
5326 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 9, SEPTEMBER 2020

Designing Protograph-Based Quasi-Cyclic Spatially
Coupled LDPC Codes With Large Girth

Shiyuan Mo, Member, IEEE, Li Chen , Senior Member, IEEE, Daniel J. Costello, Jr. , Life Fellow, IEEE,

David G. M. Mitchell , Senior Member, IEEE, Roxana Smarandache, Senior Member, IEEE, and Jie Qiu

Abstract— Spatially coupled (SC) low-density parity-check
(LDPC) codes can achieve capacity approaching performance
with low message recovery latency when using sliding window
(SW) decoding. An SC-LDPC code constructed from a pro-
tograph can be generated by first coupling a chain of block
protographs and then lifting the coupled protograph using
permutation matrices. In this paper, we introduce a systematic
design to eliminate 4-cycles in a coupled protograph. Further
using a quasi-cyclic (QC) lifting, we introduce a procedure for
constructing QC-SC-LDPC codes of girth at least eight. This
can be interpreted as a multi-stage graph lifting process that
yields a greater flexibility in designing QC-SC-LDPC codes with
a large girth than previous approaches. Simulation results show
the design leads to improved decoding performance, particularly
in the error floor, compared to random constructions. Finally,
we determine the minimum coupling width required to eliminate
4-cycles in a coupled protograph.

Index Terms— Girth, protographs, quasi-cyclic LDPC codes,
spatially coupled codes, sliding window decoding.

I. INTRODUCTION

S INCE the original work of Thorpe [1], it has been
recognized that protographs provide an efficient method

of constructing low-density parity-check (LDPC) codes.
Analyzing the iterative decoding thresholds and minimum
distance growth properties of small protographs facilitates

Manuscript received May 16, 2019; revised October 21, 2019,
January 20, 2020, and May 24, 2020; accepted May 27, 2020. Date of publi-
cation June 9, 2020; date of current version September 16, 2020. This work
is sponsored by the National Natural Science Foundation of China (NSFC)
under project ID 61671486 and Shenzhen Science and Technology Innovation
Commission, and in part by the National Science Foundation under grant Nos.
ECCS-1710920, OIA-1757207, and HRD-1914635. This article was presented
in part at the 2017 IEEE International Symposium on Information Theory [28].
The associate editor coordinating the review of this article and approving it
for publication was H. Saeedi. (Corresponding author: Li Chen.)

Shiyuan Mo, Li Chen, and Jie Qiu are with the School of Electronics and
Information Technology, Sun Yat-sen University, Guangzhou 510275, China
(e-mail: moshiy@mail2.sysu.edu.cn; chenli55@mail.sysu.edu.cn).

Daniel J. Costello, Jr., is with the Department of Electrical Engineering,
University of Notre Dame, Notre Dame, IN 46556 USA (e-mail:
costello.2@nd.edu).

David G. M. Mitchell is with the Klipsch School of Electrical and Computer
Engineering, New Mexico State University, Las Cruces, NM 88003 USA
(e-mail: dgmm@nmsu.edu).

Roxana Smarandache is with the Department of Electrical Engineering,
University of Notre Dame, Notre Dame, IN 46556 USA, and also with
the Department of Mathematics, University of Notre Dame, Notre Dame,
IN 46556 USA (e-mail: rsmarand@nd.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2020.3001029

the construction of code ensembles with good asymp-
totic properties after applying a graph-lifting procedure [2].
Protograph-based methods were used to construct good spa-
tially coupled LDPC (SC-LDPC) codes in [3], where an edge-
spreading procedure is first used to couple together a chain
of block code protographs (thus introducing memory to the
code), followed by graph lifting using permutation matrices.
This two-step code design procedure was shown to result in
SC-LDPC code ensembles with thresholds approaching the
maximum a posteriori (MAP) thresholds of their underlying
LDPC block code ensembles, i.e., they exhibit the threshold
saturation effect [3]–[6], and linear growth of minimum dis-
tance with block length, i.e., the ensembles are asymptotically
good. If the permutation matrices used in the lifting procedure
are circulants (shifted identity matrices), a quasi-cyclic (QC)
ensemble results, a desirable property for practical imple-
mentation [7]. One important aspect of finite-length LDPC
code design is to maximize the girth of the Tanner graph
representation of the parity-check matrix to ensure that the
convergence behavior of iterative decoding is not negatively
affected by short cycles. For protograph-based constructions
of QC-LDPC codes, this can be accomplished by applying
the Fossorier condition [8] to the graph lifting.

Several constructions of QC-SC-LDPC codes have been
proposed recently in the literature [7], [9]–[15]. Most of these
approaches, including [11]–[15], focus on constructions of
QC-SC-LDPC codes that are based on a certain underlying
block code structure. The goal of these papers is to devise good
edge spreading (or coupling) connections given the underlying
code. These approaches typically involve minimizing the
harmful objects (cycles, absorbing sets) based on the structure
of the underlying code and were shown in those papers to
result in QC-SC-LDPC codes with improved code perfor-
mance. However, the computational complexity of searching
for a good edge spreading limits the memory (or coupling
width) of the resulting QC-SC-LDPC codes to be small.
For example, in [11] and [15], optimization techniques were
used to minimize the number of 6-cycles in circulant-based
SC-LDPC codes. Due to the complexity of the optimization,
however, this approach is limited to coupling widths less
than or equal to two. Direct designs of time-invariant QC-
SC-LDPC codes, based on the polynomial representation of
the parity-check matrix of the code, were also investigated
in [16]–[20]. The design of more general SC-LDPC codes
was also considered in [4], [21], [22], where protographs were

0090-6778 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 18,2020 at 01:32:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1725-1901
https://orcid.org/0000-0002-4387-116X
https://orcid.org/0000-0002-3544-9225

MO et al.: DESIGNING PROTOGRAPH-BASED QUASI-CYCLIC SC-LDPC CODES WITH LARGE GIRTH 5327

constructed with the smallest constraint length needed to avoid
4-cycles. Finally, memory efficient hardware implementations
of QC-SC-LDPC codes have been addressed in [23].

A primary motivation of this paper is the heuristic construc-
tion of SC-LDPC code designs with large coupling widths,
since such designs have been shown to be capable of better
performance on a fixed latency basis [24].1 Motivated by the
results of [25], [26], we also take a more general multi-stage
lifting approach that can be used to improve the design of
the code at each lifting stage, where reduction/elimination of
problematic objects can be achieved at the different stages,
including at the first graph-lifting, i.e., the protograph design
stage. Our idea also depends on the fact that the girth of
a lifted graph is lower bounded by the girth of its base
graph [12]. Hence, starting from a block code protograph with
good asymptotic threshold and distance properties, we design
the edge spreading in two stages to maximize the girth and
minimize the number of short cycles in the SC protograph. The
edge-spreading procedure can be interpreted as decomposing a
base matrix B (corresponding to a block code protograph) into
a number of component matrices, which are then used to form
an SC base matrix BSC. In our approach, we identify several
sub-blocks of BSC that guide the design of the component
matrices, leading to an SC protograph with a girth of at
least six.

By further performing a circulant-based graph-lifting of
BSC and applying the Fossorier condition to generate an
SC parity-check matrix HSC, we obtain QC-SC-LDPC codes
with a girth of at least eight.2 Simulation results show that
substantial performance gains, particularly in the error floor,
are achieved using the two-stage design approach compared
to random code constructions. Note that, with an undesigned
SC protograph, the Fossorier condition can still be applied to
yield an SC-LDPC code of girth eight. However, the existence
of many short cycles in the protograph makes the process
very complex. The two-stage approach, on the other hand,
makes it much easier to apply the Fossorier condition, since
the SC protograph has already been designed to have girth six.
In addition, in contrast to optimization methods [11], [15],
our heuristic approach allows us the possibility of using
larger coupling widths, which make it easier to guarantee
girth six. Although the proposed multi-stage design framework
does not carry any guarantee of optimality, it does allow
us the flexibility in code design needed to reduce/eliminate
harmful objects in the Tanner graph, e.g., cycles, absorbing
sets, and so on. Moreover, compared to the time-invariant
QC-SC-LDPC code designs in [16]–[20], our approach can
produce periodically time-varying QC-SC-LDPC codes (of
which time-invariant QC-SC-LDPC codes are a special case),
which have the potential of yielding larger minimum (free)
distances [3]. Further, if non-circulant or random liftings are
desired, our approach still guarantees a code with girth at least

1The decoding latency depends on the product of the coupling width and
the graph lifting factor, so codes with a large coupling width can still have
small latency.

2In this paper, we have restricted our approach to eliminating cycles of
length four and length six in the two design stages; however, we believe that
the approach could be suitably generalized to other design criteria.

Fig. 1. (a) Block protograph for B = [3 3], (b) an infinite chain of block
protographs, (c) coupling the protographs with ω = 2, and (d) a finite chain
of L coupled protographs.

six and lends itself to asymptotic analyses of the SC-LDPC
code ensembles derived from the designed protographs, for
which we then compute belief propagation (BP) iterative
decoding thresholds over the binary erasure channel (BEC).
Finally, we perform an heuristic search for the minimum
coupling width required to eliminate 4-cycles in a coupled
protograph.

II. SC-LDPC CODES

The construction of a protograph-based SC-LDPC code
can be described as a two-step procedure – first protograph
coupling and then graph lifting [3]. A block protograph [1] is
a small bipartite graph with nc check nodes and nv variable
nodes, where nc < nv . It can be represented by a base matrix

B = [B(r, s)]nc×nv , (1)

where B(r, s), a non-negative integer, is the row-r column-s
entry, r = 1, . . . , nc, s = 1, . . . , nv. The entries determine
the number of edges that connect check node r to variable
node s in the protograph. For example, Fig. 1(a) shows a
block protograph defined by B = [3 3]. To construct an
SC protograph, we first replicate the block protograph as an
infinite chain, as shown in Fig. 1(b), and then spread edges
from the variable nodes of the protograph at time instant t by
connecting them to check nodes at time instants t to t + ω.
Repeating this spreading over all the protographs in the chain
yields an SC protograph with coupling width ω, as shown
in Fig. 1(c) for the case ω = 2. This edge spreading can be
interpreted as decomposing B into ω + 1 component matrices
of the same size, i.e., B0,B1, . . . ,Bω, such that

B(r, s) =
ω∑

i=0

Bi(r, s), (2)

so the coupled protograph maintains the same check node
and variable node degrees as the original block protograph.
If the block protograph has a regular structure that exhibits
uniform check node and variable node degrees, as in Fig. 1(a),
the constructed SC protograph will also be regular. In practice,
an SC protograph is terminated after a finite number L of
coupled block protographs, where L is called the coupling
length. The terminated protograph contains Lnv variable nodes

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 18,2020 at 01:32:41 UTC from IEEE Xplore. Restrictions apply.

5328 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 9, SEPTEMBER 2020

and (L + ω)nc check nodes, as shown in Fig. 1(d). The
corresponding (L + w)nc × Lnv SC base matrix

B(L)
SC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0

B1 B0

...
...

. . .
Bω Bω−1 · · · B0

. . .
. . .

Bω Bω−1 · · · B0

. . .
...

Bω Bω−1

Bω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

exhibits a diagonal band of nonzero entries. Note that the
first and last ωnc check nodes have reduced degrees, i.e., the
terminated protograph has a slight irregularity at both ends,
which is an important feature in realizing the saturation
threshold effect of SC-LDPC codes [3]–[6].

The parity-check matrix H(L)
SC of an SC-LDPC code can be

obtained by an M -fold matrix expansion from B(L)
SC that cor-

responds to an M -fold graph-lifting of the terminated SC pro-
tograph [27]. In the lifted graph, each check node and variable
node is replaced by M copies of the original node and each
edge is replaced by M edges connecting M pairs of check
and variable nodes. From B(L)

SC = [B(L)
SC (r, s)](L+ω)nc×Lnv

,

H(L)
SC is generated by replacing each nonzero entry in B(L)

SC

by a non-overlapping sum of B(L)
SC (r, s) M × M binary

permutation matrices PM and replacing each zero entry by the
M ×M all zero matrix, so that H(L)

SC also exhibits a diagonal
band of nonzero entries. The constraint length and design rate
of the corresponding code are v = Mnv(ω + 1) and R

(L)
SC =

1 − (L + ω)nc–—————–
Lnv

, respectively, and the asymptotic rate is given

by limL→∞ R
(L)
SC � R

(∞)
SC = 1− nc—–nv

. H(L)
SC defines a particular

SC-LDPC code, whose girth (denoted g) is given by the
length of the shortest cycle in the corresponding Tanner graph.
We restate here a Lemma from [12]. (Other similar girth char-
acterizations of LDPC codes have been reported in [33]–[35].)

Lemma 1: The girth of the Tanner graph of H(L)
SC is lower

bounded by the girth of the protograph of B(L)
SC .

Proof: Let g and g′ denote the girths of the Tanner graphs
of B(L)

SC and H(L)
SC , respectively. Assume g′ < g, i.e., H(L)

SC

contains a cycle of length less than g. Since H(L)
SC is comprised

of permutation matrices, which contain only a single one in
any row or column, this implies that there also exists a cycle

of length less than g in B(L)
SC , which contradicts the fact that

the girth of B(L)
SC is g.3

This lemma motivates the design in Section III.

III. DESIGN OF B(L)
SC

Based on Lemma 1, the proposed approach aims to first
eliminate (or reduce the number of) 4-cycles in B(L)

SC . Then,
using a systematic circulant-based lifting, we try to construct

3If B
(L)
SC contains integer values greater than one, corresponding to a

multi-edge protograph, its Tanner graph has girth g = 2, and the lemma
follows immediately.

Fig. 2. Nonzero entries (solid circles) that form 4-cycles in B
(L)
SC , where

Ba, Bb, Bc and Bd, a, b, c, d ∈ {0, 1, . . . , ω}, are nc × nv component
matrices in B

(L)
SC .

matrices H(L)
SC with girth g ≥ 8. Due to the diagonal nature of

B(L)
SC (see (3)), a careful examination of its structure is needed

in the design.

A. Preliminaries

To illustrate the procedure, we consider the common case
when the base matrix is all-ones, i.e., B = 1nc×nv , resulting
in an (nc, nv)-regular protograph. A 4-cycle in a coupled
protograph corresponds to four nonzero entries that form a
rectangular array in B(L)

SC . Fig. 2 shows demonstrative sketches
of all possible patterns of 4-cycles in B(L)

SC , which leads to the
following lemma.

Lemma 2: In B(L)
SC , 4-cycles may be contained in: 1) one

component matrix of B(L)
SC (see Fig. 2(a)); 2) two component

matrices that appear in the same row or the same column of
B(L)

SC (see Figs. 2(b) and 2(c)); 3) four component matrices
that appear in a rectangular array of B(L)

SC (see Fig. 2(d)).
We now decompose B(L)

SC as follows:
• The representative block BR is defined as

BR �

⎡
⎢⎢⎢⎣
Bω Bω−1 · · · B0

Bω · · · B1

. . .
...

Bω

⎤
⎥⎥⎥⎦, (4)

with size (ω+1)nc× (ω+1)nv. By comparing (4) to (3), and
noting the repeating diagonal structure of B(L)

SC , it can be seen
that any combination of one, two, or four component matrices
that contain a 4-cycle in B(L)

SC will appear in BR. Therefore,
if BR does not contain 4-cycles, neither will B(L)

SC . To help
explain our design, the following two definitions based on BR

are given:
• A constituent block BC is defined as

BC �

⎡
⎢⎢⎢⎢⎢⎣

Bβ−1 Bβ−2 · · · B1 B0

Bβ Bβ−1 · · · B2 B1

...
...

. . .
...

...
Bω−1 Bω−2 · · · Bα−1 Bα−2

Bω Bω−1 · · · Bα Bα−1

⎤
⎥⎥⎥⎥⎥⎦
, (5)

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 18,2020 at 01:32:41 UTC from IEEE Xplore. Restrictions apply.

MO et al.: DESIGNING PROTOGRAPH-BASED QUASI-CYCLIC SC-LDPC CODES WITH LARGE GIRTH 5329

where ω = α + β − 2 and α, β > 1, with size αnc × βnv.
BC is obtained by forming a rectangular matrix from BR

that contains B0 in the upper right corner and one of the
Bω component matrices all along the diagonal of BR (except
those in the upper left and lower right corners) in the lower
left corner. Hence, there are ω − 1 choices for BC. Note that
when ω = 2, BC is unique, and when ω = 1, BC does not
exist. Note that each constituent block includes all component
matrices Bi. For a given BC, we define the weight wt(Bi) of
a component matrix Bi as the number of times it is included
in BC, where

∑ω
i=0 wt(Bi) = αβ;

• Excluded patterns B(j)
E are defined as

B(1)
E =

[
Bω B0

]
, B(2)

E =
[
B0

Bω

]
,

B(j)
E =

[
Baj Bbj

Bcj Bdj

]
, j = 3, 4, . . . , nE, (6)

where aj , bj, cj , dj ∈ {0, 1, . . . , ω} and nE is the number of
excluded patterns. Block B(1)

E (resp. B(2)
E) is the nc×2nv

(resp. 2nc × nv) single row (resp. column) pattern (pair of
component matrices) that appears in BR but cannot appear
in BC, whereas B(j)

E , j = 3, 4, . . . , nE, are all 2nc×2nv

rectangular patterns that appear in BR but not in BC. The
number of excluded patterns nE depends on ω and the given
BC, while the particular set of excluded patterns depends on
the given BC. Note that when ω = 2, there are only two
excluded patterns B(1)

E and B(2)
E , since the one 2nc×2nv

rectangular pattern in BR also appears in BC. Also, when
ω = 1, the only excluded patterns are B(1)

E and B(2)
E .

The following example illustrates the above definitions.
Example 1: When ω = 4, we have

BR =

⎡
⎢⎢⎢⎢⎣

B4 B3 B2 B1 B0

B4 B3 B2 B1

B4 B3 B2

B4 B3

B4

⎤
⎥⎥⎥⎥⎦.

BC can be chosen as the 3nc × 3nv pattern

BC =

⎡
⎣B2 B1 B0

B3 B2 B1

B4 B3 B2

⎤
⎦,

where wt(B0) = wt(B4) = 1, wt(B1) = wt(B3) = 2, and
wt(B2) = 3. The excluded patterns are

B(1)
E =

[
B4 B0

]
, B(2)

E =
[
B0

B4

]
,

B(3)
E =

[
B3 B0

B4 B1

]
, B(4)

E =
[
B1 B0

B4 B3

]
,

where, following the notation of (6), we have a3 = 3, b3 = 0,
c3 = 4, d3 = 1 and a4 = 1, b4 = 0, c4 = 4, d4 = 3.

Note that the constituent block can also be chosen as the
2nc×4nv pattern

BC =
[
B3 B2 B1 B0

B4 B3 B2 B1

]
,

or the 4nc×2nv pattern

BC =

⎡
⎢⎢⎣
B1 B0

B2 B1

B3 B2

B4 B3

⎤
⎥⎥⎦.

In each of these cases, wt(B0) = wt(B4) = 1 and wt(B1) =
wt(B2) = wt(B3) = 2. The 2nc×4nv choice of BC results in
the excluded patterns

B(1)
E =

[
B4 B0

]
, B(2)

E =
[
B0

B4

]
, B(3)

E =
[
B2 B0

B4 B2

]
,

B(4)
E =

[
B2 B1

B4 B3

]
, B(5)

E =
[
B1 B0

B3 B2

]
,B(6)

E =
[
B1 B0

B4 B3

]
,

while the 4nc×2nv choice of BC results in the excluded
patterns

B(1)
E =

[
B4 B0

]
, B(2)

E =
[
B0

B4

]
,B(3)

E =
[
B3 B0

B4 B1

]
,

B(4)
E =

[
B3 B1

B4 B2

]
, B(5)

E =
[
B2 B0

B3 B1

]
,B(6)

E =
[
B2 B0

B4 B2

]
.

�
The above definitions lead to the following theorem.
Theorem 3: The coupled protograph of B(L)

SC does not have
any 4-cycles if the chosen BC and its associated B(j)

E , j =
1, 2, . . . , nE, do not contain any 4-cycles.

Proof: The result follows directly from Lemma 2. For
case 1), BC includes all possible component matrices Bi,

i = 0, 1, . . . , ω. For cases 2) and 3), BC and B(j)
E , j =

1, 2, . . . , nE, have been defined such that they contain all pos-
sible patterns of component matrices that can result in 4-cycles
in BR, and hence in B(L)

SC . Therefore, if there are no 4-cycles
in the chosen BC and the associated B(j)

E , j = 1, 2, . . . , nE,
there are no 4-cycles in B(L)

SC .
Based on Theorem 3, we now proceed to design the

component matrices Bi such that neither the chosen BC nor
its associated B(j)

E contain any 4-cycles. The proposed design
includes two stages: Stage 1 initializes the component matrices

based on the B(j)
E ; Stage 2 modifies the component matrices

based on BC.

B. Design Stage 1

Given a base matrix B = 1nc×nv and a representative block
BR with coupling width ω, a constituent block BC is chosen
and its associated excluded patterns B(j)

E are determined. Then
the Stage 1 design insures that the component matrices and the
excluded patterns do not contain any 4-cycles. Let Inc denote
the nc × nc identity matrix. Furthermore, let Ξnc×(nv−nc)

denote an nc × (nv − nc) binary matrix with a minimum row
weight of one and a maximum column weight as small as
possible.4 Stage 1 is summarized as Design Rule 1 below.

In this design, note that Step 1.1 insures that the minimum
row weight of B0 is two. Requiring each row of B0 and Bω

4If nv − nc ≥ nc (R
(∞)
SC ≥ 1

2
), the maximum column weight of

Ξnc×(nv−nc) can be as low as one. If nv − nc < nc (R
(∞)
SC < 1

2
),

it will have a maximum column weight greater than one.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 18,2020 at 01:32:41 UTC from IEEE Xplore. Restrictions apply.

5330 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 9, SEPTEMBER 2020

Design Rule 1 Initialize the Component Matrices (Stage 1)

1.1: Let B0 = [Inc Ξnc×(nv−nc)], where Ξnc×(nv−nc) is
chosen as above such that there is no 4-cycle in B0.
1.2: Initialize Bω such that it contains no 4-cycle and there
are no 4-cycles in B(1)

E or B(2)
E , the minimum row weight of

Bω is two, and, given these constraints, Bω has a maximum
column weight as small as possible.
1.3: Initialize B1,B2, . . . ,Bω−1 such that

1) B(r, s) =
∑ω

i=0 Bi(r, s), i.e., (2) is satisfied;
2) There is no 4-cycle in any of the component matrices

Bi, i = 1, 2, . . . , ω−1, or in the excluded patterns B(j)
E (j =

3, 4, . . . , nE).

to have a minimum row weight of two is desirable since they
are the only component matrices in the top and bottom rows
of B(L)

SC , respectively, and a row weight of at least two is
needed to assist the startup and termination of decoding. Since
B0 = [Inc Ξnc×(nv−nc)], we must ensure Ξnc×(nv−nc) has
no 4-cycles. When nv−nc ≥ nc, this is equivalent to ensuring
the maximum column weight of Ξnc×(nv−nc) is one. However,
when nv−nc < nc, maintaining a minimum row weight of one
for Ξnc×(nv−nc) will inevitably make the maximum column
weight greater than one. In this case, Ξnc×(nv−nc) must be
designed such that no set of four 1s will appear in a rectangular
array. Furthermore, restricting the maximum column weights
of B0 and Bω to be as small as possible simplifies Step
1.3. The remaining component matrices B1,B2, . . . ,Bω−1

are then initialized based on the already chosen B0 and Bω

and avoiding 4-cycles in the excluded patterns B(j)
E (j =

3, 4, . . . , nE). The following example illustrates Design
Rule 1.

Example 2: Given B = 13×8 and ω = 4, BR, BC, B(1)
E ,

B(2)
E , B(3)

E , and B(4)
E are given in Example 1, where BC is

the 3nc × 3nv pattern, i.e., α = β = 3. We employ Design
Rule 1 to initialize the component matrices. First, we let

B0 = [I3 Ξ3×5] =

⎡
⎣1 0 0 1 0 1 0 0
0 1 0 0 1 0 0 1
0 0 1 0 0 0 1 0

⎤
⎦ .

Placing B0 into B(2)
E , we then initialize

B4 =

⎡
⎣0 1 1 0 0 0 0 0
1 0 0 0 0 0 1 0
0 1 0 0 0 1 0 0

⎤
⎦,

such that neither B(1)
E nor B(2)

E contains any 4-cycles. In order
to initialize B1, B2, and B3, we place both B0 and B4 into
the excluded patterns B(3)

E and B(4)
E . To satisfy (2), as well

as to avoid 4-cycles in these two excluded patterns, we design
B1 and B3 as

B1 =

⎡
⎣0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎦,

B3 =

⎡
⎣0 0 0 0 1 0 0 0

0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1

⎤
⎦,

and then B2 is given by

B2 =

⎡
⎣0 0 0 0 0 0 1 1
0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0

⎤
⎦ .

The above design ensures that there are no 4-cycles in all the
component matrices and excluded patterns.

Finally, we place the initialized component matrices into
BC and check if it contains any 4-cycles. If not, the coupled
protograph of B(L)

SC has g ≥ 6, and the design is complete.
Otherwise, we proceed to Stage 2 to eliminate (or reduce the
number of) 4-cycles that remain in BC. In this example, there
are two 4-cycles in BC, so Stage 2 is needed to further modify
the component matrices. �

C. Design Stage 2

Stage 2 modifies the initialized component matrices to
remove the remaining 4-cycles in BC, if possible. In order
to further distinguish between an entry in BC and one in Bi,
we use BC(x, y) to denote the row-x column-y entry in BC,
for x = 1, . . . , nc and y = 1, . . . , βnv. Stage 2 is characterized
by a so-called check-and-flip process in which, if a 4-cycle
exists in BC, one of its nonzero entries is flipped down from
1 to 0. Since the flipped entry belongs to a component matrix,
maintaining (2) requires that we also flip up an entry from
0 to 1 in one of the other component matrices. But this
flipping should not create 4-cycles in this component matrix
or in the excluded patterns that contain this component matrix.
Moreover, the number of 4-cycles in BC should not increase.
Stage 2 is summarized as Design Rule 2 below.

In Step 2.2 of the design, i1, i2, i3, and i4 do not need to
be distinct. In Step 2.3, we prioritize the “flipping down” of
a nonzero entry of a component matrix that has maximum
weight in BC. In doing so, we remove the most nonzero
entries in BC, so that more 4-cycles are likely to be removed.
It is possible that none of the four entries in an identified
4-cycle allows a complete flipping (both flipping down and
flipping up), in which case the remaining 4-cycle is labelled
dormant. However, a dormant 4-cycle can be targeted for
flipping again if some other complete flipping occurs and it
still exists. For small coupling widths ω, though, it may not be
possible to eliminate all dormant 4-cycles in BC. Increasing ω
allows more freedom in the design, making it easier to
eliminate 4-cycles in BC. However, this also increases the
design complexity, since the constituent block BC is larger and
there are more component matrices Bi and excluded patterns
B(j)

E to consider, meaning that the flipping up of Step 2.4 must
satisfy more conditions. In general, Stage 2 either eliminates
all 4-cycles or minimizes the number of 4-cycles in BC and,
as a result, in B(L)

SC . The following example illustrates Design
Rule 2.

Example 3: Given the component matrices B0,B1, . . . ,B4

that were initialized in Example 2, we form the constituent
block BC shown in Fig. 3(a). We see that there are two
4-cycles, defined by entries BC(1, 7), BC(1, 20), BC(8, 7),
and BC(8, 20) (or B2(1, 7),B0(1, 4),B4(2, 7), and B2(2, 4)
in component matrix notation), and BC(1, 17), BC(1, 20),

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 18,2020 at 01:32:41 UTC from IEEE Xplore. Restrictions apply.

MO et al.: DESIGNING PROTOGRAPH-BASED QUASI-CYCLIC SC-LDPC CODES WITH LARGE GIRTH 5331

Design Rule 2 Modify the Component Matrices (Stage 2)
2.1: Identify a 4-cycle in BC with entries

BC(x1, y1) = 1, BC(x1, y2) = 1,

BC(x2, y1) = 1, BC(x2, y2) = 1.

2.2: Suppose that the four entries belong to component
matrices Bi1 , Bi2 , Bi3 , and Bi4 , where (i1, i2, i3, i4) ∈
{0, 1, . . . , ω}. Denote these entries as

Bi1(r1, s1) = 1, Bi2(r1, s2) = 1,

Bi3(r2, s1) = 1, Bi4(r2, s2) = 1.

2.3: Among these four entries, identify those that have
not previously been flipped. Pick one that belongs to
a component matrix of the highest weight and denote
it Bi′(r′, s′), where i′ ∈ {i1, i2, i3, i4} and (r′, s′) ∈
{(r1, s1), (r1, s2), (r2, s1), (r2, s2)}. Flip down the entry
Bi′(r′, s′) such that

Bi′(r′, s′) : 1 → 0, (7)

Also flip down all entries in B(j)
E (j = 1, 2, . . . , nE) and BC

that correspond to entry Bi′(r′, s′).
2.4: Flip up an entry Bi(r′, s′) such that

Bi(r′, s′) : 0 → 1, (8)

where i ∈ {0, 1, . . . , ω} and i �= i′, conditioned on
1) The entry has not been previously flipped (down or up);
2) The flipping does not create new 4-cycles in Bi or in

any B(j)
E that includes Bi;

3) The number of 4-cycles contained in BC does not
increase after the flipping (down and up) process is com-
pleted. Also flip up all entries in B(j)

E (j = 1, 2, . . . , nE) and
BC that correspond to entry Bi(r′, s′).
2.5: If the flipping in Step 2.4 succeeds, go to Step 2.6; else,
reflip Bi′(r′, s′) to its original value, i.e.,

Bi′(r′, s′) : 0 → 1. (9)

Also reflip all entries in B(j)
E (j = 1, 2, . . . , nE) and BC that

correspond to entry Bi′(r′, s′), and go to Step 2.3.
2.6: Repeat Steps 2.1 to 2.4 until all 4-cycles are removed
or there are no more eligible entries to flip.

BC(9, 17), and BC(9, 20) (or B0(1, 1),B0(1, 4),B2(3, 1), and
B2(3, 4) in component matrix notation), which are highlighted
by the squares.

We now apply Design Rule 2 to remove these 4-cycles.
Take the 4-cycle defined by BC(1, 7), BC(1, 20), BC(8, 7),
and BC(8, 20) as an example, which belong to component
matrices B2, B0, B4, and B2, respectively. Since wt(B2) = 3
and wt(B0) = wt(B4) = 1, entry BC(1, 7) is chosen to be
flipped down from 1 to 0, so that i′ = 2 and (r′, s′) = (1, 7),
and we also flip down the other two B2(1, 7) entries that
appear in BC. (Note that B2 is not contained in any of the
excluded patterns for this choice of BC.) Fig. 3(b) shows
the modified BC in which the three flipped down B2(1, 7)
entries are highlighted by the circles. In order to maintain the

Fig. 3. The Stage 2 design of Example 3.

edge-spreading condition (see (2)), we must flip up an entry
Bi(1, 7), where i �= 2. Since B4(1, 7),B3(1, 7),B1(1, 7), and
B0(1, 7) have not been previously flipped, we choose the two
B3(1, 7) entries, corresponding to BC(4, 7) and BC(7, 15),
to be flipped up from 0 to 1, which is highlighted by the
triangles in Fig. 3(b). We then check and find that this flipping
up step does not create new 4-cycles in B3 or in the excluded
patterns B(1)

E , B(2)
E , B(3)

E , or B(4)
E and that it does not

increase the number of 4-cycles in BC. As a result, the targeted
4-cycle in BC has been removed. The other 4-cycle in BC

can be removed in a similar manner. In all, a total of 4
flippings (flipping down BC(1, 7) and BC(3, 1), and flipping
up BC(4, 7) and BC(6, 1)) are required to remove the two
4-cycles in BC. The resulting BC is shown in Fig. 3(c). Its
girth is six, which is highlighted in the figure. As a result,
we can insure that B(L)

SC also has girth g = 6. �
Intuitively, the above design can be seen as guiding the

spreading of the ncnv 1’s in B over the ω + 1 component
matrices in such a way that 4-cycles are eliminated in the
coupled protograph. As another example, given the block
protograph defined by B = 12×4 and coupling width ω = 2,
we can apply the above two stage design to obtain

B0 =
[
1 0 0 1
0 1 0 1

]
, B1 =

[
0 0 1 0
0 0 0 0

]
,

B2 =
[
0 1 0 0
1 0 1 0

]
,

thus insuring that the coupled protograph of B(L)
SC does not

contain any 4-cycles. The resulting coupled protograph, which
in this case has girth g = 12, is shown in Fig. 4.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 18,2020 at 01:32:41 UTC from IEEE Xplore. Restrictions apply.

5332 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 9, SEPTEMBER 2020

Fig. 4. A coupled protograph with coupling width ω = 2 and girth g = 12.

If Stage 2 does not eliminate all the 4-cycles in BC
5

for a particular set of initial component matrices Bi, i =
0, 1, . . . , ω, designed in Stage 1, or if it results in a B0 or
Bω with minimum row weight less than two (for example,
in the coupled protograph of Fig. 4, the minimum row weight
of B2 is one), the design can be repeated with a different set
of initial component matrices. Alternatively, one can impose
maintaining a minimum row weight of two for B0 and Bω

as a constraint when flipping down in Step 2.3 (although
this may limit our ability to find a 4-cycle free BC). In
the case of unterminated codes (or codes with large L) that
are decoded with sliding window (SW) decoding, the row
weight of Bω has little effect on performance, and hence
the constraint on Bω can be relaxed. Further, for ω > 2,
there are multiple choices for BC, each of which is associated
with a different set of excluded patterns. Our experience has
shown that the choice of BC does not affect whether or not
4-cycles can be eliminated (although choosing different sets
of initial component matrices can yield different results). This
follows from the fact that, when using a different constituent
block and its associated excluded patterns, the two-stage
design has already checked through all possible patterns that
could contain 4-cycles. In other words, different choices of
BC, along with the associated excluded patterns B(j)

E , and
the subsequent component matrix initialization only affect
the scheduling of the flipping, not whether 4-cycles can be
eliminated.6 Finally, we note that, after achieving girth g = 6,
the design procedure can be continued in an attempt to reduce
the number of 6-cycles in the coupled protograph. The way
in which finding a 4-cycle free BR depends on the code
parameters nc, nv, and ω will be discussed in the following
subsection.

D. Coupling Width Required to Eliminate 4-Cycles

In order to apply our approach to other SC protographs, it is
helpful to identify what is the minimum ω required to achieve
girth 6, since we will typically want small ω to minimize
latency. Based on the base matrix B = 1nc×nv , the proposed
design can be seen as assigning the ncnv 1s in B to the ω +1
component matrices B0,B1, . . . ,Bω in a way such that BR

does not contain 4-cycles. Intuitively, a larger ω gives more
design freedom, so that the Stage 1 design can already ensure
that BR does not contain 4-cycles when ω is sufficiently large.

5We note here that it is easier to design a BR that does not contain any
4-cycles for larger values of ω, since the individual component matrices are
sparser.

6The search complexity can be reduced by choosing BC in (5) such that
α = β − 1, β, or β + 1, which minimizes the number of excluded patterns
(see Example 1).

TABLE I

THE MINIMUM w THAT INSURES BR DOES NOT CONTAIN 4-CYCLES

However, the proposed design can result in many possibilities
for the designed component matrices. Due to the heuristic
nature of the design, it is difficult to theoretically characterize
the minimum ω for insuring a 4-cycle free BR.7 Alternatively,
we have employed an exhaustive search for the minimum ω
resulting from the proposed design with given (nc, nv) pairs.
Our results obtained using Design Rules 1 and 2, thus ensuring
the minimum row weight of 2 for the initial B0 and Bω needed
to assist the startup and termination of decoding, are shown
in Table I. Our search results echo some existing characteriza-
tions in the literature of the minimum coupling width needed
to ensure a coupled protograph contains no 4-cycles. For
example, our results match well with Lemma 4 of [16], which
gives a lower bound on ω needed to ensure a 4-cycle-free
SC parity-check matrix for a time-invariant construction of
the same type as our more general time-varying construction.
Also, when nc = 2, our search results exactly match the
coupled protograph design of [32], for which the minimum ω
that ensures no 4-cycles is nv

2 when nv is even and nv−1
2

when nv is odd.
We observe that, for the same nc, a larger nv requires a

larger ω to insure a 4-cycle free BR. For example, when
(nc, nv) = (2, 6), the minimum ω is 3, while when (nc, nv) =
(2, 9), the minimum ω is 4. This is because increasing nv

not only leads to more 1s to be assigned to the component
matrices, but the asymptotic rate R

(∞)
SC = 1 − nc

nv
of the

designed code also becomes higher, making it more challeng-
ing to design a matrix BR that does not contain 4-cycles. This
can also be seen by comparing designs with the same ncnv

(the same number of 1s to be assigned), where a smaller ratio
of nc

nv
(a higher asymptotic rate) requires a larger coupling

width. For example, when (nc, nv) = (4, 6), the minimum ω
is 3, while the minimum values of ω are 4 and 6 for
(nc, nv) = (3, 8) and (nc, nv) = (2, 12), respectively. This
is because the component matrices of higher rate codes have
relatively more columns than rows, making it easier to form
4-cycles, thus requiring a larger ω to spread the 1s over more
component matrices. Finally, for the same asymptotic rate,
we see that increasing nc (and nv) also leads to an increase

7In recent papers [11], [15], optimization techniques were used to minimize
the number of 6-cycles in array-based SC-LDPC codes. Due to the complexity
of the optimization, however, this approach is limited to values of ω ≤ 2,
whereas our heuristic design allows us to reach much larger values of ω.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 18,2020 at 01:32:41 UTC from IEEE Xplore. Restrictions apply.

MO et al.: DESIGNING PROTOGRAPH-BASED QUASI-CYCLIC SC-LDPC CODES WITH LARGE GIRTH 5333

Fig. 5. BP decoding thresholds of designed and undesigned SC-LDPC code
protograph-based ensembles.

in the minimum required ω. For example, (nc, nv) = (2, 4)
requires ω = 2, while (nc, nv) = (3, 6) and (nc, nv) = (4, 8)
require ω = 3 and ω = 5, respectively. This is because, for the
same ratio nc

nv
, a larger nc (and nv) means that there are more

1s to be assigned to the component matrices, and consequently
a larger ω is required.

IV. BP DECODING THRESHOLDS OF THE

DESIGNED CODE ENSEMBLES

The above coupled protograph design ensures that the
constructed codes have large girth, thereby yielding good error
floor performance. However, the design does not guarantee
good waterfall performance. Therefore, we now compare
the BP decoding thresholds of several designed SC-LDPC
protograph-based code ensembles over the BEC to those of
undesigned (random edge spreading) protograph-based ensem-
bles constructed from the same all-one base matrix 1nc×nv .
Note that the Shannon limit of a BEC is 1− ε, where ε is the
erasure probability.

Fig. 5 shows the BP decoding thresholds of the designed and
undesigned protograph-based ensembles with different choices
of nc, nv, and ω, where the coupling widths ω are chosen such
that the designed protographs have girth g = 6. It can be seen
that, in all cases, the BEC decoding threshold decreases as the
coupling length L increases (due to the increasing rate R

(L)
SC)

up to a certain point, after which the BP decoding thresholds
of the SC-LDPC code ensembles saturate and approach the
MAP decoding thresholds of their underlying LDPC block
code ensembles (0.488, 0.497, and 0.499 for (3, 6), (4, 8),
and (5, 10)-regular ensembles, respectively). This is due to the
structured irregularity at the beginning and end of the coupled
graph that results in threshold saturation and is consistent
with [3]–[6].

We observe that the designed and undesigned ensembles
have similar BP decoding thresholds, especially when L is
large. This is due to the fact that our design does not change
the row weight of a full diagonal band (that contains Bω,
Bω−1, . . ., B0) or the column weight of the SC base matrix,

and thus it has the same degree profile as an undesigned
protograph. Comparing the ensembles with different column
(and row) weights, we see that, for the same asymptotic rate
R

(∞)
SC = 0.5, increasing the column (and row) weight leads

to a decrease in the BP decoding threshold for small values
of L, where the termination causes significant rate loss. But
larger column (and row) weights lead to better BP decoding
thresholds as L becomes larger and tends to infinity, where
the rate loss approaches zero. This follows from the fact that
block code ensembles with larger column (and row) weights
have better minimum distance properties, and thus their MAP
decoding thresholds are better. In contrast, for regular LDPC
block code ensembles, where threshold saturation does not
occur, higher column (and row) weights result in worse BP
decoding thresholds. In summary we see that the BP thresholds
of the designed ensembles closely track those of undesigned
ensembles and approach the MAP thresholds of the underlying
block code ensembles for large L, thus insuring that the
designed codes also achieve good waterfall performance.

V. QC LIFTING BASED ON B(L)
SC

Given a designed B(L)
SC , we can employ a systematic lifting

using circulants in an attempt to further reduce the multiplicity
of short cycles and increase the girth. In this paper, we pay
particular attention to the removal of all 6-cycles (and any
remaining 4-cycles) so that the resulting H(L)

SC is QC and
has g ≥ 8, although the approach could be extended in a
straightforward way to target higher girth. Note that, without
loss of generality, any 6-cycle can be represented by a 3 × 3
grid of nonzero entries in B(L)

SC , as illustrated in Fig. 6 for the
6-cycle highlighted in Fig. 3(c). In general, circulants can be
chosen using the Fossorier condition (Theorem 2.1 of [8]) to
avoid a 2k-cycle, k = 2, 3, . . ., in a parity-check matrix. For
example, if the six nonzero entries that constitute the 6-cycle
in Fig. 6 (indicated by the solid circles) are lifted with different
circulants I(θ)

M , where I(θ)
M denotes the shifted identity matrix

with each row of the M × M identity matrix IM cyclically
shifted to the left by θ positions, and the shifting factors satisfy

(θ3 − θ9) �= (θ2 − θ5) + (θ4 − θ7) mod M, (10)

then there are no 6-cycles in the lifted subgraph corresponding

to H(L)
SC associated with this 6-cycle in B(L)

SC . In this case,
we say that the 6-cycle in the protograph has been “removed”
by lifting. In general, a QC lifting based on B(L)

SC results in
non-periodically time-varying SC-LDPC codes, but for ease of
implementation it is desirable to construct periodically time-
varying, or even time-invariant codes [30].8 We treat these two
cases separately below.

A. The Non-Periodic Case

We start by identifying all the nonzero entries that
participate in 6-cycles of B(L)

SC . The identified 6-cycles are

8Note that, if we use the same set of circulants for lifting every column of
B

(L)
SC , we will obtain a time-invariant QC-SC-LDPC code. However, the time-

varying designs give us added flexibility, making it easier to achieve girth 8
for a given M . Also, if M is too small, it may not be possible to achieve
girth 8 at all with the time-invariant constraint.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 18,2020 at 01:32:41 UTC from IEEE Xplore. Restrictions apply.

5334 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 9, SEPTEMBER 2020

Fig. 6. A 3× 3 grid of nonzero entries corresponding to a 6-cycle in B
(L)
SC ,

where r1 < r2 < r3 and s1 < s2 < s3.

then removed sequentially by selecting circulants according to
the Fossorier condition. (The remaining nonzero entries can
be lifted using randomly generated circulants.) However, since
nonzero entries can participate in multiple 6-cycles, care must
be taken to insure that cycle removal does not create new short
cycles elsewhere in the graph. In our approach, the entries
and shifting factors are recorded after removing each cycle.
Before a new 6-cycle is targeted for lifting, we first check to
see if any of its nonzero entries have been previously lifted.
If so, they are left unchanged, and the shifting factors of the
other nonzero entries in the cycle are chosen such that the
Fossorier condition is satisfied (if possible). For sufficiently
large M , we have found that there is enough freedom in
choosing the shifting factors to construct non-periodically
time-varying QC-SC-LDPC codes with g ≥ 8.

B. The Periodic Case

To construct periodically time-varying QC-SC-LDPC codes
with period ω + 1, we can proceed by choosing the shifting
factors for only the nonzero entries in the first ω + 1 columns
of B(L)

SC that participate in 6-cycles. In the following columns,
the shifting factors in every set of ω + 1 columns of B(L)

SC
will be a replication of those in the first ω + 1 columns.
Note that this gives us a more efficient lifting than in the
non-periodic case, since we do not have to check the entire
coupled protograph of length L for 6-cycle removal, but only
the first ω + 1 columns of B(L)

SC .
B(L)

SC can be seen as consisting of L columns of component
matrices B0, B1, . . ., Bω, as shown in Fig. 7, where we index
the columns as τ = 1, 2, . . . , ω, ω + 1, . . . , L. For nc > 2,
6-cycles can be contained in component matrices that occupy
the same row (or column) of B(L)

SC . However, from Fig. 7 we
can see that 6-cycles will not be contained in any two columns
of component matrices, indexed by τ1 and τ2, respectively,
if |τ1 − τ2| > ω, since in this case the two columns will
not have any component matrices that occupy the same row.
This observation enables us to design the shifting factors for
the first ω + 1 columns of B(L)

SC as follows. We first design
the column 1 shifting factors such that all its 6-cycles are
removed. The designed shifting factors of column 1 are then
replicated in column ω + 2. Next, we design column 2 such
that all 6-cycles that exist in column 2 alone, jointly between
columns 1 and 2, and jointly between columns 2 and ω+2 are
removed. Then the designed shifting factors of column 2 are
replicated in column ω + 3. Since this insures that the joint
6-cycles between columns 1 and 2 are removed and the shifting
factors of column ω + 2 are replicas of those in column 1,
there must also be no joint 6-cycles between columns ω + 2
and ω+3. This process then continues until we design column

Fig. 7. Periodic design of QC-SC-LDPC codes.

ω + 1 such that all 6-cycles that exist within column ω + 1
alone and jointly between column ω + 1 and the previously
designed columns (1, 2, . . ., ω, ω + 2, ω + 3, . . ., 2ω + 1)
are removed. Following the design of column ω + 1, all the
shifting factors for the nonzero entries of all the component
matrices in the first ω +1 columns that participate in 6-cycles
have been chosen, i.e., no 6-cycles exist in the first ω + 1
columns of B(L)

SC . This lifting design can then be replicated
for every following set of ω + 1 columns of B(L)

SC , so that the
designed parity-check matrix H(L)

SC has period ω +1 and girth
g ≥ 8. Again, a large lifting factor M gives more freedom in
choosing the shifting factors to insure g ≥ 8.

As an enhancement to the above procedure, in both the
non-periodic and periodic cases, the 6-cycle profile of the
SC protograph could be generated. We could then determine
the shifting factors for the nonzero entries of B(L)

SC that
are involved in the most cycles, followed by the others in
decreasing order. This would improve our ability to eliminate
6-cycles, at a cost of the increased complexity of ordering the
nonzero entries of B(L)

SC according to their cycle involvement.
The complexity of our proposed multi-stage code design

approach depends on designing the SC base matrix BSC to
avoid 4-cycles and then graph-lifting based on BSC. The com-
plexity of designing BSC depends on the number of 4-cycles
that remain in the constituent block BC after initializing the
component matrices in Stage 1. Similarly, the complexity of
the lifting based on BSC depends on the number of 6-cycles
(and any remaining 4-cycles) in BSC. (In the case of periodic
QC lifting, the cycle counting is limited to the first ω + 1
columns only of BSC, which considerably simplifies the prob-
lem.) Therefore, obtaining the cycle profile of BC following
the Stage 1 design and the cycle profile of BSC following
the Stage 2 design is crucial to characterizing the design
complexity. However, due to the heuristic nature of the design,
an explicit characterization of the complexity is not feasible.

VI. NUMERICAL RESULTS

In this section, we present the simulated performance of our
designed spatially coupled base matrices B(L)

SC with both ran-
dom and (non-periodically time-varying) QC liftings, where
the resulting designed SC-LDPC codes have girths of six and

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 18,2020 at 01:32:41 UTC from IEEE Xplore. Restrictions apply.

MO et al.: DESIGNING PROTOGRAPH-BASED QUASI-CYCLIC SC-LDPC CODES WITH LARGE GIRTH 5335

eight, respectively. For comparison, we also consider unde-
signed SC-LDPC codes with randomly chosen base matrices
B(L)

SC and random liftings, which typically have a girth of only
four for the selected lengths. The simulations were performed
over the additive white Gaussian noise (AWGN) channel
using BPSK modulation. (Note that the BP decoding threshold
analysis of the designed and undesigned code ensembles in
Section IV was conducted over the BEC, since this is a
quick and convenient platform for testing and refining our
design approach. Its primary conclusions also hold for the
AWGN channel, which is a more realistic channel model
for simulating the performance of practical communication
systems.) Sliding window (SW) decoding [4], [22] was used,
where a window covers W consecutive block protographs
in the coupled graph and the window size W (in blocks)
satisfies ω + 1 ≤ W ≤ L. Decoding was performed based
on the partial Tanner graph framed by the window, where
MWnc check nodes and MWnv variable nodes are included
in a decoding window. In each window position, a block
of Mnv target symbols, corresponding to the first block of
Mnv variable nodes in the window, is decoded, and then the
window shifts by one block. Sliding along the diagonal band
of H(L)

SC , SW decoding estimates codeword symbols block-
by-block, resulting in a decoding latency of only W blocks.
The maximum number of iterations per window position was
100, and the soft bit-error-rate (BER) stopping rule [29] was
employed, with a threshold BER of 10−6. Standard flooding
schedule (FS) decoding across the entire terminated graph was
also performed for comparison. For FS decoding, a maximum
number of 1000 iterations was allowed, and a stopping rule
based on the parity-check matrix H(L)

SC was employed.
Fig. 8 shows the simulated performance of designed and

undesigned SC-LDPC codes with (nc, nv) = (3, 6) and ω = 3.
The undesigned base matrix B(L)

SC was randomly chosen, with
the constraints that B0 and B3 have a minimum row weight
of two and (2) must be satisfied. The component matrices of
the g = 6 designed B(L)

SC were

B0 =

⎡
⎣1 0 0 0 1 0
0 1 0 1 0 0
0 0 1 0 0 1

⎤
⎦, B1 =

⎡
⎣0 0 0 1 0 1
0 0 1 0 1 0
1 1 0 0 0 0

⎤
⎦,

B2 =

⎡
⎣0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎦, B3 =

⎡
⎣0 1 1 0 0 0
1 0 0 0 0 1
0 0 0 1 1 0

⎤
⎦,

and the g = 8 designed H(L)
SC was obtained from B(L)

SC
by doing a (non-periodic) QC lifting using the Fossorier
condition. In all cases, L = 100, M = 100, and R

(L)
SC =

0.485. The results show that the designed codes substantially
outperform the undesigned codes, particularly in the error
floor, and that increasing the girth by performing a QC
lifting further improves the error floor performance. Also,
with FS decoding, the designed and undesigned codes exhibit
similar waterfall performance, consistent with the BP decoding
threshold analysis of Section III.D.

Fig. 9 shows the performance of designed and undesigned
SC-LDPC codes with (nc, nv) = (3, 8) and ω = 4. For the
undesigned code, the 3 × 8 binary component matrices were

Fig. 8. Performance of designed and undesigned SC-LDPC codes with
(nc, nv) = (3, 6).

Fig. 9. Performance of designed and undesigned SC-LDPC codes with
(nc, nv) = (3, 8).

chosen such that B0 and B4 have a minimum row weight
of two and the edge-spreading condition (see (2)) must be
satisfied. L and M were again chosen to be 100, so in this
case R

(L)
SC = 0.61. The results again show the designed codes

outperform the undesigned codes, most noticeably in the error
floor. We also again see that, since g = 8, a QC lifting
further improves the error floor performance of the designed
codes compared to a random lifting. Finally we note that,
with SW decoding, larger window sizes W result in better
performance, consistent with the tradeoff between W (latency)
and performance reported in [31].

Finally, in order to demonstrate the advantage of our
designed QC-SC-LDPC codes, Fig. 10 compares their
performance to the SC-LDPC code designed using the
optimal overlap (OO) partitioning and circulant power
optimizer (CPO) approach of [12], where FS decoding was
used in both cases. Both codes were designed from a block
protograph with (nc, nv) = (3, 7), using the same lifting
factor M = 7 and coupling length L = 60. They both
have the same codeword length of 2940 bits and code rate
of 0.56. However, the coupling width of our designed code
is 3, whereas the OO-CPO code has coupling width only 1.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 18,2020 at 01:32:41 UTC from IEEE Xplore. Restrictions apply.

5336 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 9, SEPTEMBER 2020

Fig. 10. Performance comparison of our designed codes with the OO-CPO
SC-LDPC code with (nc, nv) = (3, 7).

This means that our code enjoys a larger constraint length
than the OO-CPO code, viz., 196 vs. 98. It can be seen that
our designed code outperforms the OO-CPO code by 1.3dB at
a BER of 10−8, which is mostly due to the fact that we have
a larger constraint length and enjoy a larger guaranteed girth,
eight vs. six for the OO-CPO code. Note that, if we further
lower the lifting factor from seven to six for our designed
code, its constraint length will be reduced to 168, and we
see that it still maintains a substantial performance advantage
over the OO-CPO code. However, if we further lower the
lifting factor to match the constraint length of the OO-CPO
code, we can no longer achieve girth eight in the lifted graph.

VII. CONCLUSION

In this paper, we introduced a two-stage design procedure
for constructing spatially coupled protographs with girth at
least 6. The first stage produces an initial set of component
matrices that satisfy the edge-spreading condition such that the
coupled protograph contains a small number of 4-cycles; while
the second stage employs a systematic approach to eliminate
the remaining 4-cycles, thus guaranteeing a girth of at least
6. This was followed by performing a QC (circulant-based)
lifting of the coupled protograph that satisfies the Fossorier
condition in order to obtain girth 8. Both non-periodic and
periodic liftings were proposed, and simulations were used to
demonstrate that the new designed codes exhibit substantial
error floor improvement compared to random constructions.
Compared to previous approaches that focused on optimization
techniques and time-invariant constructions, the two-stage
design approach allows us to consider larger coupling widths
as well as time-varying code constructions. Finally, empirical
results on the minimum coupling width ω needed to ensure
girth g = 6 for (nc, nv)-regular coupled protographs was
presented.

REFERENCES

[1] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from
protographs,” Jet Propuls. Lab., Pasadena, CA, USA, INP Prog.
Rep. 42-154, Aug. 2003.

[2] D. Divsalar, S. Dolinar, C. Jones, and K. Andrews, “Capacity-
approaching protograph codes,” IEEE J. Sel. Areas Commun., vol. 27,
no. 6, pp. 876–888, Aug. 2009.

[3] D. G. M. Mitchell, M. Lentmaier, and D. J. Costello, “Spatially coupled
LDPC codes constructed from protographs,” IEEE Trans. Inf. Theory,
vol. 61, no. 9, pp. 4866–4889, Sep. 2015.

[4] M. Lentmaier, A. Sridharan, D. J. Costello, and K. S. Zigangirov,
“Iterative decoding threshold analysis for LDPC convolutional codes,”
IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 5274–5289, Oct. 2010.

[5] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Threshold saturation
via spatial coupling: Why convolutional LDPC ensembles perform
so well over the BEC,” IEEE Trans. Inf. Theory, vol. 57, no. 2,
pp. 803–834, Feb. 2011.

[6] S. Kudekar, T. J. Richardson, and R. L. Urbanke, “Spatially coupled
ensembles universally achieve capacity under belief propagation,” IEEE
Trans. Inf. Theory, vol. 59, no. 12, pp. 7761–7813, Dec. 2013.

[7] J. Li, S. Lin, K. Abdel-Ghaffar, W. Ryan, and D. J. Costello, LDPC Code
Designs, Constructions, and Unification. Cambridge, U.K.: Cambridge
Univ. Press, 2016.

[8] M. P. C. Fossorier, “Quasi-cyclic low-density parity-check codes from
circulant permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8,
pp. 1788–1793, Aug. 2004.

[9] K. Liu, M. El-Khamy, and J. Lee, “Finite-length algebraic spatially-
coupled quasi-cyclic LDPC codes,” IEEE J. Sel. Areas Commun.,
vol. 34, no. 2, pp. 329–344, Feb. 2016.

[10] M. Zhang, Z. Wang, Q. Huang, and S. Wang, “Time-invariant quasi-
cyclic spatially coupled LDPC codes based on packings,” IEEE Trans.
Commun., vol. 64, no. 12, pp. 4936–4945, Dec. 2016.

[11] H. Esfahanizadeh, A. Hareedy, and L. Dolecek, “Finite-length con-
struction of high performance spatially-coupled codes via optimized
partitioning and lifting,” IEEE Trans. Commun., vol. 67, no. 1, pp. 3–16,
Jan. 2019.

[12] D. G. M. Mitchell, L. Dolecek, and D. J. Costello, “Breaking absorbing
sets in array-based spatially coupled LDPC codes,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Honolulu, HI, USA, Jun. 2014, pp. 886–890.

[13] B. Amiri, A. Reisizadehmobarakeh, H. Esfahanizadeh, J. Kliewer, and
L. Dolecek, “Optimized design of finite-length separable circulant-based
spatially-coupled codes: An absorbing set-based analysis,” IEEE Trans.
Commun., vol. 64, no. 10, pp. 4029–4043, Oct. 2016.

[14] A. Beemer, S. Habib, C. A. Kelley, and J. Kliewer, “A generalized
algebraic approach to optimizing SC-LDPC codes,” in Proc. 55th Annu.
Allerton Conf. Commun., Control, Comput., Oct. 2017, pp. 672–679.

[15] D. G. M. Mitchell and E. Rosnes, “Edge spreading design of high rate
array-based SC-LDPC codes,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Aachen, Germany, Jun. 2017, pp. 2950–2954.

[16] M. Battaglioni, A. Tasdighi, G. Cancellieri, F. Chiaraluce, and M. Baldi,
“Design and analysis of time-invariant SC-LDPC convolutional codes
with small constraint length,” IEEE Trans. Commun., vol. 66, no. 3,
pp. 918–931, Mar. 2018.

[17] M. Battaglioni, A. Tasdighi, M. Baldi, M. H. Tadayon, and F. Chiaraluce,
“Compact QC-LDPC block and SC-LDPC convolutional codes for low-
latency communications,” in Proc. IEEE 29th Annu. Int. Symp. Pers.,
Indoor Mobile Radio Commun. (PIMRC), Bologna, Italy, Sep. 2018,
pp. 1–5.

[18] M. Tadayon, A. Tasdighi, M. Battaglioni, M. Baldi, and F. Chiaraluce,
“Efficient search of compact QC-LDPC and SC-LDPC convolu-
tional codes with large girth,” IEEE Commun. Lett., vol. 22, no. 6,
pp. 1156–1159, Jun. 2018.

[19] M.-R. Sadeghi, “Optimal search for Girth-8 quasi cyclic and spatially
coupled multiple-edge LDPC codes,” IEEE Commun. Lett., vol. 23,
no. 9, pp. 1466–1469, Sep. 2019.

[20] S. Naseri and A. H. Banihashemi, “Spatially coupled LDPC codes
with small constraint length and low error floor,” IEEE Commun. Lett.,
vol. 24, no. 2, pp. 254–258, Feb. 2020.

[21] J. Cho and L. Schmalen, “Construction of protographs for large-
girth structured LDPC convolutional codes,” in Proc. IEEE Int. Conf.
Commun. (ICC), London, U.K., Jun. 2015, pp. 4412–4417.

[22] A. R. Iyengar, M. Papaleo, P. H. Siegel, J. K. Wolf, A. Vanelli-Coralli,
and G. E. Corazza, “Windowed decoding of protograph-based LDPC
convolutional codes over erasure channels,” IEEE Trans. Inf. Theory,
vol. 58, no. 4, pp. 2303–2320, Apr. 2012.

[23] V. A. Chandrasetty, S. J. Johnson, and G. Lechner, “Memory-efficient
quasi-cyclic spatially coupled low-density parity-check and repeat-
accumulate codes,” IET Commun., vol. 8, no. 17, pp. 3179–3188,
Nov. 2014.

[24] D. G. M. Mitchell, A. E. Pusane, M. Lentmaier, and D. J. Costello,
“On the block error rate performance of spatially coupled LDPC codes
for streaming applications,” in Proc. IEEE Inf. Theory Workshop (ITW),
Cambridge, U.K., Sep. 2016, pp. 236–240.

[25] Y. Wang, S. C. Draper, and J. S. Yedidia, “Hierarchical and high-
girth QC LDPC codes,” IEEE Trans. Inf. Theory, vol. 59, no. 7,
pp. 4553–4583, Jul. 2013.

[26] D. G. M. Mitchell, R. Smarandache, and D. J. Costello, “Quasi-cyclic
LDPC codes based on pre-lifted protographs,” IEEE Trans. Inf. Theory,
vol. 60, no. 10, pp. 5856–5874, Oct. 2014.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 18,2020 at 01:32:41 UTC from IEEE Xplore. Restrictions apply.

MO et al.: DESIGNING PROTOGRAPH-BASED QUASI-CYCLIC SC-LDPC CODES WITH LARGE GIRTH 5337

[27] A. E. Pusane, R. Smarandache, P. O. Vontobel, and D. J. Costello,
“Deriving good LDPC convolutional codes from LDPC block codes,”
IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 835–857, Feb. 2011.

[28] L. Chen, S. Mo, D. J. Costello, D. G. M. Mitchell, and R. Smarandache,
“A protograph-based design of quasi-cyclic spatially coupled LDPC
codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany,
Jun. 2017, pp. 1683–1687.

[29] N. ul Hassan, M. Lentmaier, and G. P. Fettweis, “Comparison of LDPC
block and LDPC convolutional codes based on their decoding latency,”
in Proc. 7th Int. Symp. Turbo Codes Iterative Inf. Process. (ISTC),
Gothenburg, Sweden, Aug. 2012, pp. 225–229.

[30] A. J. Felstrom and K. S. Zigangirov, “Time-varying periodic convo-
lutional codes with low-density parity-check matrix,” IEEE Trans. Inf.
Theory, vol. 45, no. 6, pp. 2181–2191, Sep. 1999.

[31] K. Huang, D. G. M. Mitchell, L. Wei, X. Ma, and D. J. Costello,
“Performance comparison of LDPC block and spatially coupled codes
over GF (q),” IEEE Trans. Commun., vol. 63, no. 3, pp. 592–604,
Mar. 2015.

[32] M. Lentmaier and G. P. Fettweis, “On the thresholds of generalized
LDPC convolutional codes based on protographs,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Austin, TX, USA, Jun. 2010, pp. 709–713.

[33] S. Kim, J.-S. No, H. Chung, and D.-J. Shin, “Quasi-cyclic low-density
parity-check codes with girth larger than 12,” IEEE Trans. Inf. Theory,
vol. 53, no. 8, pp. 2885–2891, Aug. 2007.

[34] I. E. Bocharova, F. Hug, R. Johannesson, B. D. Kudryashov, and
R. V. Satyukov, “Searching for voltage graph-based LDPC tailbiting
codes with large girth,” IEEE Trans. Inf. Theory, vol. 58, no. 4,
pp. 2265–2279, Apr. 2012.

[35] H. Park, S. Hong, J.-S. No, and D.-J. Shin, “Design of multiple-edge
protographs for QC LDPC codes avoiding short inevitable cycles,” IEEE
Trans. Inf. Theory, vol. 59, no. 7, pp. 4598–4614, Jul. 2013.

[36] A. Hareedy and R. Calderbank, “A new family of constrained codes
with applications in data storage,” in Proc. IEEE Inf. Theory Workshop
(ITW), Visby, Sweden, Aug. 2019, pp. 1–5.

Shiyuan Mo (Member, IEEE) received the B.Sc.
degree in software engineering and the M.Sc.
degree in information and communication engineer-
ing from Sun Yat-sen University, Guangzhou, China,
in 2015 and 2018, respectively. His research interests
include channel coding and data communications.

Li Chen (Senior Member, IEEE) received the
B.Sc. degree in applied physics from Jinan
University, China, in 2003, and the M.Sc. degree
in communications and signal processing and
the Ph.D. degree in communications engineering
from Newcastle University, U.K., in 2004 and
2008, respectively. From 2007 to 2010, he was
a Research Associate with Newcastle University.
In 2010, he returned China as a Lecturer with the
School of Information Science and Technology, Sun
Yat-sen University, Guangzhou. From 2011 to 2016,

he became an Associate Professor and a Professor with Sun Yat-sen
University, respectively. In 2013, he became an Associate Head of the
Department of Electronic and Communication Engineering (ECE). From
2017 to 2020, he was the Deputy Dean of the School of Electronics
and Communication Engineering. From 2011 to 2012, he was a Visiting
Researcher with the Institute of Network Coding, the Chinese University
of Hong Kong. From July 2015 to October 2015, he was a Visitor with the
Institute of Communications Engineering, Ulm University, Germany. From
October 2015 to June 2016, he was a Visiting Associate Professor with the
Department of Electrical Engineering, University of Notre Dame, USA. His
research interests include information theory, error-correction codes, and
data communications. He likes reading and photography. He is currently
a Senior Member of the Chinese Institute of Electronics (CIE). He is also
a member of the IEEE Information Theory Society Board of Governors
Conference Committee and a Committee Member of the CIE Information
Theory Society. He has been involved in organizing several international
conferences, including the 2018 IEEE Information Theory Workshop (ITW)
at Guangzhou, for which he was the General Co-Chair. He is also the Chair
of the IEEE Information Theory Society Guangzhou Chapter. He is serving
as an Associate Editor for IEEE TRANSACTIONS ON COMMUNICATIONS.

Daniel J. Costello, Jr. (Life Fellow, IEEE)
received the B.S.E.E. degree from Seattle University
in 1964 and the M.S. and Ph.D. degrees in electrical
engineering from the University of Notre Dame
in 1966 and 1969, respectively.

He joined the Illinois Institute of Technology
in 1969 as a Faculty Member. In 1985, he became
a Professor of electrical engineering with the Uni-
versity of Notre Dame, where he served as the
Department Chair from 1989 to 1998. He has more
than 400 technical publications in his field. In 1983,

he coauthored a popular textbook entitled Error Control Coding: Fundamen-
tals and Applications (Second Edition, 2004). His research interests include
digital communications, with a special emphasis on error control coding and
information theory. In 1999, he received the Humboldt Research Prize from
the German Government, and in 2000, he was named the Leonard Bettex
Professor of electrical engineering at Notre Dame.

Dr. Costello was elected as a fellow of the IEEE in 1985. He served 18 years
as a member of the IEEE Information Theory Society Board of Governors;
in 1986, he was the President of the IT Society BOG; and in 2000, he received
the Third-Millennium Medal from the IT Society. He was a co-recipient of
the Donald G. Fink Prize Paper Award in 2009 and the joint IT Society/COM
Society Prize Paper Award in 2012. He also received the Aaron D. Wyner
Distinguished Service Award from the IT Society in 2013 and the IEEE Leon
K. Kirchmayer Graduate Teaching Award in 2015.

David G. M. Mitchell (Senior Member, IEEE)
received the Ph.D. degree in electrical engineering
from the University of Edinburgh, U.K., in 2009.
From 2009 to 2015, he held Post-Doctoral Research
Associate and then Visiting Assistant Professor posi-
tions at the Department of Electrical Engineering,
University of Notre Dame, USA. Since 2015, he has
been an Assistant Professor with the Klipsch School
of Electrical and Computer Engineering, New Mex-
ico State University, USA. His research interests
are in the area of digital communications, with an

emphasis on coding and information theory.

Roxana Smarandache (Senior Member, IEEE)
received the B.S. degree in mathematics with a
thesis in number theory from the University of
Bucharest, Bucharest, Romania, in 1996, and the
M.Sc. degree and the Ph.D. degree in mathematics
with a thesis in coding theory from the University
of Notre Dame, Notre Dame, IN, USA, in 1997 and
2001, respectively. She is currently a Professor of
mathematics and electrical engineering with the Uni-
versity of Notre Dame. After spending 11 years on
the faculty of San Diego State University, she joined

the University of Notre Dame in 2012, where she has a joint appointment
in mathematics and electrical engineering. Her research interests include
coding theory, combinatorics, and graph theory. In particular, she focuses on
low-density parity check codes, iterative and linear programming decoding,
and convolutional codes. She has been an Associate Editor of the Advances in
Mathematics of Communications (AMC) journal and IEEE TRANSACTIONS

ON INFORMATION THEORY from 2013 to 2014 and from 2014 to 2017,
respectively.

Jie Qiu received the B.Sc. degree in communi-
cation engineering from the Hefei University of
Technology, Hefei, China, in 2017. She is currently
pursuing the M.Sc. degree in information and com-
munication engineering with Sun Yat-sen University,
Guangzhou, China. Her research interests include
channel coding and data communications.

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on September 18,2020 at 01:32:41 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

