in the author’s paper [68]. Notice
that over the Rayleigh fading channel, 100 x 512 and 50 x 255 block interleavers are
applied for Hermitian codes and Reed-Solomon codes respectively. Figs. 6.10 and

6.11 show the comparison results.

Comparisons are made by measuring the Hermitian codes’ coding gains over Reed-
Solomon codes at a BER equal to 10” using the same decoding parameter
(multiplicity m). Based on the performance of Fig. 6.10 and 6.11, the coding gains
that Hermitian codes are able to achieve over Reed-Solomon codes are summarised in

Table 6.8.

Hermitian (512, 153,332)/ | Hermitian (512, 289, 196) /
Decoding RS (255, 76, 180) RS (255, 144, 112)

Algorithms

AWGN Rayleigh AWGN Rayleigh

Unique 0.62 dB 2.54dB 0.38 dB 3.85dB

GS (m=1) 0.46 dB 2.08 dB 0.38 dB 3.85 dB

GS (m=2) 0.54 dB 1.69 dB 0.46 dB 4.08 dB

GS (Optimal) 0.62 dB 1.62 dB 0.46 dB 3.46 dB

Table 6.8 Simulation results (Figs. 6.10 to 6.11) analysis

From Table 6.8’s analysis, it can be seen that Hermitian codes can also outperform
Reed-Solomon codes defined in a larger finite field using both the unique decoding
algorithm and the GS algorithm. For Hermitian code (512, 153, 332), the GS
algorithm can achieve up to 0.62 dB coding gain on the AWGN channel and 2.08 dB
coding gain on the Rayleigh fading channel. For Hermitian code (512, 289, 196), the
GS algorithm can achieve up to 0.46 dB and 4.08 dB coding gain on the AWGN and

Rayleigh fading channel respectively. It is also interesting to notice that, for
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Hermitian code (512, 153, 332), the GS algorithm with multiplicity m = 2 can
outperform the optimal result that the GS algorithm can achieve for Reed-Solomon
code (255, 76, 180) over both AWGN and Rayleigh fading channels, while for
Hermitian code (512, 289, 196) a similar observation can be made for the GS
algorithm with multiplicity m = 1. As the Reed-Solomon codes are defined over
GF(256), decoding Reed-Solomon codes costs more finite field arithmetic operations
than decoding Hermitian codes defined over GF(64). However, Hermitian codes still
have significant performance advantages compared with Reed-Solomon codes on both

AWGN and Rayleigh fading channels.

6.8 Conclusion

This chapter presented a hard-decision list decoding algorithm (GS algorithm) for
Hermitian codes. Two contributions for reducing interpolation complexity have been
proposed in order to improve the efficiency for list decoding of Hermitian codes. First,
an efficient algorithm to determine the corresponding coefficients between the pole
basis monomials and zero basis functions of a Hermitian curve was proposed. The
coefficients are stored to be applied during the iterative interpolation in order to
simplify the zero condition calculation of a polynomial. Then, a complexity reduction
interpolation algorithm was proposed by applying a developed scheme which
eliminates any unnecessary polynomials during iterations. It is shown that this scheme
can improve interpolation efficiency by up to 48.83%. For the factorisation process, a
generalised factorisation algorithm which can be applied to both Hermitian codes and
Reed-Solomon codes was proposed. Applying the efficiency improved interpolation
algorithm and a generalised factorisation algorithm, list decoding performances of
Hermitian codes over AWGN and Rayleigh fading channels are evaluated. Simulation
results show that the GS algorithm can achieve significant coding gains over the
unique decoding algorithm. The GS algorithm’s coding gains increase with
interpolation multiplicity and it is more significant for low rate codes. However,
according to the simulation parameters, these performance advantages are at the
expenses of higher decoding complexity. By applying the list decoding algorithm,
simulation results on hard-decision list decoding of Hermitian code were compared

with Reed-Solomon codes. It is shown that, Hermitian codes can outperform similar
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code rate Reed-Solomon codes which are defined both in the same finite field and in a

larger finite field.
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7.1 Introduction

Following the decoding of Hermitian codes by the Guruswami-Sudan (GS) algorithm
which is a hard-decision list decoding scheme, this chapter presents a soft-decision list
decoding scheme for Hermitian codes. It is developed based on Koetter and Vardy’s
soft-decision scheme for Reed-Solomon codes [8] which is mentioned in Chapter 5.
According to Fig. 5.1, for the soft-decision scheme, the received information
probabilistic reliability matrix /71s obtained by the receiver instead of a hard-decision
received word R. Matrix /7 is then converted to a multiplicity matrix M based on
which the interpolated polynomial is built. The following analyses given in this
chapter show that the soft-decision scheme is able to produce a higher code word
score [8] than the hard-decision scheme, and therefore increase the system’s error-
correction capability. In the discussion of the simulation results for GS decoding
Hermitian codes given in Chapter 6, achieving the GS algorithm’s upper bound 7gs
(3.32) remains almost prohibitive in practice. However, this chapter shows that the
soft-decision scheme with short decoded output list can outperform GS decoding’s
optimal result, indicating this soft-decision scheme can achieve the previously

prohibitive bound zgs with a moderate decoding complexity.

An algorithm that converts the reliability matrix /7 to multiplicity matrix M
(algorithm 5.1) is presented in this chapter, introducing a stopping rule based on the
designed length of the output list. For the following interpolation and factorisation
processes, algorithm 6.2 and 6.3 can be applied for implementation respectively.
Again, it is shown that by realising the total number of iterations in interpolation, the
interpolation complexity can be reduced by eliminating polynomials with leading

order greater than the iteration number.

This chapter assesses the soft-decision scheme’s performance with regard to three
aspects: a complexity based comparison with the hard-decision scheme, the soft-
decision scheme with long output list and the soft-decision scheme’s asymptotically
optimal performance. This chapter’s work is presented in the author’s submitted paper

[69].
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7.2 Prerequisite Knowledge

This section presents some important parameters for introducing the soft-decision list

decoding scheme.

As mentioned in section 6.2, for decoding a (n, k) Hermitian code, parameter w, is

defined as:
w,=v, "= v, (der™), and w. > 2g — 1 (7.1)

where ¢ is the k&th monomial in pole basis L,, of Hermitian curve H,, and g is the
genus of the curve. Based on w., the two parameters first defined by (5.1) and (5.2)
for analysing bivariate monomial xayb (a, b € N) can be extended to trivariate

monomials ¢azb (a, b € N) as:
N (8) =1z a,b > 0and deg,,, (¢:2) < & 5e N} (7.2)

which represents the number of monomials with (1, w.)-weighted degree not greater

than dand
Ay, (v) =min {& Ny, (0)>v,v e N} (7.3)

which represents the minimal value of o that guarantees N, (J) is greater v. The

following corollaries associated with (7.2) and (7.3) are proposed:

Corollary 7.1: A, (v) = deg,,, (¢.2" | ord(g2”) = v).

Proof: Based on section 6.2, monomial ¢,z”’s (1, w.)-lexicographic order grows based
on the growth of its (1, w.)-weighted degree. Up to monomial ¢,z” with ord(¢g,z") = v,

there are v + 1 monomials with (1, w.)-weighted degree not greater than deg, (42" |
ord(¢.z") = v). Therefore, deg; ,,. (42" | ord(¢z”) = v) is the minimal value that

guarantees there are more than v monomials.
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Corollary 7.2: N, ,, (0) > given 6> 2g - 1, and when & —» o, N, (J) =

(0—g)o
2w

52

2w,

z

Proof: The proof is similar to the geometric arguments of Fig 5.2 given in Chapter 5.
In the (1, w.)-weighted degree table, the x-axis and y-axis represent index a of
monomial ¢, and degree b of variable z” and their unit distance weights 1 and w.
respectively. Each monomial ¢,z” occupies a unit square and therefore in the table Ny,
41(8) denotes the total area occupied by monomial ¢,z” with deg, ,,. (¢2") < 6. Take

Table 6.1a as an example for analysis. This table can be geometrically plotted as Fig

7.1 as:

X Ea)

1
----- LR S S S P R
EREEE RSkt |

F b

Figure 7.1 Geometric analysis of Table 6.1a

In this table, N, (0) denoted as Area 1 is enclosed by the solid line shown in the

figure. The triangle defined by vertexes (0, 0), (0 - g, 0), and (0, {iJ) has area %(5
w

z

- 2) 9 = M, which it is denoted as Area2 = M From Fig 7.1, it is
w 2w 2w

z z z

easy to be seen that Areal > Area 2, and therefore v;, (0) >

M. Also, based on
2w,

the figure, it is not difficult to realise that when 6 — oo, Areal and Area2 approach to

0(0-28)

be equal with each other and therefore »,, (6) = 5
WZ

. Since 6>> g, N, (0) =
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52
2w

z

. Take the case shown in Fig 7.1 as an example, 6= 12, and N, ,, () = N;,, (12)

— 25, while 2078 120220 65 rherefore, v, (5)>290=8)
2w, 2-4 o 2w,

7.3 Review of GS Decoding Hermitian Codes

Based on Chapter 6, given hard-decision received word R = (ro, 71, ..., rn1) (v €
GF(g), i =0, 1, ..., n - 1), n interpolated units can be formed by combining each

received symbol with its respective affine point used in encoding as: (po, 79), (p1,

1), ..y (Pn-1, Fa-1). Interpolation is to build the minimal polynomial Q,, = ZQab¢azb

a,beN
(Ou» € GF(g)) which has a zero of multiplicity at least m over these n units.
According to section 6.3, to have a zero of multiplicity m over unit (p;, 7;), On’s

coefficients O, should satisfy [44]:

a,bzf

b
Z Qa{ 7a,p.,al”ib_ﬂ =0,Va, feNand at f<m (7.4)
B ;

m+1

There are in total C,, = n( J zero condition constraints (7.4) to coefficients Q.

2

To build polynomial Q,, an iterative polynomial construction algorithm [9, 44, 65]

can be applied.

If fis the transmitted message polynomial (3.20), we define:

A(f, R)=|{i | fipi) =ri, ri € R}| (7.5)

as the number of uncorrupted received symbols in the hard-decision received word R.

Based on lemma 6.1, the total zero orders that QO,(x, y, f) has over all the interpolated

n-1
units is: va, (0, (x,y, 1)) =2 m A(f, R) (6.14). m A(f, R) is defined as the score of
i=0

code word c¢ as:

Su(c)=m A(f, R) (7.6)
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ASf € quz [X, y] > then pr (Qm (X, Vs f)_l ) = degl,wz (Qm(xa yaf)) = degl,wz (Qm(xa Vs Z))

Hence, if Sm(z) > deg,,, (Oml(x, y, 2)), the total zero orders of polynomial Q,(x, y, f) is

n—1
greater than its pole order as: ZV 0 (O, (53, )= v, (O, (x,p, f )™"). According to
i=0

theorem 6.2, message polynomial f can be found out by determining polynomial Q,,’s

z roots. It results the following corollary for successful list decoding.

Corollary 7.3: If the score of code word cis greater than the (1, w,)-weighted degree

of interpolated polynomial Q,,:
Su(c) > degy,, (Ol v, 2)) (7.7)

then Q,(x, y, ) =0o0rz—f| Op.

Based on corollary 7.3, it can be seen that large enough code word score is necessary

to guarantee successful list decoding.

7.4 Soft-Decision List Decoding

Based on Koetter and Vardy’s soft-decision scheme, this section develops a soft-
decision list decoding algorithm for Hermitian codes. In the receiver, a reliability
matrix IT of the received information is obtained instead of a hard-decision received
word R. IT is then converted to a multiplicity matrix M, based on which the
interpolated polynomial is built. It is shown that the soft-decision code word score
will be increased over hard-decision and consequently so will the list decoding
system’s error-correction capability. The algorithm that converts IT to M is presented

with introducing a stopping rule based on a designed length of output list.
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7.4.1 Reliability Information

As Chapter 5, the channel is assumed to be memoryless with input alphabet y € GF(q)
and output alphabet R € GF(q), both of which are random variables from GF(g). y is
uniformly distributed over GF(q) = (o, p1, ..., py-1). In the soft-decision list decoder,

the posteriori transition probability Pr(y = p;| ‘R = ) can be obtained from equation

p@; | p;)
> p@; | p)

peGF(q)

53)as: Pr(y = p | R = p) = . Pr(y = pi | M = ) represents the
probability that code word y = p; was transmitted given R = 5 is observed as a
received word. Under continuous channel, p(- | p) is the probability-density function
and R is continuous. Under discrete channel, p(- | p) is the probability-mass function

and ‘R is discrete.

As the transmitted code word can be chosen from the ¢ finite field elements, for every
random received variable g, there are g posteriori transition probability values.
Therefore, for the received vectorR = (w0, 41, ..., 1), a g x n reliability matrix I7T can

be obtained:

o0 Ty, 7o -1
70 7T T
II = ) . (7.8)
' i :
| g0 T ympay

where entry 7;; represents the probability that p; was transmitted given z is observed:
i =Pry=p|R=1)({@=0,1,..,9-1landj=0,1,...,n-1) (7.9)

Reliability matrix IT represents every possible transmitted code word symbol’s
transition probability. This received information’s reliability matrix II is then
converted to a g x n multiplicity matrix M, based on which the interpolated
polynomial Q) €F[x, y, z] is built (Note: in this chapter, Oy denotes the soft-decision
interpolated polynomial and Q,, denotes the hard-decision interpolated polynomial).

The method for obtaining this reliability matrix based on channel output observation
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is presented in section 5.3. The difference between soft-decision list decoding of
Reed-Solomon codes and Hermitian codes is in the size of the reliability matrix. For
soft-decision list decoding of Reed-Solomon code, the reliability matrix I7 (5.4) has

size ¢ x n, where n = g - 1. For soft-decision list decoding of Hermitian code, the

reliability matrix Z7 (7.8) has size ¢ x n, where n = ¢°'*.

7.4.2 System Solution

The reliability matrix I7 is then converted to the multiplicity matrix M, for which
algorithm 5.1 is applied. This algorithm will be presented later in this subsection with

introducing a stopping rule based on the designed length of output list.

According to corollary 7.3, high code word score is necessary for successful list
decoding. In this subsection, the code word score with respect to matrix M is analysed
so as to present the system solution for this soft-decision list decoder. It is shown that
the soft-decision scheme provides a higher code word score than the hard-decision

scheme.

The resulting multiplicity matrix M can be written as:

mg o mg Mg -1
m o m, m
M= . . (7.10)
: m, :
[ My0 My My i1 |

where entry m; ; represents the multiplicity for unit (p;, p;). Different to the
multiplicity matrix M (5.8) with size ¢ x g - 1, multiplicity matrix M (7.10) has size ¢
x ¢°'*. Interpolation is to build the minimal polynomial Qs € F,[x, y, z] which has a
zero of multiplicity at least m; ; (m; ; # 0) over all the associated units (p;, p)).

Following from (7.4), with respect to interpolated unit (p;, p;), Ou’s coefficients Qg

should satisfy:
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b
z Qab{ \]7a,p/-,apibﬂ = 0, \v a, ﬂ e Nand a+ ,8< m; j (711)

a,b>p

For this soft-decision interpolation, the number of interpolated units covered by Qj, is:
[{mj;#0|m;eM,i=0,1,...,g-1andj=0,1,...,n-1}| (7.12)

and the cost C), of multiplicity matrix M is:
1 q-1 n-1
Cu= EZZm,‘J(m,.,jﬂ) (7.13)
i=0 j=0

which represents the number of constraints (7.11) to Oy/’s coefficients Q.. They can
be imposed by the iterative polynomial construction algorithm [9, 44, 65] in Cy
iterations. Notice that equation (7.12) and (7.13) has the same expression as equation

(5.9) and (5.11) respectively, except in equations (7.12) and (7.13) n = q3/2.

Based on lemma 6.1, the following units’ multiplicities will contribute to the code
word score: (po, ¢o), (P1, €1), ..., and (p,.1, c,-1). Referring to the multiplicity matrix
(7.10), the interpolated polynomial Q) can be explained as passing through these
units with multiplicity at least mo = m; o (0; = co), mi =m;, 1 (p; = c1), ..., and m,.; =m;

w1 (i = cu) respectively. If f € F,"[x, y] is the transmitted message polynomial that

Api) = ci, the total zero order of Oy(x, v, f) over units {(po, co), (P1, C1)s -+ (Pu-1, Cn-1)}

is at least:

n—1
mot+m;+---+m, = Z{mi’j lp;=c;,i=01,...,q-1} (7.14)
j=0
And therefore, the code word score Si/( E) with respect to multiplicity matrix M is:

_ n—1
Su(c)= D Am, ;| p,=c;,i=01,...,q-1} (7.15)
j=0

If Su(c) > deay,, (Qu(x, 3, D), then Y v, (@ (v, /N> v, (Q (.3, /)™)

and Op(x, y, ) = 0. f can be found out by determining Qy/(x, y, z)’s z roots. It results

the following corollary for successful soft-decision list decoding.
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Corollary 7.4: If the code word score with respect to multiplicity matrix M is greater

than the interpolated polynomial O,/’s (1, w.)-weighted degree, as:
Sul(c)> deg,,,, (Oulx, v, 2)) (7.16)
then QM(xa yaf) =0orz _f| QM(xa s Z)'

To compare the soft-decision’s code word score SM(E) with the hard-decision’s code

word score Sm(z), denote the index of the maximal element in each column of I7 as:
ij=1index (max{r7 ;|i1=0,1,...,g-1}) (7.17)

that i T, (i # ij). The hard-decision received word R can be written as:

R= (7"0, Fly oeey rn-l): (pio s Pip s s pi,H) (718)

For hard-decision list decoding, in the multiplicity matrix (7.10), only those entries

that correspond to the reliability value 7,

N will be assigned a multiplicity as m ;=

J
m, and therefore the score in (7.6) of hard-decision can also be written with respect to

multiplicity matrix M as:

n—l1

Su(€)= Su(e) =2 Am, | p, =c,} (7.19)

Comparing (7.15) and (7.19), the soft-decision list decoder gains its improvements by
increasing its code word score. This is done by increasing the total number of
interpolated units (7.12) so that it can increase the possibility of covering more

interpolated units which include the corresponding code word symbols.

If the (1, w.)-weighted degree of interpolated polynomial Q) is &, based on (7.2), Oy

has at most ~,,, (6) nonzero coefficients. The interpolation procedure generates a

system of C, linear equations of type (7.11). The system will be solvable if [8]:

Ny, (8)> Cy (7.20)

Based on (7.3), in order to guarantee the solution, the (1, w.)-weighted degree 5 of

the interpolated polynomial Qy, should be large enough so that:
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deg,,, (Qu(x,y,2))=0 = A, (Cn) (7.21)

Therefore, based on corollary 7.4, given the soft-decision code word score (7.15) and
the (1, w,)-weighted degree of the interpolated polynomial Qs (7.21), message
polynomial f'can be found out if:

Su(c)> Ay, (Ci) (7.22)

The factorisation output list contains the z roots of polynomial Q). Therefore, the
maximal length of output list /), should be equal to polynomial Ou/’s z degree (deg.Ow)

as:

d’ Lw M s Vs Z le‘y (jkl
ZM:degz(QM(x,y,Z)):[ eg,, (O, (x,y >)J:{ 2. (Cy)

w

z

J (7.23)

During converting matrix I7 to matrix M, based on a designed length of output list /,
algorithm 5.1 will stop once / is greater than /. According to corollary 7.1, A, |, (Cy)

can be determined by finding the monomial with (1, w,)-lexicographic order Cy, as:
Ay, (Ci) = degy,, (62" | 0rd(¢hz") = Ci) (7.24)

Therefore, in order to assess the soft-decision list decoding algorithm’s performance
with a designed length of output list /, a large enough value is set for s when
initialising algorithm 5.1. In the algorithm, after step (v), we can determine the cost

Cu (7.13) of the updated matrix M and apply (7.24) to determine A, (Cy). Then the

maximal length of output list /), can be determined by (7.23). Stop algorithm 5.1 once
[y 1s greater than / and output the updated matrix M.

Here algorithm 5.1 is again presented with introducing this stopping rule. This

presented version is used in the author’s practical simulations.

Algorithm 7.1: Convert reliability matrix /7 to multiplicity matrix M.

q-1 n-1
Input: Reliability matrix I1, a high enough desired value of s = ZZm and

ij?
i=0 j=0

designed output length /.
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Initialisation: Set 1T = IT and ¢ x n all-zero multiplicity matrix M
(i): While (s >0 or [Z,, | <) {
(i1): Find the maximal entry 72'; ;indl " with position (i, j)

ﬂ-i,j

mi~j+2

(ii)): Update 7, ; inll as 7, ; =

(iv): Update m; jin M as m; j=m; ; + 1
(v):s=s-1
(vi): For the updated M, calculate its interpolation cost Cy, by (7.13)

(vii): Determine A, (C,,) by (7.24)

Lw,
(viii): Calculate /), by (7.23)

}

Again, this algorithm gives priority to those interpolated points which correspond to a
higher reliability values 7 ; to be assigned with a higher multiplicity values m; ;. For

example, if 7, <z, ,then m,, <m

iyjy 2 irja *

7.5 Complexity reduction Interpolation and Factorisation

To implement the following interpolation and factorisation processes, algorithm 6.2
and 6.3 are applied respectively. Algorithm 6.2 produces the interpolated polynomial
Owm(x, y, z) which has a zero of multiplicity at least m; ; (m; ; # 0) over all the
associated interpolated units (p;, p;). This section presents some modifications for
algorithm 6.2 for the soft-decision interpolation process while the factorisation

process remains the same.

As mentioned in Chapter 6, to efficiently implement algorithm 6.2, algorithm 6.1
needs to be applied first to determine all the necessary corresponding coefficients

Vap,a (with respect to affine point p;). The interpolated polynomial’s (1, w.)-

weighted degree upper bound can be determined by (7.21) based on knowing the
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iteration number Cj,. Therefore, the maximum pole basis that might exist in the

interpolated polynomial can be determined by: v, (fmax ) = deg,, (Oulx, y, z)) =
A, (Cy). Algorithm 6.1 is applied to determine the corresponding coefficients
Yop,a ~ Vmap,a f0r all the affine points (po, pi, ..., ps1). Based on the above
description of algorithm 7.1, if i; (7.17) is the index of the maximal entry 7 ; in

column j of matrix //, then m, ; is the maximal entry in column j of matrix M. With

respect to affine point p;, only corresponding coefficients y, , , (a<m, ;)

~
J/max,p/,a

will be stored for use in the following interpolation process.

Based on the pre-determined corresponding coefficients, algorithm 6.2 will run
through all the interpolated units (p;, p;) with interpolation multiplicity m; ; (m; ; # 0).
If [ is the designed length of output list, at the beginning of algorithm 6.2, the

polynomial group initialisation (6.28) should be written as:
G=1{0,=01+ws=y"2%,0<A<w,0<5<1} (7.25)

According to Chapter 6, the complexity reduction scheme [52] is also valid for the
interpolation process of Hermitian codes. The chosen interpolated polynomial Qs

leading order will not be greater than the iteration number Cjy:
lod(Qum) < Cy (7.26)

and as a result
deg,, (Qu(x,y,2)< A, (Cy) (7.27)

which indicates (7.21) is the (1, w.)-weighted degree upper bound for the interpolated
polynomial Qy,. Therefore, the complexity reduction modification (6.29) of algorithm

6.2 can be written as:

G =10 |lod(Q) < Cij} (7.28)

in which iteration number Cj, can be determined by (7.13) after the multiplicity
matrix M is obtained from algorithm 7.1. With respect to interpolated unit (p;, p;), the
zero condition test A; performed by (6.30) is redefined by equation (7.11). Also, in the

polynomial modification (6.33), x; should be replaced by x; which is the x-coordinate
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of the affine point p; in the current interpolated unit (p;, o). It is worthy to mention
that index j needs to be distinguished when it is applied as an index for polynomials
Q; in the group and when it is applied as an index for affine point p;. After Cy

iterations, the minimal polynomial is chosen from the group G as:

Ov= min (Q;|Q; € G) (7.29)

lod(0,)

Fig 7.2 shows how much computational complexity can be reduced by modification
scheme (7.28) for soft-decision interpolation of Hermitian code (64, 19, 40) with
output length / = 2 and / = 3. Again, as no hard-decision received word is obtained in
the soft-decision decoder, the complexity analysis is measured against the SNR values.
For Fig 7.2, it can be seen that in high SNR value situations, complexity reduction is

more significant. It can be reduced up to 21.76% when /=3 and 15.10% when [ = 2.

1.0E+07

—— Original Interpolation (1 = 2)
— © — Complexity Reducing Interpolation (1 =2)
—— Original Interpolation (1= 3)

2.71% — A — Complexity Reducing Interpolation (1= 3)

percentage of complexity reduction l

2
X
(-}
s
£
o
(8]
£ 1.0E+06 1
S
&
2
£ Om o
3 15.10% 13.93%
1.0E+05 ‘
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

SNR (Eb/N0)

Figure 7.2 Complexity reduction analysis for soft-decision list decoding of Hermitian

code (64, 19, 40)

7.6 Simulation Results Discussion

Applying the above soft-decision list decoder, this section assesses the performance

for Hermitian codes defined in GF(16) and GF(64), whose hard-decision list decoding
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performances are presented in section 6.7. Figs 7.3, 7.4 and 7.5 present the
performances of Hermitian codes (64, 19, 40), (64, 29, 30) and (64, 39, 20)
respectively, while Figs 7.6 and 7.7 present the performances of Hermitian codes (512,
153, 332) and (512, 289, 196) respectively. Performance is evaluated over AWGN
and Rayleigh fading channels using the QPSK modulation scheme. The Rayleigh
fading channel is frequency nonselective with Doppler frequency 126.67 Hz. The
fading profile is generated using Jakes’ method [64]. The fading coefficients have
mean value 1.55 and variance 0.60. During simulation, quasi-static fading is assumed
in which the fading amplitude changes for each code word block. For combating the
fading effect, 64 x 64 and 100 x 512 block interleavers are employed for codes
defined in GF(16) and GF(64) respectively. Analyses of Figs 7.3 to 7.7 emphasise the
following three aspects: a complexity based comparison with hard-decision decoding,
soft-decision decoding performance assessment with a large length of output list and

its asymptotically optimal performance.

7.6.1 Complexity Based Comparison with Hard-Decision

This subsection assesses the soft-decision decoding performance comparison with
hard-decision decoding based on similar decoding complexity. This comparison is
made by having the same designed length of output list / which is the main parameter
that decides the decoding complexity. According to section 7.5, there are w(/ + 1)
polynomials initialised at the beginning to take part in the iterative polynomial
construction process for interpolation. According to (7.23), for a higher value of /, the
interpolated polynomial should have a higher (1, w.)-weighted degree which is built in
a higher number of iterations (C,, for hard-decision, C), for soft-decision). Both the
number of polynomial w(/ + 1) and the number of iterations (C,,, Cy) significantly

affect the decoding complexity.
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Figure 7.3 Soft-decision list decoding of Hermitian code (64, 19, 40)
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Figure 7.4 Soft-decision list decoding of Hermitian code (64, 29, 30)
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Figure 7.5 Soft-decision list decoding of Hermitian code (64, 39, 20)
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Figure 7.7 Soft-decision list decoding of Hermitian code (512, 289, 196)
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Designed Number of Hard-decision o
Hermitian . Soft-decision
length of polynomials iterations
codes iterations Cj,
output list / w(l + 1) Cy(m)
2 12 64 (m=1) 127
(64, 19, 40) 3 16 192 (m=2) 218
5 24 384 (m=3) 468
1 8 64 (m=1) 90
(64, 29, 30) 3 16 192 (m=2) 317
5 24 640 (m =4) 680
1 8 64 (m=1) 120
(64, 39, 20) 2 12 192 (m=2) 246
3 16 384 (m=3) 418
2 24 512(m=1) 997
(512, 153,
3 32 1536 (m =2) 1688
332)
5 48 3072 (m =3) 3612
1 16 512(m=1) 892
(512, 289,
2 24 1536 (m =2) 1813
196)
4 40 3072 (m =3) 4602

Note: Iteration number C), for soft-decision is an average value observed from

simulations.

Table 7.1 Interpolation complexity comparison for soft-decision and hard-decision list

decoding

Table 7.1 shows, for list decoding of these 5 Hermitian codes, based on a designed
length of output list /, the number of polynomials w(/ + 1) and the number of
iterations (C,,, Cy) for both hard-decision and soft-decision. From Table 7.1, it can be

observed that based on the same value of /, C), is higher than C,,, which indicates soft-
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decision list decoder has higher decoding complexity. But a significant change of
iterations is due to the change of designed length /. From these simulation results, it
can be seen that based on the same length of output list, soft-decision list decoding
can outperform hard-decision. At BER of 107, the coding gain is very significant,

especially over the Rayleigh fading channel.

According to simulation result discussion of hard-decision list decoding given in
section 6.7, using hard-decision decoding to achieve its optimal results remains almost
infeasible. For example, to list decode Hermitian codes (64, 19, 40), (64, 29, 30), (64,
39, 20), (512, 153, 332) and (512, 289, 196) at the boundary 755 (3.32), the designed
length of output list /= 28, 48, 13, 359 and 118 is required respectively. However,
based on the performances of Figs 7.3 to 7.7, it can be observed that the soft-decision
with small length of output list can outperform the hard-decision’s optimal result,
especially over the Rayleigh fading channel. For example, for the Hermitian code
(512, 153, 332) over the Rayleigh fading channel, soft-decision list decoding with
designed length / = 2 can outperform hard-decision decoding’s optimal result. This
phenomenon indicates that hard-decision’s prohibitive optimal result can easily be

achieved by using the soft-decision algorithm without very high decoding complexity.

7.6.2 Performance Assessment with a Large Length of Output List

According to the above analysis, a large length of output list demands high decoding
complexity and it would be infeasible to achieve by simulation. In this thesis’s
analysis, / > 5 is considered to be a large length for the output list. However, the
performance can still be assessed without applying the interpolation and factorisation
processes. Assessments are made based on (7.22). After the reliability matrix /7 is
obtained, algorithm 7.1 is performed based on a designed length of output list /.
Assuming the receiver acknowledges the transmitted code word ¢ and based on the
resulting multiplicity matrix M, the code word score SM(E) can be determined by
(7.15). Based on matrix M, its cost Cy, can be determined by (7.13) and so can the
interpolated polynomial Qu/’s (1, w;)-weighted degree deg,,, (Qu(x, y, 2)) by (7.21). If

Su(c) > Ay, (C), then Sp(c) > deg,,, (Ou(x, y, 2)). According to corollary 7.4,
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decoding is successful and the transmitted message polynomial f can be found out.

Otherwise if SM(E) < Ay, (Cu), decoding is a failure. From the performances

presented in Figs 7.3 to 7.7, it can be observed that soft-decision list decoding
achieves its performance improvement as the designed length of output list / increases.
It should be noticed that these performance assessments are slightly worse compared
to the practical results. Because based on (7.27), A,, (Cy) is the interpolated

polynomials QOy/’s (1, w.)-weighted degree upper bound. Assessing the performance

by (7.22), decoding is claimed to be failed if SM(E) < Ay, (Cu). However, according

to (7.27), SM(E) might still be greater than deg;,, (Oum(x, y, 2)). Based on corollary 7.4,

it should result in a successful list decoding.

7.6.3 Asymptotically Optimal Performance Assessment

As soft-decision list decoding achieves its performance improvement by increasing
the designed length of output list /, its optimal performance could be achieved when /
— oo. In algorithm 7.1, if / = o0, s — oo and multiplicity matrix M’s entries m; ; — oo.

As aresult, cost Cyy — 0 as well as A, (Cy) — . Based on corollary 7.2, A;,, (Cy)

= \/2WZN1’WZ A, (Cy) = \/2WZCM . Therefore, when / — oo, successful list

decoding assessment (7.22) can be written as:

Su(c) > 2w.C,, (7.30)

Based on (7.13) and (7.15), (7.30) could be equivalently written as:

n—

DML

Il
(=]

1

-1 n-1
{m,;|p,=c;,i=0L....,q-1} > \/wz m, ;(m; ; +1) (7.31)
0

1
J=0 i=0 j=

. g M e N .
According to lemma 5.4, when s — oo, —==—"_ Substituting m; ; = =7, , into
n s n
(7.31) results in:
s n—1 s q-1 n-1 n
Al =c,i=01.,q-1>= |w Y > x (r,,+=) (1.32)
ni-o n i=0 j=0 §
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As % =0 whens — o0, (7.32) can be approximately simplified as:
s

—

n—

{Z.;lpi=c;i=0L....,qg =1} > (7.33)

~
Il
(=]

Therefore, the soft-decision’s optimal performance can be assessed based on (7.33).
From the above analysis, it can be seen that the soft-decision’s optimal performance is
decided as far as the reliability matrix I is obtained. Practical performance
degradation is due to the designed length of output list constraint. Figs 7.3 to 7.7 show
that the soft-decision approaches its optimal performance as the designed length of the
output list increases. (7.33) also indicates that soft-decision list decoding has more
potential improvements for low rate codes as they have lower w. values. This is
proven by the presented results. For example, over the AWGN channel, for Hermitian
code (64, 19, 40), soft-decision decoding’s optimal result has 1.4 dB coding gain at
BER = 10” compared with hard-decision decoding’s optimal result. For Hermitian

code (64, 39, 20), soft-decision decoding’s optimal result has about 1 dB coding gain.

7.7 Conclusion

Based on Koetter and Vardy’s soft-decision scheme for Reed-Solomon codes, this
chapter presented a soft-decision list decoding algorithm for one of the best
performing algebraic-geometric codes — Hermitian codes. Different to the hard-
decision list decoding algorithm, the received information’s probabilistic reliability
values are obtained by the receiver. The reliability values are then converted into
multiplicity values based on which the interpolation is processed. During this
conversion, a practical method for implementing the algorithm’s stopping rule based
on a designed length of the output list was suggested. It was shown that the soft-
decision algorithm can produce a higher code word score for Hermitian codes than the
hard-decision algorithm, and therefore increase the system’s error-correction
capability. For the soft-decision interpolation process, it was shown that the
complexity could be reduced by identifying unnecessary polynomials and eliminating
them during the iterations. Performances presented in this chapter showed that, based
on the same length of output list, soft-decision list decoding has a significant coding

gain over hard-decision but with higher decoding complexity. According to Chapter 6,
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achieving the hard-decision decoding optimal result remained infeasible because of
high decoding complexity. However, this prohibitive result can be achieved by using
the soft-decision list decoder with a short output list, especially over the Rayleigh
fading channel. This soft-decision scheme can achieve further improvements by
increasing the designed length of the output list. An asymptotic analysis of the soft-
decision scheme showed that its optimal performance is decided by the probabilistic
reliability value. Practical performance degradation is due to the length of output list
constraint. This asymptotic analysis also showed that the soft-decision scheme has

greater improvement for low rate codes.
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8.1 Conclusion of the Thesis

The thesis presented an efficient list decoding system for Reed-Solomon and
algebraic-geometric codes. The system was implemented using both hard-decision
and soft-decision schemes. Under the hard-decision scheme, a received word is
obtained and followed by the interpolation and factorisation processes in order to
determine the list of most likely transmitted code words. The simulation results
presented in the thesis showed that the hard-decision list decoding algorithm can
outperform conventional unique decoding algorithms, namely the Berlekamp-Massey
algorithm for Reed-Solomon codes and Sakata’s algorithm with majority voting for
Hermitian codes. This performance improvement is more significant for low rate
codes. While under the soft-decision scheme, the received word’s posterior transition
probability information is obtained, which is then converted into multiplicity
information and followed by the interpolation and factorisation processes as in hard-
decision GS algorithm. It was shown that the soft-decision scheme can provide
significant coding gains over the hard-decision scheme. It is more important to point
out that by using the soft-decision scheme, the prohibitive optimal result of hard-
decision list decoding can be achieved at a moderate decoding complexity. Therefore,
the soft-decision list decoding scheme would be more suitable for decoding Reed-

Solomon and Hermitian codes, instead of the GS algorithm.

To reduce the list decoding system’s high complexity, an original modification
scheme for the complexity dominant interpolation process was proposed in Chapter 4.
As those polynomials with leading order greater than the total iteration number will
not be chosen as the interpolated polynomial and have no information contributing to
the chosen interpolated polynomial, they can be eliminated during the iterations. This
scheme identifies and eliminates those polynomials during the iterations in order to
avoid unnecessary calculations. This modification is a general scheme which can be
later applied to both hard-decision and soft-decision list decoding systems for Reed-
Solomon and algebraic-geometric codes provided the iteration number is known by
the decoder. This modification scheme was adopted by the later chapters to improve

the system’s decoding efficiency.
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A modified hard-decision list decoding scheme for algebraic-geometric codes was
presented in Chapter 6, in which Hermitian codes are using as an algebraic-geometric
coding scheme. Modification for list decoding of Hermitian codes is three-fold: First,
a new algorithm to determine the corresponding coefficients between a Hermitian
curve’s pole basis monomials and zero basis functions is presented. This algorithm is
performed a priori to the interpolation process. With the knowledge of these
corresponding coefficients, the interpolation efficiency can be greatly improved.
Second, the complexity reduction modification introduced in Chapter 4 was applied to
the interpolation process. Third, a more general factorisation algorithm which can be
applied to both Reed-Solomon and algebraic-geometric codes was presented from an
implementation point of view. With these modifications, the author has achieved the
first simulation results on list decoding of Hermitian codes which are defined in

GF(16) and GF(64).

The thesis has also developed the first soft-decision list decoding algorithm for
Hermitian codes, which is presented by Chapter 7. Similar to the soft-decision list
decoding of Reed-Solomon codes, received word’s posterior transition probabilities
are obtained by the receiver rather than a hard-decision received word. These
probabilities are then converted into multiplicity values based on which interpolation
and factorisation processes for Hermitian codes are performed. It was shown that,
based on the same designed length of output list, the soft-decision scheme has
significant coding gains over the hard-decision scheme. By using the soft-decision
scheme with small output length, the prohibitive optimal result of hard-decision list

decoding can easily be achieved with only moderate decoding complexity.

8.2 Future Work

Although the list decoding system can provide improved decoding performance, it is
at the expense of higher decoding complexity compared to the conventional unique
decoding algorithms. When applying the list decoding system, there is a trade off
between performance improvement and complexity. Firstly, the list decoding system
has better performance than the unique decoding algorithms, but it is more

complicated to implement. Secondly, for the list decoding system itself, performance
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can be improved by increasing the interpolation multiplicity or the length of the
designed output list for the soft-decision scheme. However, decoding complexity also
increases exponentially. Even though the complexity problem has been addressed in
this thesis, the list decoding system’s complexity is still high compared to the unique
decoding algorithms. Therefore, in order to make the list decoding system more
practical for industrial application, more work on reducing the system’s decoding

complexity should be investigated.

So far, only the mathematical framework for list decoding of Hermitian codes has
been developed, while for other types of algebraic-geometric codes it is still unknown.
Based on this thesis demonstration, it should not be difficult to develop a list decoding
scheme for other algebraic-geometric codes provided the code’s pole basis and zero
basis can be defined. With the knowledge of these two bases functions, the zero
condition of this code’s interpolated polynomials can be defined so that valid
interpolation and factorisation processes can be performed. The soft-decision list
decoding scheme for other classes of algebraic-geometric codes can then be further

developed.
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ois a primitive element in GF(4) satisfying o + o+ 1 =0.

Addition Table:
+(0|1]| o0

01 |o|c
110 |o
o 01
Al o] 1]0
Multiplication Table:
x[0|1]| 0|
0[0[0[0]O
1[{0[1]o]|c
oc|0|o|d|1
0|1 o
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Appendix B: Finite Field Calculation of GF(8)

ois a primitive element in GF(8) satisfying o+ o+ 1=0.

Addition Table:
+(0|1]|o|d ||| |0
0|1|o|d ||| |0
1(1|0]|d|o|d|d|o|d
clo|ld| 0|1 ]|d|co]|c]|
cld|oc|1]0]|c |||
Fdl ||| 0o|1]|a]|c
Fl|d|o|d|1]|0]|d] 0o
o|d|o|d|d|a|o|0]1
o|o|d|d|Fd|d|a|l]|0
Multiplication Table:
01| o d|ld|d|o
0/0/0|O0]O0O|O|O0O]O0]|O
0|1 |o|d|F|d|d|o
c|0|o|d|d|d|1l]|o]|d
a0l |d|d|o|d|1|o
d|0|d|d|o|d|ao|d]|1
A0l 1| a|d|d|d
lo|cd|o|1|6|d| o]
o|0|c|d|a|l]|d|d|o
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Appendix C: Finite Field Calculation of GF(16)

ois a primitive element in GF(16) satisfying o' +o+1=0.

Addition Table:
+10]|1|o|d|d|F|F ||| ||| |
0| 0|1 |o|d|F | ||| |||
1|1 |0|d|o|d|F|d ||| ||| ||
clo|d|0|1]|d|dF|5|d|d||d"d |||
d|d|ao|1 |00 |F|d ||| ||
d| ||| 0|1 |c|d|d|d|d |||
F|F ||| 10| o|d||d|d |||
o|d|d|F|F|ao|ld|0]1|d ||| ||
WG| f|d|d| o1 |0]|d? |||
d|d|d|d|d | |||l |||l ||
ddd ||| ]0 ||| ||
d|cd|d|d|dd ||| a0l || ]|
d|d|d ||| ||| a|1]0]d|F5|F
e I o e e el e N Il N e O - e 0 e e el (N O O e A e
Blo?l || d | ||| PP | S| 1|0 ]| o
o I I e e I e e e e I e I I e B e BV R
ol Il I I e e = el e e e A e A I - e B O
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Multiplication Table:
x 1|o|d ||| |0 ||| ||
0 ofo0,0,0}j0}j0(0]0]0]0]0[O0|00/|O0
1 l|lo|d ||| ||| |d ||| ]|
o c|ld ||| ||| |1 ||| |
o d|o ||| ||| ||| 1| o
o c|lo|d|d|d| ||| al|d ||| 1|5
o & ||| o|d| A || A1 |||
o ||| d|d|1 |||’ || ]|
0| d | S| ||| ||| o]l
o d|lod|d|o|d ||| ||| |1
do|d 1| |o|d|d|d ||| |||
o o ||| A ||| ||| 1| o
o d|d|d || 1| ||| a|d || P
o’ ||| || || 1 |||
o’ |1 || || o|d?| ||| ||
I S e I U e o e e e e ol I e e e e e O
0| || ||| |1 |||
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Appendix D: Hard-Decision List Decoding Parameters of Some Hermitian codes

Hermitian code (64, 19, 40):
v, @)=v, (ds)=v, (0")")=24, s =24, and

m| 1|23 ]4|5]|8]| 17

Iw| 21315 |7]8]13 28

thw| 2 181911 ]16] 14 7

T | 13| 18120 |21 |22 |23 | 24 = 155

Hermitian code (64, 29, 30):
v, @)=v, (bs)=v, (0°)")=34, gs=17, and

m| 123|459 35

Iy | 1314 5|7 ([12] 48

tm |21 2|14 27| 6 |23 12

Tw| 8 |11 [ 13| 14| 15|16 |17 = 755

Hermitian code (64, 39, 20):
v, @)=y, (k) =v, (")) =44, 155 =10, and

m|1|2]|3|4]6 11
Ly | 1| 213 |5]7 13
tw | 16 12636|2 |20 21
Tl 316 7|89 |10= 155

194



Appendix D: Hard-Decision List Decoding Parameters of Some Hermitian codes

Hermitian code (512, 153, 332):

v, @)=v, (ds2)=v, (7)) =180, zgs =208, and

m| 1 2 3 4 5 6 7 8 9 | 10 | 11 | 12

Im | 2 3 5 7 § | 10 | 12 | 13 | 15 | 17 | 19 | 20

tw | 13 [ 142 90 | 37 [ 161 | 105| 50 (174|118 | 62 | 6 | 129

T | 138 | 170 | 181 | 187 | 191 | 194 | 196 | 197 | 198 | 199 | 200 | 201

m| 14 | 17 | 20 | 26 | 37 | 63 213

Im | 24 1 29 | 34 | 44 | 62 | 106 359

tw | 17 | 28 | 39 | 61 | 161 | 134 131

7, | 202 | 203 | 204 | 205 | 206 | 207 | 208 = 7G5

Hermitian code (512, 289, 196):
v, @)=y, (hss)=v, (**)')=316, 165 =109, and

m| 1 2 3145 6 7 8 9 |11 | 12 | 15

Iy | 1 2 |4]5] 6 7 9 |10 | 11 | 14 | 15 | 19

tw | 126 12241 6 |91 | 177 1266 | 39 | 123|210 | 68 | 154 | 98

Tw| 69 | 83 | 88194 | 97 | 98 | 100 | 101 | 102 | 103 | 104 | 105

m | 19 | 26 | 40 93

Im | 24 | 33 | 51 118

tw | 1271 99 | 43 190

7n | 106 | 107 | 108 | 109 = 755

Note: multiplicity m listed in the above tables are the minimal value in order to have
the corresponding error-correction capability lower bound 7, for hard-decision list

decoding of Hermitian codes.
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