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Reduced Complexity Interpolation for
List Decoding Hermitian Codes

Li Chen, Rolando Carrasco, and Martin Johnston

Abstract—List decoding Hermitian codes using the
Guruswami-Sudan (GS) algorithm can correct errors beyond
half the designed minimum distance. It consists of two processes:
interpolation and factorisation. By first defining a Hermitian
curve, these processes can be implemented with an iterative
polynomial construction algorithm and a recursive coefficient
search algorithm respectively. To improve the efficiency of list
decoding Hermitian codes, this paper presents two contributions
to reduce the interpolation complexity. First, in order to simplify
the calculation of a polynomial’s zero condition during the
iterative interpolation, we propose an algorithm to determine the
corresponding coefficients between the pole basis monomials and
zero basis functions of a Hermitian curve. Second, we propose
a modified complexity reducing interpolation algorithm. This
scheme identifies any unnecessary polynomials during iterations
and eliminates them to improve the interpolation efficiency. Due
to the above complexity reducing modifications, list decoding
long Hermitian codes with higher interpolation multiplicity
becomes feasible. This paper shows list decoding algorithm can
achieve significant coding gain over the conventional unique
decoding algorithm.

Index Terms—List decoding, hermitian codes, decoding effi-
ciency.

I. INTRODUCTION

L IST decoding of algebraic-geometric (AG) codes can
outperform conventional unique decoding algorithms by

correcting errors beyond �d∗−1
2 �, where d∗ is the designed

minimum distance of the AG code. For a (n, k) AG code with
length n and dimension k, d∗ = n − k − g + 1 where g
is the genus of the corresponding algebraic curve. Sudan [1]
introduced the first list decoding algorithm for low rate Reed-
Solomon (RS) codes, followed by Shokrollahi and Wasserman
[2] to list decode low rate AG codes. Guruswami and Sudan
[3, 4] later presented a complete version of a list decoding
algorithm for all rate RS and AG codes, called the Guruswami-
Sudan (GS) algorithm. For a (n, k) AG code, the GS algorithm
can correct up to

τGS = n− �
√
n(n− d∗)� − 1 (1)

errors. The algorithm consists of two processes: interpolation,
which builds an interpolated polynomial based on the received
information, and factorisation, which finds the transmitted
message information based on the interpolated polynomial.
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They can be implemented with an iterative polynomial con-
struction algorithm [5-8] and a recursive coefficient search
algorithm [9-12] respectively.

RS codes are widely used in industry, such as communi-
cation and storage systems. Compared with RS codes defined
over the same Galois field (GF), AG codes have better error-
correction capability because they have longer code word
lengths resulting in a large designed minimum distance [13,
14]. Therefore, AG codes could be considered as the successor
of RS codes. Among them, Hermitian codes are one of
the best performing and well developed AG codes. Johnston
and Carrasco [15, 16] evaluated Hermitian code performance
by employing the Sakata algorithm [17, 18] with majority
voting [19] and inverse discrete Fourier transforms. This is
a unique decoding algorithm with the half distance error-
correction bound. To decode Hermitian codes beyond this
bound, Hoholdt and Nielsen [5, 6] presented a mathematical
framework of list decoding Hermitian codes with the GS
algorithm. After an extensive study of [5, 6], the authors
published the first simulation results of list decoding Hermitian
codes in [20], which showed significant coding gains can be
achieved over a unique decoding algorithm [17-19]. However,
list decoding Hermitian codes with the GS algorithm remains
complex and limits the application of the GS algorithm to
longer codes. According to the complexity analysis in [8],
the GS algorithm’s high complexity is mainly caused by the
iterative interpolation, in which a set of polynomials is tested
for different zero conditions and modified interactively. For
Hermitian codes, to define the zero condition of a polynomial,
we need to transfer it into a polynomial written with respect
to the zero basis functions of a Hermitian curve, which is not
very efficient for implementation. However, the zero condition
of a polynomial can also be defined without this transfer based
on knowledge of the corresponding coefficients between the
pole basis monomials and zero basis functions of a Hermitian
curve. Inspired by this, we propose an efficient algorithm
to determine these coefficients before interpolation so that
they can be applied afterwards. In order to improve the list
decoding efficiency for RS codes, the authors [8] proposed
a complexity reducing scheme to identify any unnecessary
polynomials in the set and eliminate them during the itera-
tive interpolation process. This scheme is also valid for list
decoding Hermitian codes. This paper proposes a complexity
reducing interpolation algorithm applying the scheme in [8].
The factorisation process of AG codes can be implemented
by applying the recursive coefficient search algorithm [11].
A more generalised factorisation algorithm which can be
applied to both RS and AG codes is later presented by the

1536-1276/08$25.00 c© 2008 IEEE

Authorized licensed use limited to: Newcastle University. Downloaded on December 3, 2008 at 11:52 from IEEE Xplore.  Restrictions apply.



4354 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 7, NO. 11, NOVEMBER 2008

authors in [12]. By improving the efficiency of interpolation,
list decoding longer Hermitian codes with higher multiplicity
becomes feasible. This paper evaluates the performance of
4 different Hermitian codes defined in GF(16) and GF(64)
over the additive white Gaussian noise (AWGN) and Rayleigh
fading channels.

The structure of the paper is organised as follows: Section
II presents prerequisite knowledge of Hermitian curves and
Hermitian codes; Section III briefly describes the GS decoding
of Hermitian codes, in which the zero condition of a poly-
nomial and the decoding parameters are defined; Section IV
proposes an efficient algorithm to determine the correspond-
ing coefficients between the pole basis monomials and zero
basis functions of a Hermitian curve; Section V presents the
reduced complexity interpolation algorithm; simulation results
evaluating the performance of 4 different Hermitian codes are
presented in Section VI and conclusions are given in Section
VII.

II. PEREQUISITE KNOWLEDGE

A Hermitian curve defined over GF(q), where q is the size
of Galois field, is given as:

Hw(x, y, z) = xw+1 + ywz + yzw (2)

where w =
√
q and has a genus g = w(w−1)

2 [14]. For simplic-
ity, this paper assumes GF(q) is an extension field of GF(2).
Hw(x, y, z) is a projective curve with three affine components
Hw(1, y, z), Hw(x, 1, z) and Hw(x, y, 1). By selecting one
affine component Hw(x, y, 1), there are n = w3 affine points
on it, which are of the form pi = (xi, yi, 1)(0 ≤ i ≤ n− 1),
and a point of infinity p∞ = (0, 1, 0). Rational functions
on the curve Hw must have a pole only at p∞, and can be
generally written as [14]:

xλyδ

zλ+δ
(0 ≤ λ ≤ w, δ ≥ 0) (3)

where λ, δ ∈ N and N denotes the set of nonnegative integers
in this paper. Based on Hw(x, y, z) = 0, x

z = yw+yzw−1

xw ,
y
z = yw+1+y2zw−1

xw+1 . Therefore, the pole orders [21] of variable
x
z and y

z at p∞ are:

vp∞

((
x

z

)−1)
= w, vp∞

((
y

z

)−1)
= w + 1. (4)

Pole basis Lw of curve Hw contains a set of rational functions
with z = 1, coefficients 1, and increasing pole orders. As
z = 1, these rational functions can be reduced to bivariate
monomials, defined as [5]:

Lw = {φa | vp∞(φ−1
a ) < vp∞(φ−1

a+1), a ∈ N} (5)

where pole basis monomial φa and its pole order can be
generally written as:

φa = xλyδ, vp∞((xλyδ)−1) = wλ + (w + 1)δ,
(0 ≤ λ ≤ w, δ ≥ 0).

(6)

Also, affine points can be distinctively denoted by their x,
y coordinates as: pi = (xi, yi). Nonnegative integers can be
grouped into nongaps which are the pole orders of monomials
in Lw, and gaps otherwise. With respect to every affine point

pi, there exists a zero basis Zw,pi which contains a set of
rational functions ψpi,α with increasing zero orders [21] at
pi(vpi), defined as [5]:

Zw,pi = {ψpi,α | vpi(ψpi,α) < vpi(ψpi,α+1), α ∈ N}. (7)

ψpi,α has a zero order α at affine point pi and it can be
generally written as [6]:

ψpi,α = ψpi,λ+(w+1)δ = (x − xi)λ[(y − yi) − xw
i (x − xi)]δ,

(0 ≤ λ ≤ w, δ ≥ 0).
(8)

The relationship between pole basis monomial φa and zero
basis function ψpi,α can be written as [6]:

φa =
∑
α∈N

γa,pi,αψpi,α (9)

where γa,pi,α ∈ GF(q) are the corresponding coefficients.
The construction of a (n, k) Hermitian code can be de-

scribed as evaluating the n affine points of Hw over the
message polynomial f :

c(n, k) = (c0, c1, · · · , cn−1) = (f(p0), f(p1), · · · , f(pn−1))
(10)

where c0, c1, · · · , cn−1 ∈ GF(q) and f could be written as:

f(x, y) = f0φ0 + f1φ1 + · · · + fk−1φk−1 (11)

and f0, f1, . . . , fk−1 ∈ GF(q) are message symbols and
φ0, φ1, . . . , φk−1 are the first k monomials in Lw.

To decode a (n, k) Hermitian code with the GS algorithm,
the pole order of variable z is defined as vp∞(z−1) =
vp∞(φ−1

k+1). Then, the weighted degree of any trivariate mono-
mial φaz

b can be defined as:

degw(φaz
b) = vp∞(φ−1

a ) + bvp∞(z−1) (12)

and a lexicographic order (ord) can be defined to arrange the
monomials φaz

b:

φa1z
b1 < φa2z

b2

if degw(φa1z
b1) < degw(φa2z

b2), or degw(φa1z
b1) =

degw(φa2z
b2) and b1 < b2 [5]. Fq[x, y, z] is the ring of

polynomials defined over the set of pole basis functions of
the Hermitian curve Lw, which can be generally written as:
f(x, y, z) =

∑
a,b∈N fabφa(x, y)zb, where fab ∈ GF(q) and

φa ∈ Lw. Subsequently, Fu
q [x, y] is a subset of Fq[x, y, z]

with z degree equal to zero and vp∞(φ−1
a ) ≤ u. If we

denote uz = vp∞(z−1), the message polynomial in (11) is
a polynomial in Fuz

q [x, y]. The following definition is given
for polynomials defined in Fq[x, y, z]:

Definition 1: If φa′zb′ is the maximal monomial in polyno-
mial f ∈ Fq[x, y, z]:

φa′zb′ = max{φaz
b | fab �= 0}

then φa′zb′ is called the leading monomial of f and its
coefficient fab is called the leading coefficient of f , denoted
as:

LM(f) = φa′zb′ , and LC(f) = fa′b′

The weighted degree of f (degw(f)) and leading order of f
(lod(f)) are defined as:
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degw(f) = degw(φa′zb′), and lod(f) = ord(φa′zb′)

Based on the above definitions, for any two polynomials f
and h ∈ Fq[x, y, z], f < h if lod(f) < lod(h).

III. GS DECODING OF HERMITIAN CODES

The GS algorithm consists of two processes: in-
terpolation and factorisation. Given a received word
R = (r0, r1, · · · , rn−1) ∈ GF(q), n interpolated units
can be formed by combining each received symbol
with its respective affine point used in encoding as:
(p0, r0), (p1, r1), · · · , (pn−1, rn−1). Interpolation generates
the minimal polynomial Q ∈ Fq[x, y, z] which has a zero
of multiplicity of at least m (m > 0) over the n interpolated
units. In general,

Q =
∑

a,b∈N

Qabφaz
b (13)

where Qab ∈GF(q). With regard to the interpolated unit
(pi, ri), if polynomial Q can also be written with respect to
the zero basis functions in Zw,pi as [6]:

Q =
∑

α,β∈N

Q
(pi,ri)
αβ ψpi,α(z − ri)β (14)

where Q
(pi,ri)
αβ ∈ GF(q). Based on equation (8), clearly,

Q(pi, ri) = 0. Furthermore, if Q(pi,ri)
αβ = 0 for α + β < m,

polynomial Q has a zero of multiplicity of at least m at unit
(pi, ri) [5, 6]. As zb = (z−ri+ri)b =

∑
β≤b

(
b
β

)
rb−β
i (z−ri)β

and φa =
∑

α∈N γa,pi,αψpi,α, substituting them into (13)
gives:

Q =
∑

a,b∈N

Qab(
∑
α∈N

γa,pi,αψpi,α)(
∑
β≤b

(
b

β

)
rb−β
i (z − ri)β)

=
∑

α,β∈N

(
∑

a,b≥β

Qab

(
b

β

)
γa,pi,αr

b−β
i )ψpi,α(z − ri)β .(15)

Therefore, coefficients Q(pi,ri)
αβ of (14) can be written as:

Q
(pi,ri)
αβ =

∑
a,b≥β

Qab

(
b

β

)
γa,pi,αr

b−β
i . (16)

(16) defines the zero condition constraints of the coefficients
Qab of polynomial Q, so that Q has a zero of multiplicity of
at least m over unit (pi, ri). If we denote the constraints in
(16) to the coefficients of polynomial Q as D(pi,ri)

αβ (Q), such
that:

D
(pi,ri)
αβ (Q) = Q

(pi,ri)
αβ =

∑
a,b≥β

Qab

(
b

β

)
γa,pi,αr

b−β
i . (17)

Then after interpolating all the affine points, the interpolated
polynomial Q shall satisfy:

Q = min
lod(Q)

{Q ∈ Fq[x, y, z] | D(pi,ri)
αβ (Q) = 0, for i = 0,

1, . . . , n− 1 ∧ α+ β < m (α, β ∈ N)}. (18)

As there are
(
m+1

2

)
permutations of (α, β) for α+ β < m,

there are in total:

C = n

(
m+ 1

2

)
(19)

zero condition constraints that the coefficients Qab of poly-
nomial Q need to satisfy. C also represents the number of
iterations in the interpolation algorithm [5, 6], in which each
iteration imposes a zero condition constraint on Qab. The
weighted degree upper bound of interpolated polynomial Q
is defined as [5, 6]:

max{degwQ} = lmvp∞(z−1) + tm (20)

where lm is the maximal number of output candidates from
factorisation, defined as:

lm = max{u |
(
u

2

)
vp∞(z−1) − (u− 1)g ≤ C} − 1 (21)

and parameter tm is defined as:

tm = max{u | (lm + 1)u− Γ(u) +
(
lm + 1

2

)
vp∞(z−1)

− lmg ≤ C} (22)

where u ∈ N and Γ(u) denotes the number of gaps that are
less than or equal to the nonnegative integer u [5].

According to Theorem 3 of [5], if there exists a polynomial
h ∈ Fuz

q [x, y] such that

mΛ(h,R) > degwQ (23)

where Λ(h,R) = |{i | h(pi) = ri, i = 0, 1, . . . , n − 1}|
represents the number of affine points that satisfy h(pi) = ri,
then h is the z root of Q, i.e. Q(x, y, h) = 0, or equivalently
(z − h) | Q(x, y, z). Factorisation finds the z roots of
the interpolated polynomial Q, among which the message
polynomial of (11) is included [10-12, 20]. Therefore, the GS
algorithm’s error-correction capability τm is:

τm = n− Λ(h,R) = n−
⌊
degwQ

m

⌋
− 1. (24)

As the upper bound of degwQ is defined by (20), then:

τm ≥ n−
⌊
lmvp∞(z−1) + tm

m

⌋
− 1. (25)

IV. DETERMINING THE CORRESPONDING COEFFICIENTS

Based on (17), the corresponding coefficients γa,pi,α are
critical for defining the zero condition of a polynomial in
Fq[x, y, z]. Without the knowledge of them, we must transfer
a general polynomial (13) into (14) and find the coefficients
Q

(pi,ri)
αβ , which is not efficient during the iterative interpo-

lation. In fact, the corresponding coefficients γa,pi,α can be
determined independently of the received word. Therefore, if
they can be determined beforehand and applied during the
iterations, the interpolation efficiency can be greatly improved.
This section proposes an algorithm to determine them.

The problem we intend to solve can be simply stated as:
given an affine point pi = (xi, yi) of the curve Hw and a pole
basis monomial φa, determine the corresponding coefficients
γa,pi,α so that φa can be written as a sum of the zero basis
functions ψpi,α: φa =

∑
α∈N γa,pi,αψpi,α. For any two pole

basis monomials φa1 and φa2 in Lw, φa1φa2 =
∑

a∈N φa and
the zero basis function ψpi,α in (8) can be written as a sum
of pole basis monomials φa as [6]:

ψpi,α =
∑
a∈N

ζaφa (26)
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where coefficients ζa ∈ GF(q). Based on (8), we partition
ψpi,α as:

ψpi,α = ψA
pi,α · ψB

pi,α (27)

where ψA
pi,α = (x − xi)λ and ψB

pi,α = [(y − yi) − xw
i (x −

xi)]δ = [y− xw
i x− (yi − xw+1

i )]δ . It is easy to recognise that
ψA

pi,α has leading monomial LM(ψA
pi,α) = xλ and leading

coefficient LC(ψA
pi,α) = 1. Since vp∞(y−1) > vp∞(x−1),

ψB
pi,α has leading monomial LM(ψB

pi,α) = yδ and leading
coefficient LC(ψB

pi,α) = 1. Based on (27), ψpi,α has leading
monomial LM(ψA

pi,α) · LM(ψB
pi,α) = xλyδ and leading

coefficient LC(ψA
pi,α) · LC(ψB

pi,α) = 1. As 0 ≤ λ ≤ w and
δ ≥ 0, the set of leading monomials of the zero basis functions
in Zw,pi contains all the monomials defined in pole basis Lw.
Summarising the above analysis, we propose Corollary 1.

Corollary 1: If φL is the leading monomial of the zero basis
function ψpi,α as LM(ψpi,α) = φL, the leading coefficient of
ψpi,α equals 1 and (26) can be written as:

ψpi,α =
∑

a∈N,a<L

ζaφa + φL. (28)

The set of leading monomials of the zero basis functions in
Zw,pi contains all the monomials in Lw:

{LM(ψpi,α) = φL, ψpi,α ∈ Zw,pi} ⊆ Lw. (29)

Following on, by identifying the second largest pole basis
monomial φL−1 with coefficient ζL−1 ∈ GF(q) in ψpi,α, (28)
can also be written as:

ψpi,α =
∑

a∈N,a<L−1

ζaφa + ζL−1φL−1 + φL. (30)

Now it is sufficient to propose our efficient algorithm to
determine the corresponding coefficients γa,pi,α.

Algorithm A: Determining the corresponding coefficients
γa,pi,α between a pole basis monomial φa and zero basis
functions ψpi,α.
Step 1: Initialise all corresponding coefficients γa,pi,α = 0;
Step 2: Find the zero basis function ψpi,α with LM(ψpi,α)
=
φa, and let γa,pi,α = 1;
Step 3: Initialise function ψ̂ = ψpi,α;
Step 4: While (ψ̂ �= φa) {
Step 5: Find the second largest pole basis monomial ψL−1

with coefficient ζL−1 in ψ̂;
Step 6: In Zw,pi , find a zero basis function ψpi,α whose
leading monomial LM(ψpi,α) = φL−1, and let the
corresponding coefficient γa,pi,α = ζL−1;
Step 7: Update ψ̂ = ψ̂ + γa,pi,αψpi,α;
}

Proof: Notice that functions ψpi,α with LM(ψpi,α) > φa

will not contribute to the sum calculation of (9) and their
corresponding coefficients γa,pi,α = 0. The zero basis function
ψpi,α found at step 2 has leading monomial φL = φa. Based
on (30), it can be written as:

ψpi,α =
∑

a′∈N,a′<L−1

ζa′φa′ + ζL−1φL−1 + φa. (31)

(31) indicates the corresponding coefficient between φa and
ψpi,α is: γa,pi,α = 1. Polynomial ψ̂ initialised by step 3 is

an accumulated polynomial resulting in φa. While ψ̂ �= φa, in
(31), the second largest monomial φL−1 with coefficient ζL−1

is identified by step 5. Then, find another zero basis function
ψpi,α in Zw,pi where LM(ψpi,α) = φL−1. According to
Corollary 1, this zero basis function always exists and it can
be written as: ψpi,α =

∑
a′∈N,a′<L−1 ζa′φa′ + φL−1. At step

6, the corresponding coefficient between monomial φa and
the found zero basis function ψpi,α can be determined as:
γa,pi,α = ζL−1. As a result, the accumulated calculation of
step 7 can be written as:

ψ̂ =
∑

a′∈N,a′<L−1

ζa′φa′ + ζL−1φL−1 + φa + γa,pi,αψpi,α

=
∑

a′∈N,a′<L−1

ζa′φa′ + ζL−1φL−1 + φa +

∑
a′∈N,a′<L−1

ζL−1ζa′φa′ + ζL−1φL−1

=
∑

a′∈N,a′<L−1

ζa′φa′ + φa. (32)

Therefore in the new accumulated ψ̂, ζL−1φL−1 is eliminated
while the leading monomial φa is preserved. If the updated
ψ̂ �= φa, its second largest monomial φL−1 is again eliminated
while φa is always preserved as a leading monomial by the
same process. The algorithm terminates after all monomials
that are smaller than φa have been eliminated and results in
ψ̂ = φa. This process is equivalent to the sum calculation of
(9). Here a worked example is presented to illustrate Algorithm
A.

Example: Given pi = (σ2, σ2) (σ is a primitive element in
GF(4) satisfying σ2 + σ + 1 = 0) is an affine point on curve
H2 and a pole basis (L2) monomial φ5 = y2, determine the
corresponding coefficients γ5,pi,α so that φ5 can be written as
φ5 =

∑
α∈N γ5,pi,αψpi,α.

Based on (8), the first 8 zero basis functions in Z2,pi can
be listed as:
ψpi,0 = (x− σ2)0 = 1;
ψpi,1 = (x− σ2)1 = σ2 + x;
ψpi,2 = (x− σ2)2 = σ + x2;
ψpi,3 = (y − σ2) − σ(x − σ2) = σ + σx+ y;
ψpi,4 = (x− σ2)[(y − σ2) − σ(x− σ2)] = 1 + σ2x+ σ2y+

σx2 + xy;
ψpi,5 = (x−σ2)2[(y−σ2)−σ(x−σ2)] = σ2 +σ2x+σx2+

σy2 + x2y;
ψpi,6 = [(y − σ2) − σ(x − σ2)]2 = σ2 + σ2x2 + y2;
ψpi,7 = (x− σ2)[(y − σ2)− σ(x− σ2)]2 = σ + σ2x+ σ2y+

σx2 + xy2.

Initialise all ψ5,pi,α = 0. In Z2,pi , as LM(ψpi,6) = φ5,
we let γ5,pi,6 = 1 and initialise the accumulated polynomial
ψ̂ = ψpi,6 = σ2 + σ2x2 + y2.

As ψ̂ �= φ5, its second largest monomial φL−1 = x2

with coefficient ζL−1 = σ2 is identified. Among the zero
basis functions in Z2,pi , we find ψpi,2 with LM(ψpi,2) =
φL−1 = x2 and let γ5,pi,2 = ζL−1 = σ2. Update ψ̂ =
ψ̂ + γ5,pi,2ψpi,2 = σ + y2.

As ψ̂ �= φ5, again its second largest monomial φL−1 = 1
with coefficient ζL−1 = σ are identified. Among the zero basis
functions in Z2,pi , we find ψpi,0 with LM(ψpi,0) = φL−1 =
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1, and let γ5,pi,0 = ζL−1 = σ. Update ψ̂ = ψ̂+γ5,pi,0ψpi,0 =
y2.

Now, ψ̂ = φ5, we can stop the algorithm and output
γ5,pi,0 = σ, γ5,pi,2 = σ2 and γ5,pi,6 = 1. The rest of the
corresponding coefficients γ5,pi,α = 0 (α �= 0, 2, 6).

Before interpolation, the monomials φa that exist in the in-
terpolated polynomial Q are unknown. However, the weighted
degree upper bound of polynomial Q is defined by (20),
from which the largest pole basis monomial φmax that might
exist in Q can be predicted by vp∞(φ−1

max) = max{degwQ}.
Based on an interpolation multiplicity m, with parameter
α < m, the corresponding coefficients that might be used
in interpolation are γ0,pi,α ∼ γmax,pi,α. Therefore Algorithm
A can be used to determine all the corresponding coefficients
γ0,pi,α ∼ γmax,pi,α and only γ0,pi,α ∼ γmax,pi,α (α < m)
are stored for interpolation in order to minimise the memory
requirement. For example, to list decode the (8, 4, 4) Her-
mitian code with multiplicity m = 2, max{degwQ} = 13.
Therefore, the largest pole basis monomial that might exist in
Q is φmax = φ12 = x2y3 and Algorithm A can be applied to
calculate all the corresponding coefficients γ0,pi,α ∼ γ12,pi,α

and γ0,pi,α ∼ γ12,pi,α (α < 2) are stored.

V. COMPLEXITY REDUCING INTERPOLATION

Interpolation determines the polynomial Q defined by (18).
This can be implemented using an iterative polynomial con-
struction algorithm [5-8]. First, a set of polynomials is ini-
tialised. During the iterations, they are tested by different zero
condition constraints and modified interactively. As mentioned
in Section III, there are in total C iterations as given in
(19), after which the minimal polynomial in the set is chosen
as the interpolated polynomial Q. According to the iterative
process analysis [8], the interpolated polynomialQ has leading
order lod(Q) ≤ C. This indicates that those polynomials with
leading order over C will not be the chosen candidates. Also,
if there is a polynomial in the set with leading order over C
during the iterations, the chosen polynomial Q has not been
modified with this polynomial, otherwise lod(Q) > C [8].
Therefore, those polynomials with leading order greater than
C can be eliminated from the set during iterations in order to
reduce unnecessary computations.

If f ∈ Fq [x, y, z] has leading monomial LM(f) = φa′zb′ ,
polynomials in Fq[x, y, z] can be partitioned into the following
classes according to the z degree of their leading monomial
and the pole order vp∞(φ−1

a′ ) of φa′ as:

Vλ+wδ = {f ∈ Fq[x, y, z] | b′ = δ ∧ vp∞(φ−1
a′ ) = uw + λ,

LM(f) = φa′zb′ , (δ, u, λ) ∈ N,λ < w} (33)

such that Fq[x, y, z] =
⋃

λ,δ∈N,λ<w Vλ+wδ . According to
Section III, the factorisation outputs are the z roots of Q.
Therefore, the z degree of Q is less than or equal to the
maximal length of the output list lm of (21) and Q is a
polynomial chosen from the following classes:

Vj = Vλ+wδ, (0 ≤ λ < w, 0 ≤ δ ≤ lm). (34)

At the beginning of the iterative process, a set of polynomials
is initialised to represent each of the polynomial classes

defined by (34) as:

G = {Qj = Qλ+wδ = yλzδ, Qj ∈ Vj}. (35)

During the iterations, each polynomial Qj in the set G is the
minimal polynomial within its class Vj that satisfies all the
tested zero conditions. At the beginning of each iteration, the
polynomial set G is modified by:

G = {Qj | lod(Qj) ≤ C} (36)

in order to eliminate those polynomials with leading order
over C. Then the remaining polynomials in G are tested by
the zero condition defined in (17) as:

Δj = D
(pi,ri)
αβ (Qj). (37)

The determined corresponding coefficients γa,pi,α are applied
for this calculation. Those polynomials with Δj = 0 satisfy
the zero condition and do not need to be modified. However,
those polynomials with Δj �= 0 need to be modified. Among
them, find the index of the minimal polynomial as j′ and
record the minimal polynomial as Q′:

j′ = index( min
lod(Qj)

{Qj | Δj �= 0}). (38)

Q′ = Qj′ . (39)

For Qj′ , it is modified as:

Qj′ = (x− xi)Q′ (40)

where xi is the x coordinate of affine point pi in the
current interpolated unit (pi, ri). The modified Qj satis-
fies D

(pi,ri)
αβ (Qj′ ) = 0 because D

(pi,ri)
αβ [(x − xi)Q′] =

D
(pi,ri)
αβ (xQ′) − xiD

(pi,ri)
αβ (Q′) = xiΔj′ − xiΔj′ = 0. The

rest of the polynomials with Δj �= 0 are modified as:

Qj = Δj′Qj − ΔjQ
′. (41)

The modified Qj satisfies D
(pi,ri)
αβ (Qj) = 0 be-

cause D
(pi,ri)
αβ [Δj′Qj − ΔjQ

′] = Δj′D
(pi,ri)
αβ (Qj) −

ΔjD
(pi,ri)
αβ (Q′) = Δj′Δj−ΔjΔj′ = 0. After C iterations, the

minimal polynomial in the set G is chosen as the interpolated
polynomial Q:

Q = min
lod(Qj)

{Qj | Qj ∈ G}. (42)

From the above description, it can be seen that by applying
the complexity reducing scheme in (36), the zero condition
calculation in (37) and modifications in (40) and (41) for
those polynomials Qj with lod(Qj) > C can be avoided,
and therefore the interpolation efficiency can be improved.
According to [8], this complexity reducing scheme is error
dependent and can reduce complexity more significantly in
low error weight situations. This is because the modification
scheme in (36) takes action in earlier iteration steps for low
error weight situations, and therefore computations can be
reduced. Fig. 1 shows the interpolation (with different mul-
tiplicity m) complexity reduction by applying the scheme in
(36) for decoding the (64, 19, 40) Hermitian code. It is shown
that complexity can be reduced significantly in low error
weight situations, especially when m = 1, and complexity
can be reduced by up to 48.83%. However, in high error
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Fig. 1. Complexity analysis for the interpolation of GS decoding Hermitian
code (64, 19, 40).

weight situations, complexity reduction is not as significant.
Based on Fig. 1, it can also be observed that the complexity
reduction also depends on the interpolation multiplicity m.
When m = 1, complexity reduction is significant; when
m = 2, complexity reduction is marginal.

Summarising Section IV and V, the reduced complexity
interpolation process for GS decoding Hermitian codes can
be stated as:

Initial computation: Apply Algorithm A to determine all
the necessary corresponding coefficients γa,pi,α and store them
to be used by the iterative polynomial construction algorithm
(Algorithm B);

Algorithm B: Iterative Polynomial Construction.
Initialisation: Initialise the set of polynomials G by (35);
Step 1: For each interpolated unit (pi, ri)(i = 0, 1, · · · , n−1)
{
Step 2: For each pair of the zero condition parameters (α,
β)(α + β < m) {
Step 3: Modify polynomial set G by (36);
Step 4: Test the zero condition Δj of each polynomial in
G by (37);
Step 5: For polynomials Qj with Δj �= 0 {
Step 6: Denote the index of the minimal polynomial as
j′ by (38) and record it as Q′ by (39);
Step 7: If j = j′, Qj is modified by (40);
Step 8: If j �= j′, Qj is modified by (41);
}}}
At the end of the iterations, the minimal polynomial Q is
chosen from the set G as (42).

VI. PERFORMANCE EVALUATION

Employing the above efficiency improved interpolation, list
decoding of longer Hermitian codes with different multiplicity
is feasible. The authors have implemented the GS decoding
of Hermitian codes [3, 5] using C programming language,
in which the factorisation process is implemented by the
recursive coefficient search algorithm [11, 12]. The evaluating
list decoder structure is presented in Fig. 2. Figs. 3 and 4
present the performance of (64, 19, 40) and (64, 39, 20)
Hermitian codes, while Figs. 5 and 6 present the performance
of (512, 153, 332) and (512, 289, 196) Hermitian codes.
Simulations are run over AWGN and Rayleigh fading channels

Determine the 
Corresponding 

Coefficients 
(Algorithm A) 

Complexity 
Reducing 

Interpolation 
(Algorithm B) 

Factorisation 
(Recursive 
Coefficient 

Search 

Received word R 

Note:       indicates the pre-calculation step of the efficient list decoding algorithm. 

Fig. 2. Efficiency improved list decoder structure for Hermitian codes.

using the QPSK modulation. The Rayleigh fading channel
is frequency nonselective with Doppler frequency 126.67 Hz
and date rate of 30 kb/s. Over the fading channel, a block
interleaver with size 100 × n is used, where n is the length
of the code. Their performances are evaluated by measuring
their coding gains (dB) over the unique decoding algorithm
[15-19] at a bit error rate (BER) of 10−5.

According to the interpolation description in Section V,
for interpolation with multiplicity m, there are w(lm + 1)
polynomials being initialised that take part in C iterations.
Even though some of them will be eliminated during the
iteration by the scheme in (36), a high value ofm will still lead
to infeasibility for implementation as both the iteration number
and polynomial set size grow with m exponentially. Therefore,
we have achieved some feasible results from the GS algorithm
(m = 1, 2). Table I1presents our simulation parameters for
these 4 Hermitian codes. Before interpolation, Algorithm A is
applied to determine the corresponding coefficients γ0,pi,α ∼
γmax,pi,α and only γ0,pi,α ∼ γmax,pi,α (α = 0, 1) are stored
in order to minimise the memory requirement. From Table I,
it can be observed that to achieve the optimal result from the
GS algorithm remains too complex for implementation. For
example, to optimally decode (64, 19, 40) Hermitian code,
there are 116 polynomials taking part in 9792 iterations in
interpolation. But if assuming the GS algorithm is able to
correct τGS errors and the transmitted code word c̄ is known
by the decoder, the theoretical optimal performance of the
GS algorithm can also be evaluated without employing the
interpolation and factorisation processes. This is achieved by
measuring the Hamming distance between the received word
R and the transmitted code word c̄. If it is not greater than τGS ,
decoding is claimed to be successful; otherwise, decoding is
failure. Figs. 3 to 6 show that the GS algorithm approaches
its optimal result with increasing interpolation multiplicity m.
Among the performance evaluations, it is worth highlighting
Fig. 4 which shows GS decoding the (64, 39, 20) Hermitian
code with multiplicitym = 2 is close to the theoretical optimal
result.

Table II analyses the simulation results shown in Figs. 3
to 6. During our simulations, the average number of errors
τ̄m that the GS algorithm is able to correct in order to
achieve the corresponding performance is measured. Based
on Table II, it can be observed that the GS algorithmŠs
coding gains grow with interpolation multiplicity m and they
are especially significant over the Rayleigh fading channel.

1In Table I, max{degwQ} represents the weighted degree upper bound
of the interpolated polynomial; φmax represents the maximal pole basis
monomial that might exist in the interpolated polynomial Q.
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Fig. 3. List decoding performance of Hermitian code (64, 19, 40).
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Fig. 4. List decoding performance of Hermitian code (64, 39, 20).

TABLE I
LIST DECODING PARAMETERS

Hermitian codes Interpolation multiplicity C lm w(lm + 1) max{degwQ} φmax

(64, 19, 40)
m = 1 64 2 12 50 φ44 = y10

m = 2 192 3 16 90 φ84 = y18

optimal(m = 17) 9792 28 116 – –

(64, 39, 20)
m = 1 64 1 8 60 φ54 = y12

m = 2 192 2 12 114 φ108 = xy22

optimal(m = 11) 4224 13 56 – –

(512, 153, 332)
m = 1 512 2 24 373 φ345 = x5y37

m = 2 1536 3 32 682 φ654 = x2y74

optimal(m = 213) 11668992 359 2880 – –

(512, 289, 196)
m = 1 512 1 16 442 φ414 = x8y42

m = 2 1536 2 24 856 φ828 = x8y88

optimal(m = 93) 2237952 118 952 – –

For example, GS decoding (64, 19, 40) Hermitian code with
multiplicity m = 2 can achieve 1.42 dB coding gain over
the Rayleigh fading channel. The GS algorithm can achieve
more significant coding gains for low rate codes, but this is
at the expense of higher decoding complexity. For example,
comparing the (512, 153, 332) and (512, 289, 196) Hermitian
codes, more significant coding gains can be achieved for the
former. However, according to Table I, GS decoding (512, 153,
332) Hermitian code has higher decoding complexity because
there are more polynomials being initialised that take part in
the iterative interpolation. The same result can also be found

by comparing the (64, 19, 40) and (64, 39, 20) Hermitian
codes.

VII. CONCLUSION

This paper presents two contributions to reduce interpola-
tion complexity so as to improve the efficiency of list decoding
Hermitian codes. We first propose an efficient algorithm to
determine the corresponding coefficients between the pole
basis monomials and zero basis functions of a Hermitian
curve. The coefficients are stored to be applied during the
iterative interpolation in order to simplify the zero condition
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Fig. 5. List decoding performance of Hermitian code (512, 153, 332)
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Fig. 6. List decoding performance of Hermitian code (512, 289, 196).

TABLE II
ANALYSIS OF EVALUATION RESULTS

Hermitian codes Interpolation multiplicity ¯τm
Coding gains (dB)

AWGN Rayleigh fading

(64, 19, 40)
m = 1 20 0.17 0.71
m = 2 21 0.33 1.42

optimal (m = 17) τGS = 24 0.91 3.30

(64, 39, 20)
m = 1 9 0.10 0.01
m = 2 10 0.30 0.94

optimal (m = 11) τGS = 10 0.30 0.94

(512, 153, 332)
m = 1 167 0.05 0.16
m = 2 184 0.40 0.88

optimal (m = 213) τGS = 208 0.88 1.84

(512, 289, 196)
m = 1 97 0.01 0.01
m = 2 99 0.08 0.16

optimal (m = 93) τGS = 109 0.32 0.72

calculation of a polynomial. We then propose a complex-
ity reducing interpolation algorithm by applying a scheme
developed by the authors which eliminates any unnecessary
polynomials during iterations. It is shown that this scheme
can improve the interpolation efficiency significantly. Given
that complexity can be reduced by the proposed methods, we
have evaluated list decoding performance of longer Hermitian
codes with higher interpolation multiplicity. Our results show
that the GS algorithm can achieve significant coding gains over
the unique decoding algorithm. The GS algorithmŠs coding

gains increase with interpolation multiplicity and it is more
significant for low rate codes. However, this performance is
at the expense of higher decoding complexity.
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