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Abstract—This paper proposes the first complete soft-decision
list decoding algorithm for Hermitian codes based on the Koetter-
Vardy’s Reed-Solomon code decoding algorithm. For Hermitian
codes, interpolation processes trivariate polynomials which are
defined over the pole basis of a Hermitian curve. In this paper,
the interpolated zero condition of a trivariate polynomial with
respect to a multiplicity matrix M is redefined followed by a
proof of the validity of the soft-decision scheme. This paper
also introduces a new stopping criterion for the algorithm that
tranforms the reliability matrix Π to the multiplicity matrix M .
Geometric characterisation of the trivariate monomial decoding
region is investigated, resulting in an asymptotic optimal per-
formance bound for the soft-decision decoder. By defining the
weighted degree upper bound of the interpolated polynomial,
two complexity reducing modifications are introduced for the
soft-decision scheme: elimination of unnecessary interpolated
polynomials and pre-calculation of the coefficients that relate the
pole basis monomials to the zero basis functions of a Hermitian
curve. Our simulation results and analyses show that soft-decision
list decoding of Hermitian code can outperform Koetter-Vardy
decoding of Reed-Solomon code which is defined in a larger finite
field, but with less decoding complexity.

Index Terms—List decoding, soft-decision, Algebraic-
geometric codes, Hermitian codes.

I. INTRODUCTION

REED-Solomon (RS) codes [1] is a well-known error-
correction coding scheme with a wide range of applica-

tions, such as wireless communications and storage devices.
However, the length of a RS code can not exceed the size
of the Galois field (GF) in which it is defined, limiting the
error-correction capability of the code. This limitation does not
apply to algebraic-geometric (AG) codes [2]. Therefore, long
codes can be generated from a smaller field reducing Galois
field arithmetic operations. Among AG codes, it is shown
in [3, 4] that Hermitian codes [5] can achieve significant
coding gains over RS codes by using both the unique decoding
algorithm [6-8] and the hard-decision list decoding algorithm
[9, 10]. This motivates the author to further develop a soft-
decision list decoding algorithm for the Hermitian codes.

For a (n, k) RS code with length n and dimension k, its
minimum Hamming distance is d = n−k+1. Guruswami and
Sudan [9, 10] proposed a hard-decision list decoding algorithm
with error-correction bound τGS = n − √

n(n− d) − 1,

exceeding the conventional unique decoding bound �d− 1
2

�.

Paper approved by T.-K. Truong, the Editor for Coding Theory and
Techniques of the IEEE Communications Society. Manuscript received July
2, 2007; revised September 26, 2008.

The authors are with the School of Electrical, Electronic and Computer
Engineering, Newcastle University, Newcastle-upon-Tyne, United Kingdom,
NE1 7RU (e-mail: {li.chen, r.carrasco, martin.johnston}@ncl.ac.uk).

Digital Object Identifier 10.1109/TCOMM.2009.08.070302

However, it is realised that achieving bound τGS demands a
high decoding complexity [11]. Koetter and Vardy [12] pro-
posed a soft-decision list decoding scheme for the RS codes,
showing significant improvement can be achieved beyond the
bound τGS , but with moderate decoding complexity.

For a (n, k) Hermitian code, its designed minimum distance
is defined as: d∗ = n−k−g+1, where g is the genus [13] of
the Hermitian curve. For the conventional unique decoding al-
gorithm using the Sakata’s algorithm [6, 7] with majority vot-

ing [8], its error-correction capability is bounded by �d
∗ − 1
2

�.
Hoholdt and Nielsen [14, 15] later developed a mathemati-
cal framework of applying the Guruswami and Sudan hard-
decision decoding scheme to Hermitian codes, extending the
error-correction bound to τGS = n − √

n(n− d∗) − 1. The
first list decoding results of Hermitian codes was published
by the authors in [16], showing significant coding gains can
be achieved over the unique decoding algorithm. Through
some later developments, the authors have presented com-
plexity reducing modifications [17] for the computationally
expensive interpolation process, including the elimination of
any unnecessary polynomials [11] and the pre-calculation of
the corresponding coefficients that relate a Hermitian curve’s
pole basis monomials to its zero basis functions.

This paper presents the first complete soft-decision list
decoding algorithm for Hermitian codes. Based on Koetter-
Vardy’s soft-decision scheme for RS codes, one of the chal-
lenges in developing a soft-decision list decoding scheme for
Hermitian codes is the extension of the interpolation from pro-
cessing bivariate polynomials to trivariate polynomials which
are defined over the pole basis of a Hermitian curve. This
paper defines the interpolated zero condition of a trivariate
polynomial and proposes a theorem to prove the validity of
the soft-decision scheme. Modification is introduced to the
reliability transform algorithm with introducing a new stop-
ping criterion. By geometrically characterising the trivariate
monomial decoding region, the authors derive the asymp-
totic optimal performance bound for the proposed algorithm.
For efficient implementation of the interpolation process, the
two important complexity reducing modifications [17] need
to be applied. This paper presents how to integrate these
two modificatioin schemes with the soft-decision algorithm
for Hermitian codes. Performance analysis and complexity
discussion for the soft-decision scheme are presented. It is
shown that the soft-decision scheme can achieve significant
improvement over the hard-decision scheme with less decod-
ing complexity. Comparisons with the Koetter-Vardy decoding
of RS codes are investigated. Our comparisons show that soft-
decision list decoding of Hermitian codes can outperform
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the RS codes defined in the same finite field with higher
decoding complexity. Moreover, it can also outperform the RS
codes defined in a larger finite field, but with less decoding
complexity.

The rest of the paper is organised as the follows: Section II
presents the background knowledge of this paper; Section III
presents the soft-decision list decoding algorithm; Section IV
presents the reduced complexity interpolation process; Sec-
tion V presents the proposed algorithm’s performance analysis
and a discussion on complexity; finally, a conclusion of the
paper is given in Section VI.

II. BACKGROUND KNOWLEDGE

This section presents the background knowledge of the
paper, including the hard-decision list decoding of Hermitian
codes and Koetter-Vardy’s soft-decision list decoder.

A. Hard-Decision List Decoding of Hermitian Codes

A Hermitian curve defined in Galois field with size q
(GF(q)) can be generally written as:

Hw(x, y, z) = xw+1 + ywz + yzw, (1)

where w =
√
q and its genus g =

w(w − 1)
2

[5]. Based on

an affine component Hw(x, y, 1), there are n = w3 affine
points pi = (xi, yi) and a point of infinity p∞ [17]. Pole
basis Lw of the curve contains a set of bivariate monomials
φa(x, y) with increasing pole order at p∞ as: vp∞(φ−1

a ) <
vp∞(φ−1

a+1) and vp∞(φ−1
a ) = a+g given a ≥ g, where a ∈ N .

For each affine point pi, there also exists a set of bivariate
polynomials ψpi,α(x, y) with increasing zero order at pi as:
ψpi,α < ψpi,α+1 and vpi(ψpi,α) = α, where α ∈ N [15,
17]. By choosing the first k monomials in Lw, the message
polynomial f(x, y) of a (n, k) Hermitian code can be written
as:

f(x, y) = f0φ0 + f1φ1 + · · · + fk−1φk−1, (2)

where f0, f1, ..., fk−1 ∈ GF(q) are the message symbols. The
code word is generated by:

c(n, k) = (c0, c1, ..., cn−1) = (f(p0), f(p1), ..., f(pn−1)),
(3)

and c0, c1, ..., cn−1 ∈ GF(q) are the code word symbols.
Definition 1: For the list decoding of a (n, k) Hermitian

code, by defining the weighted degree of variable z as:
wz = vp∞(φ−1

k−1), the pole order of a trivariate monomial
φaz

b(a, b ∈ N) can be interpreted as its (1, wz)-weighted
degree as:

deg1,wz(φaz
b) = vp∞(φ−1

a ) + wzb. (4)

A (1, wz)-lexicographic order (ord) can be assigned to
monomials φaz

b as: φa1z
b1 < φa2z

b2 , if deg1,wz(φa1z
b1) <

deg1,wz(φa2z
b2), or deg1,wz(φa1z

b1) = deg1,wz(φa2z
b2) and

b1 < b2. Let Fq[x, y, z] denotes the ring of polynomials de-
fined over GF(q), generally written as: Q =

∑
a,b∈N Qabφaz

b

and Qab ∈ GF(q). For a polynomial Q ∈ Fq[x, y, z], if

φa′zb′ (Qa′b′ �= 0) is the maximal monomial, polynomial
Q’s (1, wz)-weighted degree (or equivalently, pole order) and
leading order (lod) are defined as:

deg1,wz(Q) = deg1,wz(φa′zb′), lod(Q) = ord(φa′zb′). (5)

Given the hard-decision received word as:
R = (r0, r1, ..., rn−1) and ri ∈ GF(q), n interpolated
units can be formed by combining them with the
corresponding affine points used in the encoding as:
(p0, r0), (p1, r1), ..., (pn−1, rn−1). The first step of hard-
decision list decoding is to build the minimal polynomial
Q ∈ Fq[x, y, z] which interpolates the n units with a zero of
multiplicity m(m > 0), called the interpolation. As a result,
polynomial Q’s coefficients Qab shall satisfy [15, 17]:

∑
a,b≥β

Qab

(
b

β

)
γa,pi,αr

b−β
i = 0, for α+ β < m,

α, β ∈ N and i = 0, 1, ..., n− 1, (6)

where γa,pi,α ∈ GF(q) are the corresponding coefficients
between the pole basis monomial φa and the zero basis
functions ψpi,α, satisfying [15, 17]:

φa =
∑
α

γa,pi,αψpi,α. (7)

For efficient interpolation, coefficients γa,pi,α need to be
determined prior to the interpolation process [17].

Lemma 1: If Q ∈ Fq[x, y, z] has a zero of multiplicity
at least m over unit (p, ρ) (p is an affine point and ρ ∈
GF(q)), and there exists a polynomial h in the form of
equation (2) such that h(p) = ρ, then Q(x, y, h) has a zero
order vp(Q(x, y, h)) ≥ m at affine point p, or alternatively
ψp,m|Q(x, y, h) [14].

Based on Lemma 1, if there are Λ(Λ ≤ n) affine points
that satisfy h(pi) = ri, then the total zero order of polynomial
Q(x, y, h) over all the affine points is:

∑n−1
i=0 (Q(x, y, h)) ≥

mΛ. Hence, if
∑n−1

i=0 (Q(x, y, h)) > deg1,wz(Q(x, y, h)),
Q(x, y, h) = 0 or (z − h)|Q(x, y, z) since a nonzero polyno-
mial’s zero order cannot exceed its pole order. The second step
of the decoding process is to find the z roots of polynomial
Q such that they are the output candidates of the message
polynomial f , which is called the factorisation [4, 18, 19].

B. Koetter-Vardy’s Soft-Decision Scheme

Koetter-Vardy’s soft-decision scheme obtains a reliability
matrix Π instead of a hard-decision received word R. Ma-
trix Π contains each received symbol’s posteriori transition
probability with respect to each Galois field element ρi(i =
0, 1, ..., q − 1) and ρi ∈ GF(q). The reliability matrix Π is
further converted into a multiplicity matrix M with which a
set of interpolation points and the associated multiplicities are
indicated [12]. In the hard-decision scheme, a polynomial’s
zero order is increased by increasing the multiplicity value.
However, the decoding complexity is increased exponentially.
Alternatively, in the soft-decision scheme, a polynomial’s zero
order is increased by increasing the number of interpolation
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points each of which is assigned with a rational multiplic-
ity value. In order to extend this soft-decision scheme to
Hermitian codes, two parameters N1,k−1(δ) and Δ1,k−1(v)
defined in [12] for analysing bivariate polynomials Q =∑

a,b∈N Qabx
ayb and Qab ∈ GF(q) need to be redefined for

analysing the trivariate polynomials of Fq[x, y, z].
Definition 2: N1,wz(δ) denotes the number of trivariate

monomials φaz
b with (1, wz)-weighted degree not greater

than the nonnegative integer δ, which is defined as:

N1,wz(δ) = |{φaz
b : deg1,wz(φaz

b) ≤ δ, (a, b, δ) ∈ N}|.
(8)

Δ1,wz(v) denotes the minimal value of δ that guarantees
N1,wz(δ) is greater than a nonnegative integer v, which is
defined as:

Δ1,wz(v) = min{δ : N1,wz(δ) > v, v ∈ N}. (9)

III. SOFT-DECISION LIST DECODING OF HERMITIAN

CODES

This section presents the soft-decision list decoding algo-
rithm for Hermitian codes. It briefly describes the reliability
and multiplicity matrices. The solution of the soft-decision
scheme will then be proven. Based on that, the modified
reliability transform algorithm will be proposed. Finally, the
asymptotically optimal performance bound of this scheme will
be analysed.

A. Reliability Matrix and Multiplicity Matrix

Let χ and 	 denote the transmitted and received alphabets
as (χ,	) ∈ GF(q). Given that χ is uniformly distributed over
GF(q), entry πi,j of the reliability matrix Π is defined as [12]:

πi,j = Pr(χ = ρi | 	 = rj) =
p(rj | ρi)∑

ρ∈GF (q) p(rj | ρ) , (10)

where i = 0, 1, ..., q − 1, j = 0, 1, ..., n − 1 and n = q3/2.
′ Pr′ indicates the probability function and p(· | ρ) denotes the
probability-density function if the channel is continuous or the
probability-mass function if the channel is discrete. Entry πi,j

indicates the probability of the transmitted symbol rj being
ρi, given the received symbol rj . The difference between the
soft-decision decoding of RS codes and Hermitian codes is in
the size of the matrix Π. If both codes are defined in GF(q),
it result a matrix Π with size q × (q − 1) for the RS code
and size q × q3/2 for the Hermitian code. In each column of
matrix Π, the entry with the highest reliability value indicates
the hard-decision received symbol. Let ij denotes the index
of the maximal entry in column j as:

ij = index(max{πi,j |i = 0, 1, ..., q − 1}). (11)

The hard-decision received word R can be determined as:
R = (r0, r1, ..., rn−1) = (ρi0 , ρi1 , ..., ρin−1). Based on Π,
algorithm A of [12] is performed to proportionally transform
the reliability matrix into multiplicity matrixM which also has
size of q×q3/2. The entry mi,j of M indicates the multiplicity
value for the unit (pj , ρi). This transform will stop once a

desired value of the total multiplicities s is reached, where
s =

∑q−1,n−1
i=0,j=0 mi,j andmi,j ∈M . However, the performance

of a list decoder is determined by its output list size. One might
not achieve a performance gain by only increasing s without
increasing the output list size. A modified reliability transform
algorithm that is based on a designed output list size will be
proposed in Section III C.

B. System Solution

For polynomial Q =
∑

a,b∈N Qabφaz
b, to have a zero

of multiplicity mi,j at the unit (pj , ρi), it could be writ-
ten with respect to affine point pj’s zero basis functions
ψpj ,α as Q =

∑
α,β∈N Q

(pj ,ρi)
αβ ψpj ,α(z − ρi)β and with

coefficients Q
(pj,ρi)
αβ = 0 for α + β < mi,j [17]. Based

on equation (7) and zb =
∑

β≤b

(
b
β

)
ρb−β

i (z − ρi)β , Q =∑
a,b∈N Qab(

∑
α γa,pj ,αψpj ,α)(

∑
β≤b

(
b
β

)
ρb−β

i (z−ρi)β) and

coefficients Q(pj ,ρi)
αβ could be derived as:

Q
(pj ,ρi)
αβ =

∑
a,b≥β

Qab

(
b

β

)
γa,pj ,αρ

b−β
i . (12)

Regards to multiplicity matrix M , the interpolated polyno-
mial Q’s coefficients Qab should satisfy:

∑
a,b≥β

Qab

(
b

β

)
γa,pj ,αρ

b−β
i = 0, for α+ β < mi,j ,

α, β ∈ N, i = 0, 1, ..., q − 1 and j = 0, 1, ..., n− 1. (13)

By acknowledging the transmitted code word
(c0, c1, ..., cn−1), in each column of matrix M , the entry that
corresponds the unit (pj , cj) is denoted as:

m̂i,j = {mi,j|ρi = cj , i = 0, 1, ..., q − 1}. (14)

Selecting the n entries in M as: m̂i,0, m̂i,1, . . . , m̂i,n−1, the
code word score SM (c) can be defined as:

SM (c) =
n−1∑
j=0

m̂i,j . (15)

It results in the following theorem for the soft-decision list
decoding of Hermitian codes.

Theorem 2: Given the multiplicity matrix M and the result-
ing interpolated polynomial Q(x, y, z), if the code word score
SM (c) is large enough such that:

SM (c) > deg1,wz(Q), (16)

the message polynomial f can be found by factorising Q as:
(z − f)|Q(x, y, z) or Q(x, y, f) = 0.

Proof: The interpolated polynomial Q passes unit (pj , cj)
with multiplicity m̂i,j . Based on Lemma 1, if f is the message
polynomial such that f(pj) = cj for j = 0, 1, . . . , n− 1, the
polynomial Q(x, y, f) should satisfy:

ψp0,m̂i,0 · ψp1,m̂i,1 · · ·ψpn−1,m̂i,n−1 |Q(x, y, f). (17)

Let ψ̂(x, y) = ψp0,m̂i,0 · ψp1,m̂i,1 · · ·ψpn−1,m̂i,n−1 , the total
zero order of ψ̂(x, y) over all the affine points is:
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n−1∑
j=0

vpj (ψ̂(x, y)) = m̂i,0 + m̂i,1 + · · · + m̂i,n−1 = SM (c).

(18)
Based on (17), since ψ̂(x, y)|Q(x, y, f), the total zero order
of polynomial Q(x, y, f) over all the affine points shall be
greater than or equal to SM (c):

n−1∑
j=0

vpj (Q(x, y, f)) ≥ SM (c). (19)

Therefore, if SM (c) > deg1,wz(Q(x, y, f)),∑n−1
j=0 vpj (Q(x, y, f)) > deg1,wz(Q(x, y, f)). Since

polynomialQ(x, y, f)’s total zero order is greater than its pole
order, then Q(x, y, f) = 0 or equivalently (z − f)|Q(x, y, z).

As there are
1
2
mi,j(mi,j + 1) permutations of nonnegative

integers (α, β) with α+β < mi,j , equation (13) indicates the
total constraints to coefficients Qab imposed by the matrix M
is:

CM =
1
2

q−1∑
i=0

n−1∑
j=0

mi,j(mi,j + 1), (20)

which is defined as the cost of matrix M . The interpolation
process generates a system of CM linear constraints. If the
(1, wz)-weighted degree of the interpolated polynomial Q
is δ∗, according to Definition 2, Q has at most N1,wz(δ∗)
nonzero coefficients. The system will be solvable if:

N1,wz(δ∗) > CM . (21)

According to equation (9), in order to guarantee the so-
lution, the (1, wz)-weighted degree δ∗ of the interpolated
polynomial should be large enough, such that:

deg1,wz(Q(x, y, z)) = δ∗ = Δ1,wz (CM ). (22)

It results in the following corollary of Theorem 2 as:
Corollary 3: Message polynomial f can be found out by

(z − f)|Q(x, y, z), if

SM (c) > Δ1,wz (CM ). (23)

Since both the code word score SM (c) and expected
weighted degree Δ1,wz(CM ) are parameters of matrix M ,
Corollary 3 links the soft-decision system’s solution with the
multiplicity matrix.

C. Modified Reliability Transform Algorithm

Since the factorisation outputs are the z roots of the
interpolated polynomial, the output list size lM should not
exceed the interpolated polynomial’s z degree (degzQ) which
could be defined as:

lM = degz(Q(x, y, z)) = �deg1,wz(Q(x, y, z))
wz

�. (24)

Based on equation (22), deg1,wz(Q(x, y, z)) =
Δ1,wz(CM ). Therefore, the actual factorisation output

list size can be determined by matrix M . This introduces a
new stopping criterion for the reliability transform algorithm
– algorithm A of [12]. The iterative transform algorithm will
stop once the actual output size lM exceeds a designed output
size l. To determine Δ1,wz(CM ), the following corollary is
proposed.

Corollary 4: Δ1,wz (v) = deg1,wz(φaz
b|ord(φaz

b) = v).
Proof: Based on Definition 1, the monomial order grows

based on the growth of its (1, wz)-weighted degree. Therefore,
the weighted degree of monomial φaz

b with lexicographic
order v is the minimum value that guarantees there are more
than v monomials.

Therefore, given the multiplicity matrix M , the actual
number of factorisation output list lM is:

lM = �deg1,wz(φaz
b|ord(φaz

b) = CM )
wz

�. (25)

After performing each iteration of algorithm A [12], the
updated matrix M ’s cost CM is calculated by equation (20).
Then, the actual output list size lM is determined by equation
(25). The algorithm will stop once the lM exceeds the designed
value l.

D. Asymptotic Optimal Performance Bound

By increasing the output list size lM , the list decoder is more
likely to find a correct code word. Asymptotically, the optimal
performance of a list decoding algorithm can be achieved
when lM → ∞. It is easy to recognise that with lM → ∞,
CM → ∞. For the asymptotic analysis, the inequality of
Corollary 3 is applied with CM → ∞. Assisting this analysis,
the following corollary is proposed for characterising the
decoding region of the trivariate monomials φaz

b.

Corollary 5: N1,wz(δ) >
δ(δ − g)

2wz
given δ > 2g − 1, and

lim
δ→∞

N1,wz(δ) =
δ2

2wz
.

Proof: Fig. 1 shows the (1, wz)-weighted degree table of
monomial φaz

b. In the table, the x-axis and y-axis represent
φa’s index a and zb’s degree b and their unit distances weight
1 and wz respectively. Each monomial occupies a unit square
and is represented by its lower left corner. The entry in the
unit square indicates the monomial’s (1, wz)-weighted degree.
In the pole basis Lw, given φa with pole order vp∞(φ−1

a ) = δ
and δ > 2g − 1, there are in total g gaps [15]. Therefore,
the distance between φa’s lower left corner and the origin (0,
0) is δ − g. In the table, N1,wz(δ) is the total area occupied
by monomial φaz

b whose weighted degree is not greater than
δ, denoted by the grey region. The triangle region defined

by vertexes (0, 0), (0, � δ
wz

�) and (δ − g, 0) has the area of

1
2
(δ − g)� δ

wz
� ∼= δ(δ − g)

2wz
. It can be observed that the size

of the grey region is greater than the size of the triangular

region, and therefore N1,wz(δ) >
δ(δ − g)

2wz
. With δ → ∞, the

sizes of these two regions approach to be equal as N1,wz(δ) =
δ(δ − g)

2wz
. As δ 
 g, N1,wz(δ) =

δ2

2wz
.

Therefore, with CM → ∞, Δ1,wz(CM ) → ∞ and
Δ1,wz (CM ) =

√
2wzN1,wz(Δ1,wz (CM )) =

√
2wzCM .
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( > 2g - 1)  

(  – g, 0)  (0, 0) 

x(a) 

y(b) 

),0(
zw
δ

 

 

 

0 

⎣ ⎦
δδ

δ

δ

Fig. 1. Geometric argument for the decoding region of trivariate monomials.

Based on (15) and (20), inequality SM (c) > Δ1,wz (CM ) can
be alternatively interpreted as:

n−1∑
j=0

m̂i,j >

√√√√wz

q−1∑
i=0

n−1∑
j=0

mi,j(mi,j + 1). (26)

With CM → ∞, the total value of multiplicities s→ ∞, and
πi,j

n
∼= mi,j

s
[12]. If we denote m̂i,j’s corresponding entry in

Π as π̂i,j and substitute mi,j =
s

n
πi,j (or m̂i,j =

s

n
π̂i,j ) into

(26), it results:

s

n

n−1∑
j=0

π̂i,j >
s

n

√√√√wz

q−1∑
i=0

n−1∑
j=0

πi,j(πi,j +
n

s
). (27)

As
n

s
∼= 0 when s→ ∞, (26) can be approximated as:

n−1∑
j=0

π̂i,j >

√√√√wz

q−1∑
i=0

n−1∑
j=0

π2
i,j . (28)

Message polynomial f can be found out if the inequality of
(28) establishes. This indicates that the soft-decision scheme’s
optimal performance bound is determined by its reliability
matrix Π and the code rate parameter wz . This performance
bound will be proven in Section V.

IV. COMPLEXITY REDUCING INTERPOLATION

Two complexity reducing methods have been proposed by
the authors in [17] for the hard-decision list decoding of
Hermitian codes. This section presents modifications based
on these two methods when applied to the soft-decision
interpolation.

A. Elimination of Unnecessary Polynomials

For the interpolation process of the soft-decision list decod-
ing of Hermitian codes, a group of polynomials are initialised
and each of them is tested with all the interpolated zero
conditions defined by (13) and modified iteratively [17].
Given the designed output list size l, the polynomial group
is initialised as:

G = {Q(e) ∈ Fq[x, y, z]|Q(e) = Q(λ+wδ) = yλzδ,

0 ≤ λ < w, 0 ≤ δ ≤ l}. (29)
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Fig. 2. Interpolation complexity reducing analysis for the (64, 19) Hermitian
code.

There are w(l + 1) polynomials in G taking part in CM

iterations. Finally, the minimal polynomial in G is chosen as
the interpolated polynomial Q as:

Q = min
lod(Q(e))

{Q(e)|Q(e) ∈ G}. (30)

Since the leading order of the chosen interpolated polynomial
will not be greater than the iteration number [11, 17]

lod(Q) ≤ CM , (31)

those polynomials with leading order greater than CM can
be identified as unnecessary polynomials and eliminated dur-
ing the iterations. Equation (31) also indicates the (1, wz)-
weighted degree upper bound for the interpolated polynomial
is:

deg1,wz(Q) ≤ deg1,wz(φaz
b|ord(φaz

b) = CM ) = Δ1,wz(CM ).
(32)

Algorithm B of [17] describes the complexity reducing inter-
polation process, in which polynomial group update criterion
is modified for the soft-decision list decoding as:

G = {Q(e)|lod(Q(e)) ≤ CM}. (33)

Therefore, at the beginning of each iteration, the polynomial
group is updated by (33) to eliminate the unnecessary polyno-
mials and reduce the interpolation complexity. Fig. 2 shows the
complexity reduction effect in soft-decision decoding of a (64,
19) Hermitian code. The decoding complexity is measured in
term of the number of finite filed additions and multiplications.
The modification scheme is error dependent for which com-
plexity can be reduced more significantly in low-error weight
situations [11, 17]. In the soft-decision system, the complexity
reduction is measured as a function of the channel signal-to-
noise ratio (SNR). It shows the modification provides a more
significant reduction for high SNR values.

B. Pre-Calculation of the Corresponding Coefficients

Based on equation (13), the corresponding coefficients
γa,pj ,α are important for testing each polynomial’s interpo-
lated zero condition during the iterations. Algorithm A of
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[17] was proposed to determine these coefficients before the
interpolation process. To apply the algorithm, the interpolated
polynomial’s weighted degree upper bound needs to be known,
so that the maximal pole basis monomial φmax of Q can be
predicted by vp∞(φ−1

max) = deg1,wz(Q). Based on the interpo-
lated polynomial’s weighted degree upper bound of (32), the
maximal pole basis monomial φmax could be predicted by:

vp∞(φ−1
max) = Δ1,wz(CM ). (34)

Then, the following n sets of corresponding coefficients are
calculated with regards to each affine point as:

{γa,pj,α|0 ≤ α ≤ max, α ∈ N}(j = 0, 1, . . . , n− 1). (35)

In order to reduce the memory requirement for these n
sets of corresponding coefficients, the usage of them need
to be known. More specifically, since α < mi,j , among
the coefficient set {γa,pj,α|0 ≤ α ≤ max, α ∈ N}, those
with α ≥ mi,j can be disregarded. Based on the matrix M ,
interpolated units associated with the entries mi,j of the same
column share the same affine point. Hence, they will apply the
same coefficient set defined by (35). Therefore, the maximal
entry in each column of matrixM needs to be identified. Since
the multiplicity values mi,j are proportionally transformed
from the reliability values πi,j , knowing the index ij defined
by (11), we can identify mij ,j as the maximal entry in column
j of matrix M . Therefore, in the n coefficient sets of (35),
only

{γa,pj,α|0 ≤ α ≤ max, α < mi,j}(j = 0, 1, . . . , n−1) (36)

will be stored for interpolation. With the knowledge of these
coefficient sets in (36), the soft-decision interpolation process
can be efficiently facilitated.

Summarising the previous description, we present a com-
plete soft-decision list decoding algorithm for Hermitian
codes.

Algorithm A: Soft-decision list decoding of Hermitian
Codes
Decoder parameter: Designed output list size l;
Input: The reliability matrix Π;
Step 1: Transform matrix Π into the multiplicity matrix M
by algorithm A of [12] with applying the stopping criterion
of Section III C;
Step 2: Determine the interpolated polynomial’s weighted
degree upper bound by (32);
Step 3: Perform algorithm A of [17] to determine the n sets
of corresponding coefficients (35) and store them for the use
in interpolation as (36);
Step 4: Perform algorithm B of [17] for the complexity
reducing interpolation to determine the interpolated polyno-
mial Q(x, y, z), in which polynomial initialisation of (29) and
polynomial group update criterion of (33) is applied;
Step 5: Perform the recursive coefficient search algorithm of
[4] to find out the transmitted message polynomial f(x, y).

V. PERFORMANCE AND COMPLEXITY ANALYSES

This section presents the performance and complexity anal-
yses of the soft-decision list decoding algorithm for Hermitian
codes. The performance is evaluated on both the additive white
Gaussian noise (AWGN) channel and a quasi-static fading
channel using QPSK modulation.

A. Comparison with Hard-Decision List Decoding of Hermi-
tian Codes

Figs. 3 and 4 present the performance of the (64, 39) and
(512, 289) Hermitian codes which are defined in GF(16) and
GF(64) respectively. On the fading channel, block interleavers
with size 64 × 64 for the smaller codes and 100 × 512 for
the larger code are employed. It can be observed from the
simulation results that the soft-decision scheme can outper-
form both the unique decoder using Sakata’s algorithm and
the hard-decision list decoding algorithm. The improvement is
especially significant on the fading channel. The performance
improves as the output list size increases and approaches
the soft-decision’s optimal performance asymptotically. Notice
that the optimal performance is obtained by assessing the
inequality of (28) using knowledge of the transmitted code
word c at the receiver and the reliability matrix Π.

Figs. 3 and 4 show that the soft-decision scheme with
a small output list size can outperform the hard-decision
scheme’s optimal results, implying that the soft-decision
scheme can outperform the hard-decision scheme with a
smaller decoding complexity. The complexity of the list de-
coding system is dominated by the interpolation process for
which the iteration number C (or the cost CM defined by
(20) in the soft-decision scheme) is the key parameter. Given
the iteration number C, the interpolation complexity (finite
field addition and multiplication operations) is upper bounded

by
2
3
(C + 1)3[11]. For the analyses of Figs. 3 and 4, l∗ is

used to denote the smallest value with which the soft-decision
scheme can outperform the hard-decision scheme’s optimal
result and Table I shows the required complexity. According
to Table I, the soft-decision scheme can outperform the hard-
decision scheme with far less decoding complexity.

B. Comparison With Soft-Decision List Decoding of RS Codes

In this subsection, the (512, 289) Hermitian code’s perfor-
mance and decoding complexity are compared with the (63,
35) and the (255, 144) RS codes. All of the three codes have
code rate of 0.56. Their performance comparison over the
AWGN channel is shown in Figs. 6 and 7 respectively, and
their decoding complexity comparison is shown in Table II.

Figs. 6 and 7 show that with the same output list size,
the (512, 289) Hermitian code can outperform the RS codes
defined both in the same finite field or even a larger finite field.
For example, with l = 5, at a bit error rate (BER) of 10−5,
the Hermitian code has 0.55 dB and 0.3 dB coding gains over
the (63, 35) RS code and the (255, 144) RS code respectively.
According to Table II, with the same output list size, soft-
decision list decoding of the Hermitian code demands a higher
number of iterations mainly due to its long code word length.
It is straightforward to realise that the decoding complexity
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Fig. 3. Soft-decision list decoding performance of the (64, 39) Hermitian code.
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Fig. 4. Soft-decision list decoding performance of the (512, 289) Hermitian code.

TABLE I
COMPLEXITY COMPARISON BETWEEN SOFT-DECISION AND HARD-DECISION LIST DECODING OF HERMITIAN CODES

���������Codes
Schemes

Hard-decision (Optimal)
Soft-decision

AWGN Rayleigh fading
Hermitian (64, 39) l = 13, C = 4224 l∗ = 2, C = 246 l∗ = 2, C = 246

Hermitian (512, 289) l = 118, C = 2237952 l∗ = 5, C = 4602 l∗ = 1, C = 892

of the Hermitian code is higher than that of the (63, 35) RS
code. However, the complexity comparison with the (255, 144)
RS code remains arguable, since this RS code is defined in a
larger finite field in which the arithmetic finite field calculation
is more complicated.

Elaborating further on this comparison, the authors select
two cases for discussion. Firstly, we compare the list decoding
of the Hermitian code with l = 1 and the list decoding of
the (63, 35) RS code with l = 5, since they require a similar
number of iterations. In this case, the decoding complexity for
the two codes remains similar as they are defined in the same
finite field. From Fig. 6, it can be observed that the Hermitian
code can outperform the RS code in the low BER region.
Secondly, we compare the list decoding of the Hermitian code
with l = 1 and the list decoding of the (255, 144) RS code
with l = 2 as they also require a similar number of iterations.
However, the decoding complexity for the (255, 144) RS code

is higher since it is defined in a larger finite field. As shown
by Fig. 7, the Hermitian code with l = 1 can still outperform
the RS code with l = 2.

VI. CONCLUSION

This paper has presented the first complete soft-decision list
decoding algorithm for Hermitian codes. In order to prove the
validity of the algorithm, a trivariate interpolated polynomial’s
zero condition with respect to the multiplicity matrix M was
redefined. A new stopping criterion based on the designed
output list size was introduced for the prior reliability trans-
form algorithm. After geometrically defining the character of
the monomial decoding region, an asymptotic optimal perfor-
mance bound for the soft-decision scheme was presented and
later proven by simulation results. For efficient implementation
of the interpolation process, two modified complexity reduc-
ing methods were introduced for the soft-decision scheme.
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TABLE II
COMPLEXITY COMPARISON BETWEEN SOFT-DECISION LIST DECODING OF HERMITIAN CODES AND RS CODES

���������Output size
Codes

Hermitian (512, 289) RS (63, 35) RS (255, 144)

l = 1 C = 892 C = 103 C = 430
l = 2 C = 1813 C = 204 C = 859
l = 5 C = 4602 C = 715 C = 3004
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Fig. 5. Performance comparison between soft-decision list decoding of the
(512, 289) Hermitian code and the (63, 35) RS code over AWGN channel.

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

3 3.5 4 4.5 5 5.5 6 6.5 7
[dB]

B
E

R

Hermitian (512, 289), soft-decision (l = 1)
Hermitian (512, 289), soft-decision (l = 2)
Hermitian (512, 289), soft-decision (l = 5)
RS (255, 144), soft-decision (l = 1)
RS (255, 144), soft-decision (l = 2)
RS (255, 144), soft-decision (l = 5)

0/ NE b

Fig. 6. Performance comparison between soft-decision list decoding of the
(512, 289) Hermitian code and the (255, 144) RS code over AWGN channel.

First, by defining the interpolated polynomial’s leading order
upper bound, the elimination of unnecessary polynomials can
be performed during the iterative interpolation. Our results
showed it could reduce complexity up to 21.76%. Second,
by defining the interpolated polynomial’s weighted degree
upper bound and knowing the multiplicity matrix M , pre-
calculation of the corresponding coefficient can be performed
before the interpolation process. As a summary, a complete
soft-decision list decoding algorithm for Hermitian codes was
presented. The performance and complexity analyses of this
soft-decision scheme were given showing it can not only
outperform hard-decision list decoding of Hermitian codes,
but also outperform soft-decision list decoding of RS codes.
Our analysis also showed that the Hermitian code could even

outperform RS codes defined in larger finite fields, but with
a smaller decoding complexity. From this work, we conclude
that Hermitian codes are possible candidates to replace RS

codes in future industrial applications.
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