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A Novel Concatenated Coding Scheme: RS-SC-LDPC Codes

Jie Qiu, Li Chen , Senior Member, IEEE, and Shiqiu Liu, Member, IEEE

Abstract— A novel concatenated coding scheme is introduced,
where the Reed-Solomon (RS) code is concatenated with the spa-
tially coupled low-density parity-check (SC-LDPC) code, namely
the RS-SC-LDPC code. We first propose the locally systematic
encoding of the inner code and its termination when considering
the concatenated code has a finite length. A decoding scheme
is then proposed, in which the belief propagation (BP) based
sliding window decoding (SWD) decodes the inner code with
the assistance of the outer Berlekamp-Massey (BM) decoding
feedback. This research shows the RS-SC-LDPC codes can
achieve a high decoding performance without yielding an error
floor until the bit error rate (BER) of 10−8. They also signifi-
cantly outperform the incumbent RS-convolutional concatenated
(RS-CC) codes, as well as the BCH-SC-LDPC codes.

Index Terms— Concatenated code, RS code, SC-LDPC code.

I. INTRODUCTION

BASED on the work of Thorpe [1], spatially coupled
low-density parity-check (SC-LDPC) codes [2] can be

constructed by first coupling and then lifting [3] a chain of
block protographs, yielding the Tanner graph [4] and hence
defining the parity-check matrix of the code. Due to its con-
volutional structure, the belief propagation (BP) based sliding
window decoding (SWD) [5] can be utilized to yield a low
message recovery latency. There exist approaches to improve
the code’s performance, such as eliminating the dominant
trapping sets [6] and designing the SC-LDPC codes with a
large girth [7], both of which can lead to a lower error floor.

The SC-LDPC code is suitable for data stream transmission
but its SWD often yields burst errors. In order to eliminate
them, it is desirable to concatenate the SC-LDPC code with an
outer code. Reed-Solomon (RS) codes are maximum distance
separable codes that have a strong burst error correction
capability. They can be employed to eliminate the remaining
errors yielded by the SWD. Therefore, they were first con-
sidered to be concatenated with SC-LDPC codes in [8]. The
concatenated code will have a greater minimum Hamming
distance and hence yield a better asymptotic performance
where the error floor appears. Moreover, the SWD may suffer
from error propagation, that is, a failed decoding window will
affect the following ones. Hence, the SWD-Berlekamp-Massey
(SWD-BM) algorithm with feedback was also proposed in [8]
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to decode the concatenated code in order to attenuate the
error propagation. In order to decode the RS codes based
on the SWD outcome, the SC-LDPC code should hold the
locally systematic encoding property. While for a finite length
code, termination tail is also needed for the inner code [9].
Therefore, this correspondence presents a more comprehensive
construction as well as performance of the code. In particular,
we have presented the locally systematic encoding of the
inner code, in which its termination has been considered. This
research also looks into the choice of outer code in maximizing
the SWD-BM performance. Our simulation results show the
concatenated codes do not yield an error floor until the bit error
rate (BER) of 10−8. They can also outperform the incumbent
RS-convolutional concatenated (RS-CC) code [10] and the
existing BCH-SC-LDPC code [11].

II. CONSTRUCTION OF RS-SC-LDPC CODES

A. The RS Codes

Let F2p denote the finite field of size 2p, where p is a
positive integer. An (n, k) RS code defined over F2p has
length n = 2p − 1 and dimension k. Given a message vector
m = (m0, m1, . . . , mk−1) ∈ F

k
2p , its polynomial presentation

is m(x) = m0+m1x+· · ·+mk−1x
k−1. Generator polynomial

of the code is g(x) = (x − σ1)(x − σ2) · · · (x − σn−k),
where σ is a primitive element of F2p . The codeword c =
(c0, c1, . . . , cn−1) ∈ F

n
2p can be generated by

c(x) = xn−km(x) + xn−km(x) mod g(x)
= c0 + c1x + · · · + cn−1x

n−1. (1)

B. The SC-LDPC Codes

The protograph-based SC-LDPC codes can be constructed
by first coupling a chain of block protographs with a coupling
width of ω. A block protograph is a bipartite graph with
nc check nodes (CNs) and nv variable nodes (VNs). It can
be defined by a base matrix B of size nc × nv, where
B =

�ω
i=0 Bi and the submatrices Bi represent the edge

connections from the VNs at time t to the CNs at time
t + i. Consequently, the coupled protographs can be defined.
A finite length coupled protograph is obtained by coupling
L block protographs, where L is called the coupling length.
This coupled protograph can be described by the following
base matrix of size (L + ω)nc × Lnv

B[0,L−1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0

B1
. . .

... · · · B0

Bω · · · B1

. . .
...

Bω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)
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The designed code rate is R
(L)
SC = 1− (L+ω)nc

Lnv
. Let 0a and Ia

denote an all-zero matrix and an identity matrix of size a×a,
respectively. I(θ)

a denotes the shifted identity matrix with each
row of Ia cyclically shifted to the left by θ positions, where
θ is called the shifting factor. It has been shown that B[0,L−1]

can be systematically designed, ensuring a girth of at least
six [7]. In this letter, protographs of the SC-LDPC codes are
designed using this paradigm. Applying Fossorier’s condition
[12], parity-check matrix H[0,L−1] of the designed SC-LDPC
code can be obtained by the M -folded graph lifting [3] based
on B[0,L−1], where each zero entry is replaced by 0M while

others are replaced by I(θ)
M , and M is called the lifting factor.

Hence, H[0,L−1] can have a girth of at least eight and its
transpose can be written as

HT
[0,L−1] =

⎡
⎢⎣

HT
0 (0) ··· HT

ω (ω)

HT
0 (1) ··· HT

ω (ω+1)

. . .
...

. . .
HT

0 (L−1) ··· HT
ω (L+ω−1)

⎤
⎥⎦ .

Let Nc = ncM and Nv = nvM . Hi(t) is of size Nc × Nv,
where t = 0, 1, . . . , L+ω−1. Furthermore, we let h

(λ,μ)
i (t) ∈

{0, 1} denote the row-λ column-μ entry of Hi(t).

C. The Concatenation

Let X denote the number of outer RS codes and γ denote
the individual RS codeword index, where 0 ≤ γ ≤ X − 1.
Given X message vectors mγ , each of them is encoded by
an (n, k) RS code as in (1). Then X RS codewords cγ are
converted into a binary sequence, which is further divided into
L blocks of equal length as U [0,L−1] = (U0, U1, . . . , UL−1),
where U t = (Ut,0, Ut,1, . . . , Ut,Nv−Nc−1) ∈ F

Nv−Nc
2 . The

above concatenation requires

Xnp = L(Nv − Nc) (3)

for the finite length concatenated code. In practice, if dimen-
sion of the inner code, i.e., L(Nv − Nc), does not span
X RS codewords, zero padding can be applied. Finally let
V [0,L−1] = (V 0, V 1, . . . , V L−1) denote the concatenated
codeword, where V t = (Vt,0, Vt,1 . . . , Vt,Nv−1) ∈ F

Nv
2 . The

inner encoding should be locally systematic so that an outer
decoding can function with the output of the inner SWD. This
is addressed in the following section.

III. ENCODING OF THE INNER CODE

A. Locally Systematic Encoding

A finite length SC-LDPC code should ensure V [0,L−1] ·
HT

[0,L−1] = 0, which implies

V tH
T
0 (t) + V t−1HT

1 (t) + · · · + V t−ωHT
ω (t) = 0 (4)

for t = 0, 1, . . . , L−1. Since the encoder is locally systematic,
we have V t = [V (0)

t V
(1)
t ], where V

(0)
t = U t and V

(1)
t is

the parity-check portion of length Nc. Provided that HT
0 (t)

is full rank, (4) can be utilized to generate V t. For the
designed code, H0(t) is generated by applying the M -folded
lifting on B0 at time instant t. Hence, let B0 = [B(0)

0 B(1)
0 ]

and B(1)
0 is designed as an identity matrix ensuring B0

being full rank. Consequently, H0(t) is also full rank, where

H0(t) = [H(0)
0 (t) H(1)

0 (t)] and H(0)
0 (t) and H(1)

0 (t) are
the lifted outcomes of B(0)

0 and B(1)
0 , respectively. Since

H(1)
0 (t) is the key to generate the check bits Vt,j , where

j = Nv−Nc, Nv−Nc+1, . . . , Nv−1, we need to specify the
parity-check equations that generate Vt,j , including the column
indices of the non-zero entries in H(1)

0 (t).
Let ρ denote the index of the parity-check equation at each

time instant, where ρ = 0, 1, . . . , Nc − 1. Furthermore, let
ρc = j− (Nv−Nc) denote the position of Vt,j in V

(1)
t , where

ρc = 0, 1, . . . , Nc − 1. Note that H(1)
0 (t) can be obtained by

replacing each zero entry in B(1)
0 by 0M while others by I(θ)

M .
Since I(M−θ)

M is the transpose of I(θ)
M , we can determine ρ by

ρ =
	 ρc

M



M + (ρc + θ) mod M. (5)

Therefore, the locally systematic encoding follows

Vt,j = Ut,j , (6)

for j = 0, 1, . . . , Nv − Nc − 1. Otherwise, for j = Nv −
Nc, Nv − Nc + 1, . . . , Nv − 1,

Vt,j =
Nv−Nc−1�

μ=0

Vt,μ · h(ρ,μ)
0 (t)+

ω�
i=1

Nv−1�
μ=0

Vt−i,μ · h(ρ,μ)
i (t).

(7)

B. Termination of the Inner Code

For the finite length concatenated code, the termination
tail can be generated by using the partial syndrome PL

[9], which will be defined later. The calculation of partial
syndrome requires matrix inverse, which is described as
follows.

Let V [L,L+τ−1] denote the termination tail of length τNv ,
where τ = ω + 1 [13]. The concatenated codeword satisfies

V [0,L+τ−1] · HT
[0,L+τ−1] = 0[0,L+τ+ω−1], (8)

where 0[0,L+τ+ω−1] is a zero vector of length (L+ τ +ω)Nc.
The above equation implies

V [0,L−1] · HT
[0,L−1] = [0[0,L−1] | PL], (9)

V [L,L+τ−1] · HT
[L,L+τ−1] = [PL | 0[0,τ−1]], (10)

where PL is the partial syndrome of length ωNc. Note
that HT

[L,L+τ−1] may have dependent columns, which should
be excluded, resulting in a matrix F(L) of size τNv × η,
where 0 < η ≤ (ω + τ)Nc. As a result, equation (10)
becomes

V [L,L+τ−1] · F(L) = [P�
L | 0], (11)

where we denote Ω = [P�
L | 0] which is of length η.

Since F(L) may not allow right inverse, F(L) needs to be
decomposed into two submatrices, one of which is full rank.
The tail bits can be generated by using these two submatrices,
respectively. First, we exclude all dependent rows of F(L),
obtaining a full rank square matrix F0(L) of size η × η. The
remaining rows of F(L) constitute F1(L) of size (τNv−η)×
η. Then, V [L,L+τ−1] can be decomposed into V

(0)
[L,L+τ−1] of

length η and V
(1)
[L,L+τ−1] of length τNv − η. They correspond
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Fig. 1. Block diagram of the SWD-BM decoder.

to F0(L) and F1(L), respectively. Therefore, equation (11)
can be split into

V
(0)
[L,L+τ−1] · F0(L) = Ω0, (12)

V
(1)
[L,L+τ−1] · F1(L) = Ω1, (13)

where Ω = Ω0 + Ω1. Since F1(L) is formed with dependent

rows, we can generate the corresponding tail V
(1)
[L,L+τ−1]

randomly, and obtain Ω1 using (13). Ω0 can be further obtained
by Ω0 = Ω − Ω1. Since F0(L) is a full rank square matrix,

V
(0)
[L,L+τ−1] can be generated by V

(0)
[L,L+τ−1] = Ω0 · F−1

0 (L).

Consequently, the termination tail V [L,L+τ−1] is determined.

IV. THE SWD-BM DECODING

The proposed SWD-BM decoding for the RS-SC-LDPC
codes is shown as in Fig. 1. The inner SWD performs log-
BP decoding with a window of size W at each decoding
instant, aiming to recover the targeted symbols, where ω+1 �
W � L. For a finite length RS-SC-LDPC code, the entire
codeword will be recovered in L window decoding events.
After each window decoding, log-likelihood ratios (LLRs) of
the targeted symbols of the window will be estimated. Hard
decisions are made based on the estimated LLRs. The BM
algorithm further decodes the outer RS code based on the
SWD outcome, which can correct at most �n−k

2 � symbol
errors. If the BM decoding succeeds, it will feed back its
estimation to the SWD in order to improve the concatenated
code’s performance. That says deterministic probabilities (of
either one or zero) of those symbols are fed back. Their LLRs
would be set to a deterministic scale. Let LI = np denote the
outer codeword length over F2 and LII = Nv − Nc denote
the number of targeted information symbols in each decoding
window. We categorize the decoding into three cases.

Case 1: When LI = LII, each set of targeted symbols is
protected by an RS code. If the BM decoding succeeds, LLRs
of the targeted symbols will be adjusted to the deterministic
scales. Otherwise, their LLRs remain unchanged.

Case 2: When LI < LII, each set of targeted symbols is
protected by several RS codes. Note that LI may not divide LII.
In that case, the remaining targeted symbols will be decoded
after the next window.

Case 3: When LI > LII, more than one set of targeted
symbols are protected by an RS code. It means that more
than one SWD event have been performed before the outer
code can be decoded.

It is assumed that the SWD and the BM decoding interleave,
where one starts right after another completes. Since the
BM algorithm performs finite field operations, its latency is
normally marginal compared to the SWD which performs
floating point operations and being iterative. However, if the
outer code enlarges as in Case 3, the outer decoding latency
cannot be ignored. In practice, a timer would be needed to
coordinate the SWD and the BM decoding.

TABLE I

PARAMETERS OF THE SIMULATED SC-LDPC CODES

TABLE II

THE RATIO OF OUTER DECODING FAILURES

Fig. 2. Performance of RS-SC-LDPC codes.

V. PERFORMANCE ANALYSIS

This section studies performance of the RS-SC-LDPC
codes. Our simulations were performed over the additive white
Gaussian noise (AWGN) channel using BPSK. The signal-to-
noise ratio (SNR) is defined as Eb/N0, where Eb denotes the
transmitted energy per information bit and N0 denotes the
noise power spectral density. The parameters of the simulated
inner codes are listed in Table I.

Fig. 2 shows performance of RS-SC-LDPC codes which
consist of the SC-LDPC-1 code as the inner code and different
outer RS codes. Each decoding window performs 100 log-
BP iterations. We first consider the choice of the outer code.
For the SC-LDPC-1 code, there are 378 targeted information
symbols in each decoding window. The RS codes over F64

are chosen as outer codes so that their SWD-BM decoding
functions as in Case 1. The (63, 59) RS code can eliminate the
error floor, which was otherwise observed for the SC-LDPC-1
code, until the BER of 10−8. Concatenating the (63, 59) outer
RS code yields a greater minimum Hamming distance for the
concatenated code, leading to a better asymptotic performance
including the error floor. However, Fig. 2 also shows when
concatenating with the (63, 61) RS code, error floor starts
to appear at the SNR region of 1.7-1.85 dB. We therefore
look into the numerical insight of our simulation by measuring
ratio of outer decoding failures when concatenating with the
(63, 61) and the (63, 59) RS codes, which is presented as in
Table II. It can be seen when concatenating with the (63, 59)
RS code, the ratio drops by an order of magnitude as the
SNR increases, indicating a tendency for the error rate curve
in continuing the fall. However, this is not the case for the
(63, 61) RS code whose flattened ratios reflect the error floor
of the concatenated code. Concatenating with the (31, 29) and
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Fig. 3. Performance of the RS-SC-LDPC and the BCH-SC-LDPC codes.

Fig. 4. Performance of the RS-SC-LDPC and the RS-CC codes.

the (127, 119) RS codes further realize the Cases 2 and 3 in
the SWD-BM decoding, respectively. As Fig. 2 shows, with
a more immediate outer decoding feedback, Case 1 yields the
best decoding performance. Note that both Cases 1 and 2
provide the feedback after each decoding instant. However
in Case 2, two serially concatenated (31, 29) RS codes
are needed, which have a weaker error-correction capability
than a single (63, 59) RS code. Hence, with the proposed
SWD-BM decoding, the RS-SC-LDPC codes’ performance
can be maximized when the size of the inner targeted symbols
matches the outer codeword length.

We further compare the performance between the
RS-SC-LDPC and the BCH-SC-LDPC codes [11]. The
BCH-SC-LDPC code is also decoded by the SWD-BM algo-
rithm. The two concatenated codes both adopt the SC-LDPC-1
and the SC-LDPC-2 codes as inner codes, yielding a length of
48384 and 19845, respectively. The outer codes have a similar
length and rate. Length of the outer code matches the size of
targeted symbols of the inner SWD. Their SWD-BM decoding
functions as in Case 1. Fig. 3 shows the RS-SC-LDPC codes
outperform the BCH-SC-LDPC codes in both BER and frame
error rate (FER). This is due to the use of stronger outer codes.
However, as the codeword length and the window size enlarge,
the performance advantage diminishes.

We also compare the RS-SC-LDPC code with the incum-
bent RS-CC code. The RS-CC code is constructed by concate-
nating ten (255, 239) RS codes with a 64 states (171, 133)8
convolutional code. The RS-CC code is decoded by either
the (soft-decision) Viterbi-BM algorithm or the iterative soft
decoding algorithm [10] with a maximum global iterations
(between the inner and outer decoders) of 20. The two con-
catenated codes have the same length. Adopting the notations

of this correspondence, it would be LNv. Fig. 4 shows that the
RS-SC-LDPC code outperforms the RS-CC code significantly.
Its performance improves by increasing the window size W .
When W = L, the decoding window covers the entire
Tanner graph of the code and the SWD becomes the flooding
schedule decoding (FSD). With FSD, the RS-SC-LDPC code
achieves 1.1dB coding gain over the Viterbi-BM decoding of
the RS-CC code at the BER of 10−6. For the RS-CC code, its
inner decoding complexity can be characterized as O(
LNv),
where 
 is the number of states of the convolutional code.
While for the FSD, its complexity is O(L2N2

v ). Therefore, the
RS-SC-LDPC code’s performance advantage is at the expense
of a higher decoding complexity.

VI. CONCLUSION

This letter has proposed the RS-SC-LDPC codes, which
yield a low message recovery latency and a high decoding
performance. The SWD-BM decoding has also been proposed
for the code. This research has shown that the concatenated
codes can remove the error floor of the SC-LDPC codes. The
decoding performance can be maximized by matching the size
of targeted symbol set of the SWD and the length of the
outer RS code. This concatenated coding scheme can yield a
substantial performance improvement over the popular RS-CC
code and the BCH-SC-LDPC code, demonstrating its potential
of being applied in future communication systems.
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