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Abstract: List decoding is a novel method for decoding Reed–Solomon (RS) codes that generates
a list of candidate transmitted messages instead of one unique message as with conventional alge-
braic decoding, making it possible to correct more errors. The Guruswami–Sudan (GS) algorithm
is the most efficient list decoding algorithm for RS codes. Until recently only a few papers in the
literature suggested practical methods to implement the key steps (interpolation and factorisation)
of the GS algorithm that make the list decoding of RS codes feasible. However, the algorithm’s
high decoding complexity is unsolved and a novel complexity-reduced modification to improve
its efficiency is presented. A detailed explanation of the GS algorithm with the complexity-reduced
modification is given with simulation results of RS codes for different list decoding parameters
over the AWGN and Rayleigh fading channels. A complexity analysis is presented comparing
the GS algorithm with our modified GS algorithm, showing the modification can reduce complexity
significantly in low error weight situations. Simulation results using the modified GS algorithm
show larger coding gains for RS codes with lower code rates, with more significant gains being
achieved over the Rayleigh fading channels.
1 Introduction

The idea of list decoding block codes was introduced by
Elias [1] and Wozencraft [2] independently in the 1950s.
In 1997, Sudan [3] introduced this idea to decode low-rate
(n, k) RS codes beyond the half-distance boundary
b(n2 k2 1)/2c, where n is the code length and k is the
message length. Later, Guruswami and Sudan [5, 6]
improved the algorithm to decode RS codes of nearly any
code rate beyond this boundary. However, this algorithm
was still impractical to implement until Kotter and Vardy
[7–9] and Roth and Ruckenstein [10] presented low-
complexity implementation methods for the key steps of
the GS algorithm: interpolation and factorisation. In 2003,
McEliece [11] gave an explicit tutorial discussion of the
algorithm.

Traditional algebraic decoding algorithms for RS codes
generate a unique decoded codeword. These algorithms
include the Berlekamp–Massey algorithm [12] and
Euclid’s algorithm [13, 14] and are very efficient in terms
of running time. However, they are unable to correct any
number of errors greater than b(n2 k2 1)/2c limiting the
performance of RS codes over deeply corruptive channels.
The GS algorithm for RS codes removes this limitation by
finding a list of possible transmitted messages with decod-
ing considered to be successful as long as the transmitted
message is included in the list. The correct transmitted
message is chosen by re-encoding the list of candidate
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messages and selecting the codeword with minimum
distance to the received word. According to Guruswami
and Sudan [5, 6], the GS algorithm improves the error
correction capability significantly for low-rate (,1/3) RS
codes. However, for higher rate codes this algorithm can
still improve the error correction capability but with a less
significant improvement.

Kotter and Vardy [8] presented an algebraic soft-decision
list decoder for RS codes. This algorithm is based on the
interpolation theorem used in the GS algorithm. In addition,
the reliability information of each symbol in the received
word is used. According to [15], this decoder has higher
complexity for low error weights and weaker error depen-
dence compared with the GS algorithm, but has slightly
lower complexity for high error weights. Therefore
overall the GS algorithm is still one of the most efficient
list decoding algorithms for RS codes.

The GS algorithm has not been assessed by many
researchers due to its high decoding complexity and it
also requires a good understanding of mathematics.
However, its greater error-correction capability makes it is
a potential alternative decoding algorithm for RS codes
and can be extended to the family of algebraic–geometric
codes [5, 7], which lead to wider applications. This
paper describes the principle of the GS algorithm for
RS codes from an algebraic–geometric point of view.
Addressed towards improving the algorithm’s decoding
efficiency, a novel complexity-reduced modification to
the original algorithm is presented and a detailed
complexity analysis is given. Using this modified GS
algorithm, simulation results are presented showing the
performance of this algorithm for different rate RS
codes over the AWGN and Rayleigh fading channels.
In the literature there are very few simulation results
that have been published.
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2 Overview of Guruswami–Sudan algorithm

Before explaning the GS algorithm we first denote some
commonly used symbols in this paper

Fq – finite field with q elements;
Fq[x] – ring of polynomials with coefficients from Fq and
variable x;
Fq[x

w] – ring of polynomials from Fq[x] with x degree � w;
Fq[x, y] – ring of bivariate polynomials with coefficients
from Fq and variables x and y.

2.1 Encoding Reed–Solomon codes

If f (x) is a subspace of Fq[x
k21], the generation of a (n, k)

RS code can be described as evaluating f(x) at a set of
points x0, x1, . . . , xn21 [ Fq

ðc0; c1; . . . ; cn�1Þ ¼ ð f ðx0Þ; f ðx1Þ; . . . ; f ðxn�1ÞÞ ð1Þ

where f (x) can be described as a linear combination of
functions 1, x, . . . , xk21 with its coefficients in the finite
field f0, f1, . . . , fk21 [ Fq

f ðxÞ ¼ f0 þ f1xþ � � � þ fk�1x
k�1

ð2Þ

The coefficients f0, f1, . . . , fk21 are regarded as the trans-
mitted message.

2.2 Brief description of Guruswami–Sudan
algorithm

The GS algorithm includes two key steps: interpolation and
factorisation.

Interpolation: If the received word is y ¼ (y0, y1, . . . ,
yn21), then combining with the finite-field elements used
in encoding (x0, x1, . . . , xn21), one can form n points as
(x0, y0), (x1, y1), . . . , (xn21, yn21). The task of interpolation
is to construct a bivariate polynomial

Qðx; yÞ ¼
X
i;j

qijx
iy j

ð3Þ

which has a zero of order m over these n points and with
minimal (1, k2 1)-weight degree, which is explained sub-
sequently and qij [ Fq is the coefficient of xiy j. This poly-
nomial intersects the n points m times and the value of m is
also called multiplicity in this paper.

Factorisation: After the bivariate polynomial Q(x, y) has
been found, we must factorise Q(x, y) to find the list L of
polynomials p(x) given by

L ¼ f pðxÞ: ðy� pðxÞÞjQðx; yÞ and degð pðxÞÞ , kg ð4Þ

All the polynomials in L have the possibility of being the
transmitted message f (x). The one with minimum distance
242
to the received word after re-encoding is chosen by the
decoder.

2.3 Decoding parameters

To understand the GS algorithm it is necessary to introduce
a few decoding parameters prior to the detailed description.

Defining the (u, v)-weight degree of monomial xiy j as

w-degu;vðx
iyjÞ ¼ iuþ jv ð5Þ

a sequence of bivariate monomials can be arranged by their
weight degrees. To decode a (n, k) RS code by the
GS algorithm, the (1, k2 1)-reverse lexicographic
((1, k2 1)-revlex) order is used. Under (1, k2 1)-revlex
order [16, 23]

x
i1y

j1 , x
i2y

j2 ; if

w-deg1;k�1ðx
i1y

j1 Þ, w-deg1;k�1ðx
i2y

j2 Þ;

or w-deg1;k�1ðx
i1y j1 Þ ¼ w-deg1;k�1ðx

i2y j2 Þ and i1 . i2

For example, to decode a (7, 5) RS code, (1, 4)-revlex order
is used. The generation of this order is shown by Table 1.
The entries Eij in Tables 1 and 2 represent the (1, 4)-
weight degree and (1, 4)-revlex order of monomials M
with x degree i and y degree j, respectively. Applying (5)
with u ¼ 1 and v ¼ 4, one can generate the (1, 4)-weight
degree of monomials M shown by Table 1. Based on
Table 1 and applying the revlex order rule, one can generate
the (1, 4)-revlex order of monomials M shown by Table 2
and denoted as ord(M). From Table 2, it is easy to determine
that under (1, 4)-revlex order, x4 , x2y , y2, since
ord(x4) ¼ 4, ord(x2y) ¼ 9 and ord(y2) ¼ 14.

Based on the monomials’ degree and order definition we
define the weight degree of a nonzero bivariate polynomial
as the weight degree of its leading monomial ML. Any
nonzero bivariate polynomial Q(x, y) can be written as

Qðx; yÞ ¼ a0M0 þ a1M1 þ � � � þ aLML; with

M0 , M1 , � � � , ML; a0; a1; . . . ; aL [ Fq and aL = 0

ð6Þ

The (1, k2 1)-weight degree of Q(x, y) can be defined as

w-deg1;k�1ðQðx; yÞÞ ¼ w-deg1;k�1ðMLÞ ð7Þ

L is called the leading order, lod, of polynomial Q(x, y),
defined as

lodðQðx; yÞÞ ¼ ordðMLÞ ¼ L ð8Þ

Therefore any two nonzero polynomials Q(x, y) and H(x, y)
(Q, H [ Fq[x, y]) can be compared with respect to their
Table 1: (1, 4)-weight degree

i 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

j

0 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

1 4 5 6 7 8 9 10 11 12 . . .

2 8 9 10 11 12 . . .

3 12 . . .

..

. ..
.
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Table 2: (1, 4)-revlex order

i 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

j

0 0 1 2 3 4 6 8 10 12 15 18 21 24 . . .

1 5 7 9 11 13 16 19 22 25 . . .

2 14 17 20 23 26 . . .

3 27 . . .

..

. ..
.

leading order

Qðx; yÞ � Hðx; yÞ; if lodðQðx; yÞÞ � lodðHðx; yÞÞ ð9Þ

Sx(N) and Sy(N) are denoted as the highest degree of x and y
under the (1, k2 1)-revlex order such that

SxðN Þ ¼ maxfi : ordðxiy0
Þ � Ng ð10Þ

SyðN Þ ¼ maxf j : ordðx0
y
j
Þ � Ng ð11Þ

where N is any nonnegative integer. It is interesting that
under (1, k2 1)-revlex order xiy0 is the minimal monomial
with weight degree i. Therefore the (1, k2 1)-weight degree
of any nonzero bivariate polynomial defined in (6) with
leading order L can be determined as

w-deg1;k�1ðQðx; yÞÞ ¼ SxðLÞ ð12Þ

The error-correction capability tm and the maximum
number of candidate messages lm in the output list with
respect to a certain multiplicity m (m � 1) of the GS algor-
ithm can be stated as [11]

tm ¼ n� 1 �
SxðCÞ

m

� �
ð13Þ

lm ¼ SyðCÞ ð14Þ

where

C ¼ n
mþ 1

2

� �
ð15Þ

These parameters are proven in Section 4. tm and lm grow
monotonically with multiplicity m [11]

tm1
, tm2

, � � � , tmx
, � � � , tmGS

ð16Þ

lm1
, lm2

, � � � , lmx
, � � � , lmGS

ð17Þ

where m1 , m2 , � � � , mx, � � � , mGS and tmGS
is the

upper error-correcting bound of the GS algorithm, defined
as [6]

tmGS
¼ n� 1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk � 1Þn

pj k
ð18Þ

tmGS
is greater or equal to the half distance boundary

b(n2 k2 1)/2c and approaches to it asymptotically with
code-rate k/n increases. According to the GS algorithm
analysis in [5], GS algorithm’s decoding capability
merges with the conventional algebraic decoding algorithm
at about k/n ¼ 0.9. Note that the generalised minimum dis-
tance (GMD) decoding algorithm [18] performance does
not depend on the code-rate and it can always outperform
the conventional decoding algorithm with small coding
gain. Simulations results in [8] show that the GS algorithm
can outperform the GMD algorithm in relatively low code-
rate situations. However, as code rate increases, the GS
algorithm’s performance will approach to the conventional
IET Commun., Vol. 1, No. 2, April 2007
decoding algorithm, and the GMD algorithm can slightly
outperform the GS algorithm.

Now two examples are given to illustrate how tm and lm
grow with multiplicity m with the GS algorithm. Notice
that those m listed in the following examples are the
minimal values need to correct the corresponding number
of errors tm.

Example 1: To decode RS(63, 15) defined over F64, with
code rate 0.238 (,1/3), we obtain

m 1 2 4 6 26 ¼ mGS

tm 27 30 31 32 33

lm 2 4 8 13 55

Example 2: To decode RS(63, 31) defined over F64, with
code rate 0.492 (.1/3), we obtain

m 1 3 5 13 ¼ mGS

tm 16 17 18 19

lm 1 4 7 19

3 Interpolation

The interpolation theorem is explained from the algebraic
geometric point of view, followed by a detailed description
of Kotter’s interpolation algorithm and a novel modification
which improves its efficiency.

3.1 Interpolation theorem

For RS codes, 1, x, . . . , xa are the rational functions that
have increasing pole order [19] over the point of infinity
p1 of a projective curve. The interpolated polynomial can
generally be written as

Qðx; yÞ ¼
X
a;b[N

qabx
ayb ð19Þ

where qab [ Fq is the coefficient of xayb. Functions 1,
(1 2 xi), . . . , (1 2 xi)

u are the rational functions that have
increasing zero order over the finite-field element xi used in
encoding, and the received word yi [ Fq. The interpolated
polynomial with respect to point (xi, yi) can also be written as

Qðx; yÞ ¼
X
u;v[N

q
ðxi;yiÞ
uv ðx� xiÞ

u
ð y� yiÞ

v
ð20Þ

where qðxi;yiÞuv [ Fq is the coefficient of (x2 xi)
u(y2 yi)

v. If
qðxi;yiÞuv ¼ 0 for uþ v , m, Q(x, y) has a zero of multiplicity
m over (xi, yi).

Notice that

x
a
¼ ðx� xi þ xiÞ

a
¼

X
a�u

a

u

� �
x
a�u
i ðx� xiÞ

u
ð21Þ
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and

yb ¼ ð y� yi þ yiÞ
b
¼

X
b�v

b

v

� �
yb�v
i ð y� yiÞ

v
ð22Þ

Substituting (21) and (22) into (19),

Qðx; yÞ ¼
X
a;b

qab

X
a�u

a

u

� �
xa�u
i ðx� xiÞ

u
X
b�v

b

v

� �
yb�v
i ðy� yiÞ

v

¼
X
u;v

X
a�u;b�v

qab
a

u

� �
b

v

� �
x
a�u
i y

b�v
i ðx� xiÞ

u
ðy� yiÞ

v

ð23Þ

Therefore from (20)

q
ðxi;yiÞ
uv ¼

X
a�u;b�v

qab
a

u

� �
b

v

� �
x
a�u
i y

b�v
i ð24Þ

This is the (u, v)-Hasse derivative evaluation on the point
(xi, yi) of the polynomial Q(x, y) defined by (19) [17, 20,
21]. Using D(Q) to denote the Hasse derivative evaluation
of Q(x, y), (24) can be denoted as

DuvQðxi; yiÞ ¼
X

a�u;b�v

qab
a

u

� �
b

v

� �
xa�u
i yb�v

i ð25Þ

Therefore the interpolation of the GS algorithm can be
generalised as: Find a minimal (1, k2 1)-weight degree
polynomial Q(x, y) that satisfies

Qðx; yÞ ¼ minfQðx; yÞ [ Fq½x; y�jDuvQðxi; yiÞ ¼ 0

for i ¼ 0; . . . ; n� 1 and uþ v , mðu; v [ N Þg

ð26Þ

3.2 Kotter’s algorithm

Kotter [6–8] suggested an efficient polynomial reconstruc-
tion algorithm to find the polynomial defined by (26), called
Kotter’s algorithm. It is an iterative modification algorithm
based on the following two properties of the Hasse
derivative [17, 20].

Property 1: Linear functional of Hasse derivative
If H, Q [ Fq[x, y], c1 and c2 [ Fq, then

Dðc1H þ c2QÞ ¼ c1DðHÞ þ c2DðQÞ ð27Þ

Property 2: Bilinear Hasse derivative
If H, Q [ Fq[x, y], then

½H;Q�D ¼ HDðQÞ � QDðHÞ ð28Þ

If the Hasse derivative evaluation of D(Q) ¼ d1 and
D(H ) ¼ d2 (d1, d2 = 0), based on Property 1 it is obvious
to conclude that the Hasse derivative evaluation of (28) is
zero, denoted as

Dð½H;Q�DÞ ¼ 0 ð29Þ

If lod(H ) . lod(Q), the new constructed polynomial from
(28) has leading order lod(H ). Therefore by performing
the bilinear Hasse derivative over two polynomials both
of which have nonzero evaluations, one can reconstruct a
polynomial which has zero Hasse derivative evaluation.
Based on this principle, Kotter’s algorithm is to iteratively
modify a set of polynomials through all n points and with
every possible (u, v) pair under each point.
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With multiplicity m, there are
�mþ 1

2

�
pairs of (u, v),

which are arranged as: (u, v) ¼ (0, 0), (0, 1), . . . , (0,
m2 1), (1, 0), (1, 1), . . . , (1, m2 2), . . . , (m2 1, 0).
Therefore when decoding a (n, k) RS code with multiplicity

m, there are C ¼ n
�mþ 1

2

�
iterative modifications under

Kotter’s algorithm in order to construct a polynomial
defined by (26). If i denotes the index of points (i ¼ 0,
1, . . . , n2 1), r denotes the index of (u, v) pairs

ðr ¼ 0; 1; . . . ;
mþ 1

2

� �
� 1Þ, the index of the iterative

modification ik can be written as: ik ¼ i
mþ 1

2

� �
þ r.

At the beginning of Kotter’s algorithm, a group of
polynomials are initialised as

G0 ¼ fg0;j ¼ y j; j ¼ 0; 1; . . . ; lmg ð30Þ

where lm is the maximal number of messages in the output
list defined by (14). If ML denotes the leading monomial of
g, it is important to point out that

g0;j ¼ minfgðx; yÞ [ Fq½x; y�jdegyðMLÞ ¼ jg ð31Þ

Under ik modification, each polynomial in group Gik
is

tested by (25) using

Dj ¼ Dik
ðgik ;jÞ ð32Þ

Those polynomials with Dj ¼ 0 do not need to be
modified. However, those polynomials with Dj = 0 need
to be modified based on (28). To construct a group of
polynomials which satisfy

gikþ1;j ¼ min

gðx; yÞ [ Fq½x; y�jDik
ðgikþ1;jÞ ¼ 0;

Dik�1ðgikþ1;jÞ ¼ 0; . . . ;D0ðgikþ1;jÞ ¼ 0

and degyðMLÞ ¼ j

8<
:

9=
;
ð33Þ

we choose the minimal polynomial among those poly-
nomials with Dj = 0, denote its index as j

� and record it
as g

�

j
�
¼ indexðminfgik ;jjDj = 0gÞ ð34Þ

g� ¼ gik ; j� ð35Þ

For those polynomials with Dj = 0 but j = j�, modify them
by (28) without the leading order increasing

gikþ1; j ¼ ½gik ; j; g
�
�Dik

ð36Þ

Based on (29) we know that Dik
(gikþ1,j) ¼ 0. As

lodðgik ; j�Þ > lodðg�Þ, therefore lodðgikþ1; jÞ = lodðgik ; jÞ. For
g� itself, we modify it by (28) with the leading order increasing

gikþ1;j� ¼ ½xg
�; g��Dik

ð37Þ

Dj � ¼ Dik
(g�) = 0 and so as Dik

(xg�) = 0, therefore
Dik

(gikþ1,j�) ¼ 0. As lod(xg�) . lod(g�), lod(gikþ1,j�) ¼
lod(xg�) . lod(gik, j

�). Therefore whenever (37) is performed,
lod(gikþ1,j) . lod(gik, j). After C iterative modifications the
minimal polynomial in GC is the interpolated polynomial that
satisfies (26), and it is chosen to be factorised in the next step

Qðx; yÞ ¼ minfgC; jjgC; j [ GCg ð38Þ
IET Commun., Vol. 1, No. 2, April 2007



3.3 Complexity-reduced modification

Based on this analysis, when decoding a (n, k) RS code
with multiplicity m, lmþ 1 bivariate polynomials are
being interactively modified over C steps in which Hasse
derivative evaluation and bilinear Hasse derivative modifi-
cation are being performed. This is responsible for the GS
algorithm’s high decoding complexity. Therefore reducing
the complexity of interpolation is essential to improve the
algorithm’s efficiency.

The leading order of the polynomial group Gik
is defined as

the minimal leading order among the group’s polynomials

lodðGik
Þ ¼ minflodðgik ;jÞjgik ;j [ Gik

g ð39Þ

Based on initialisation defined in (30), the leading order of
polynomial group G0 is lod(G0) ¼ lod(g0,0) ¼ 0. In the ik
modification, if no polynomial needs to be modified, the
polynomial group is unchanged, lod(Gikþ1) ¼ lod(Gik

).
Once a polynomial needs to be modified, (37) must be
used. If ML is the leading monomial of g�, we have

lodðxg�Þ ¼ lodðg�Þ þ
degx g

�

k � 1

� �
þ degyðMLÞ þ 1 ð40Þ

and lod(Gik
) will be increased if g� is the minimal poly-

nomial in the group Gik
. The leading order increase guaran-

tees that in the ik iterative step, the leading order of the
polynomials group Gik

is always less than or equal to ik

lodðGik
Þ � ik ð41Þ

Based on (41), after C iterative steps

lodðGCÞ � C ð42Þ

From (38) we know that only the minimal polynomial
is chosen from the polynomial group GC as Q(x, y) ¼
fgc,jjgc,j [ Gc and lod(gc,j) ¼ lod(Gc)g, therefore

lodðQðx; yÞÞ � C ð43Þ

which means the interpolated polynomial Q(x, y) has
leading order less than or equal to C. Those polynomials
with leading order over C will not be candidates to be
Q(x, y). Therefore during the iterative process, we can
modify the group of polynomials by eliminating those
with leading order over C as

Gik
¼ fgik ; jjlodðgik ; jÞ � Cg ð44Þ

We now prove this modification will not affect the final
result. In ik iterative step, if there is a polynomial gik, j
with lod(gik, j) . C, it may be modified either by (36) or
(37) which will result in its leading order being unchanged
or increased. Therefore at the end lod(gc, j) . C and based
on (43) it cannot be Q(x, y). However, if gik, j is the minimal
polynomial defined by (34), this implies that those poly-
nomials with leading order less than C do not need to be
modified. If gik, j is not the minimal polynomial defined
by (34), gik, j will not be chosen to perform bilinear
Hasse derivative (36) with other polynomials. Therefore
Q(x, y) has no information introduced from gik, j since
lod(gik, j) . C. As a result, eliminating the polynomials
with leading order over C will not affect the final outcome.

This modification can reduce some unnecessary compu-
tation in terms of avoiding Hasse derivative evaluation
(32) and bilinear Hasse derivative modification (36) (37)
of polynomials with leading order over C. Based on the
IET Commun., Vol. 1, No. 2, April 2007
preceding analysis, the modified interpolation process can
be summarised as

(i) Initialise a group of polynomials by (30), set ik ¼ 0;
(ii) Modify the polynomial group by (44);
(iii) Perform Hasse derivative evaluation (32) for each
polynomial in the group;
(iv) If all the polynomials’ Hasse derivative evaluation are
zero, go to (vii);
(v) Find the minimal polynomial defined by (34), (35);
(vi) For the minimal polynomial, modify it by (37); For the
other polynomials with nonzero Hasse derivative evalu-
ation, modify them by (36);
(vii) ik ¼ ikþ 1;
(viii) If ik ¼ C, stop the process and choose Q(x, y) defined
by (38); else go to (ii).

Here an example is given showing how the modified
algorithm affects the iterative process.

Example 3: Decode the (7, 2) RS code defined over F8 with

multiplicity m ¼ 2. As C ¼ 7
3

1

� �
¼ 21, based on (13) (14)

we have t2 ¼ 3 and l2 ¼ 5. The transmitted codeword is gener-
ated by evaluating the message polynomial f(x) over the set of
points x ¼ (1, a, a3, a2, a6, a4, a5) and the corresponding
received word is y ¼ (a5, a3, a4, 0, a6, a2, a2), where a is a
primitive element in F8 and is a root of the primitive poly-
nomial x3

þ xþ 1 ¼ 0. Construct a bivariate polynomial that
has a zero of multiplicity m ¼ 2 over the n points (xi, yi)ji¼0

n21.
At the beginning, six polynomials are initialised as

g0,0 ¼ 1, g0,1 ¼ y, g0,2 ¼ y2, g0,3 ¼ y3, g0,4 ¼ y4 and
g0,5 ¼ y5.

The whole iterative process with respect to the poly-
nomials’ leading order is shown in Table 3. From
Table 3 we can see that the modified algorithm starts to
take action at ik ¼ 10 when there is polynomial with
leading order over 21 and eliminating those polynomials
will not affect the final outcome. At the end, both the
original and modified GS algorithm produce the same
result: Q(x, y) ¼ minfG21g ¼ g21,2 ¼ 1 þ a4x2

þ a2x4
þ y2

(a5
þ a4x2). From this example we see that more compu-

tation can be reduced if the modified algorithm starts to
take action at earlier steps. A detailed complexity analysis
of this modified algorithm is presented in Section 5.

4 Factorisation

4.1 Factorisation theorem

Let L(p, Q) denote the number of points that satisfy
Q(xi, p(xi)) ¼ 0

Lð p;QÞ ¼ jfi : Qðxi; pðxiÞÞ ¼ 0;

ði ¼ 0; 1; . . . ; n� 1Þgj ð45Þ

Suppose the bivariate polynomial Q(x, y) has a zero of
multiplicity m over the L(p, Q) points, p(x) [ Fq[x

k21]
and Q(x, y) [ Fq[x, y]. If

mLð p;QÞ . w-deg1;k�1ðQðx; yÞÞ

then (y2 p(x))jQ(x, y).

Lemma 1: Q(x, p(x)) ¼ 0 if and only if (y2 p(x))jQ(x, y)
[10].

From Lemma 1, one see that to factorise Q(x, y) is equiv-
alent to find the y roots of it. As Q(x, y) is the interpolated
polynomial from Kotter’s algorithm, according to (43)
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Table 3: Interpolation process of Example 3

ik 0 1 2 3 4 5 6 7 8 9

lod(gik,0) 0 1 1 3 6 6 10 15 15 21

lod(gik,1) 2 2 4 4 4 7 7 7 11 11

lod(gik,2) 5 5 5 5 5 5 5 5 5 5

lod(gik,3) 9 9 9 9 9 9 9 9 9 9
�������������!

lod(gik,4) 14 14 14 14 14 14 14 14 14 14

lod(gik,5) 20 20 20 20 20 20 20 20 20 20

lod(Gik) 0 1 1 3 4 5 5 5 5 5

ik 10 11 12 13 14 15 16 17 18 19 20 21

lod(gik,0) 28 28 36 45 45 55 55 55 55 66 66 78

lod(gik,1) 11 16 16 16 22 22 22 22 22 22 29 29

lod(gik,2) 5 5 5 5 5 5 8 8 12 12 12 12

�������������!
originalGS

lod(gik,3) 9 9 9 9 9 9 9 13 13 13 13 13

lod(gik,4) 14 14 14 14 14 14 14 14 14 14 14 14

lod(gik,5) 20 20 20 20 20 20 20 20 20 20 20 20

lod(Gik) 5 5 5 5 5 5 8 8 12 12 12 12

ik 10 11 12 13 14 15 16 17 18 19 20 21

lod(gik,0) – – – – – – – – – – – –

lod(gik,1) 11 16 16 16 – – – – – – – –

lod(gik,2) 5 5 5 5 5 5 8 8 12 12 12 12

�������������!
modifiedGS

lod(gik,3) 9 9 9 9 9 9 9 13 13 13 13 13

lod(gik,4) 14 14 14 14 14 14 14 14 14 14 14 14

lod(gik,5) 20 20 20 20 20 20 20 20 20 20 20 20

lod(Gik) 5 5 5 5 5 5 8 8 12 12 12 12

Note: – means corresponding polynomial is eliminated. Highlighted area means corresponding polynomial is chosen as Q(x, y)
with lod(Q) � C. Based on (12), w-deg1,k21(Q(x, y)) � Sx(C).
If mL(p, Q) � Sx(C), then mL(p, Q) � w-deg1,k21(Q(x, y)).
Based on the factorisation theorem, if L(p, Q) � 1 þ bSx(C)/
mc, candidate message polynomial p(x) can be found out by
factorising Q(x, y). As L(p, Q) represents the number of
points that satisfy Q(xi, p(xi)) ¼ 0, or equivalently yi ¼ p(xi)
where p(x) is the candidate transmitted message polynomial,
those points that do not satisfy this equation are where the
errors locate. Therefore the error correction capability of
the GS algorithm is tm ¼ n2 bSx(C)/mc21 which is defined
by (13). Under (1, k2 1)-revlex order x0y j is the maximal
monomial with weight degree (k2 1)j. In polynomial Q(x, y),
there should not be any monomials with y-degree over
Sy(C), otherwise lod(Q) . C. As a result, maxfdegyQ
(x, y)g � Sy(C). From Lemma 1 we know that the messages
in the output list are the y roots of Q(x, y), and the number of
y roots of Q(x, y) should not exceed its y-degree, therefore the
maximal number of candidate messages in the output list is
lm ¼ Sy(C) which is defined by (14).

4.2 Roth–Ruckenstein’s algorithm

In 2000, Roth and Ruckenstein [10] introduced an efficient
algorithm for factorising these bivariate polynomials, called
Roth-Ruckenstein’s algorithm. Each p(x) [ Fq[x

k21] can be
expressed in the form of

pðxÞ ¼ p0 þ p1xþ � � � þ pk�1x
k�1

ð46Þ

where p0, p1, . . . , pk21 [ Fq. To find the polynomials p(x),
we must determine their coefficients p0, p1, . . . , pk21. The
idea of Roth-Ruckenstein’s algorithm is to sequentially
deduce p0, p1, . . . , pk21 one at a time. For any bivariate
polynomial, if h is the highest degree such that xhjQ(x, y),
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we can define

Q�
ðx; yÞ ¼

Qðx; yÞ

xh
ð47Þ

Denoting p0 ¼ p(x) and Q0(x, y) ¼ Q�(x, y), where Q(x, y) is
the new interpolated polynomial (38), we define the sequen-
tial polynomials ps(x) and Qs(x, y), where s � 1, as

psðxÞ ¼
ps�1ðxÞ � ps�1ð0Þ

x

¼ ps þ � � � þ pk�1x
k�1�s; ðs � k � 1Þ ð48Þ

Qsðx; yÞ ¼ Q�
s�1ðx; xyþ ps�1Þ ð49Þ

Lemma 2: In this sequential deduction with ps(x) andQs(x, y)
defined by (48) and (49), when s � 1, (y2 p(x))jQ(x, y) if
and only if (y2 ps(x))jQs(x, y) [11].

This means that if polynomial ps(x) is a y root of Qs(x, y),
we can trace back to find the coefficients ps21, . . . , p1, p0 to
reconstruct the polynomial p(x), which is the y root of
polynomial Q(x, y). The first coefficient p0 can be deter-
mined by finding the roots of Q0(0, y) ¼ 0. If we assume
that Q(x, p(x)) ¼ 0, then based on Lemma 2, p0(x) should
satisfy Q0(x, p0(x)) ¼ 0. When x ¼ 0, Q0(0, p0(0)) ¼ 0.
According to (46), p0(0) ¼ p0, therefore p0 is the root of
Q0(0, y) ¼ 0. By finding the roots of Q0(0, y) ¼ 0, a
number of different p0 can be determined. For each p0,
we deduce further to find the rest of ps (s ¼ 1, . . . , k2 1)
based on the sequential transformation (48) and (49).

Assume that after s21 deductions, polynomial ps21(x) is
the y root of Qs21(x, y). Based on (48), ps21(0) ¼ ps21 and a
number of ps21 can be determined by finding the roots of
IET Commun., Vol. 1, No. 2, April 2007



Qs21(0, y) ¼ 0. For each ps21, we deduce to find ps.
Based on the assumption and Lemma 1, (y2 ps21(x))
jQs21(x, y). If we define y ¼ xyþ ps21, then
(xyþ ps21 2 ps21(x))jQs21(x, xyþ ps21). Based on (48),
xyþ ps21 2 ps21(x) ¼ xy2 xps(x). As Qs(x, y) ¼ Q�

s21(x,
xyþ ps21), (xy2 xps(x))jQs21(x, xyþ ps21), and
(y2 ps(x))jQs(x, y). Therefore ps can again be determined
by finding the roots of Qs(0, y) ¼ 0. This root finding algor-
ithm can be explained as a tree growing process, which is
shown in Fig. 1. There can be an exponential number of
routes for choosing coefficients ps (s ¼ 0, 1, . . . , k2 1) to
construct p(x). However, the intended p(x) should satisfy:
deg(p(x)) , k and (y2 p(x))jQ(x, y). Based on (48), when
s ¼ k, pk(x) ¼ 0. Therefore if Qk(x, 0) ¼ 0, or equivalently
Qk(x, pk(x)) ¼ 0, (y2 pk(x))jQk(x, y). According to Lemma 2,
(y2 p(x))jQ(x, y) and p(x) is found.

Based on this analysis, the factorisation process can be
summarised as

(i) Initialise Q0(x, y) ¼ Q�(x, y), s ¼ 0;
(ii) Find roots ps of Qs(0, y) ¼ 0;
(iii) For each ps, perform Q transformation (49) to calculate
Qsþ1(x, y);
(iv) s ¼ sþ 1;
(v) If s , k, go to (ii); if s ¼ k and Qs(x, 0) = 0, stop
this deduction route; if s ¼ k and Qs(x, 0) ¼ 0, trace the
deduction route to find ps21, . . . , p1, p0.

5 Complexity analysis

The GS algorithm’s high decoding complexity is mainly
caused by interpolation. Compared with this, the factoris-
ation complexity cost is insignificant. This Section analyses
the computational complexity (finite-field arithmetic oper-
ations) for the original and modified algorithm.

It is difficult to analyse the computational complexity
precisely because the length (number of coefficients) of
the group of interpolated polynomials varies in different
situations. Define the number of coefficients of the
polynomial Q(x, y) as its interpolation cost by

g ¼ jfqij ¼ coeff ðQðx; yÞÞ and qij = 0gj ð50Þ

[17] has stated that the interpolation cost is error dependent

gðeÞ �
V2

2ðk � 1Þ
þ
V

2
þ
Fðk �F� 1Þ

2ðk � 1Þ
þ mþ 1 ð51Þ

where V ¼ emþ (k2 1)m, F ¼ V mod(k2 1) and e is the
error weight. According to Section 3.3, we know that the
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Fig. 1 Coefficient deduction in Roth–Ruckenstein algorithm
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interpolated polynomial Q(x, y) has leading order less
than or equal to C, therefore its interpolation cost is less
than or equal to Cþ 1. Regarding the interpolation
process as solving a system of homogeneous linear
equations by gaussian elimination and assuming those poly-
nomials have the same interpolation cost as Cþ 1, we
predict the GS algorithm’s computational complexity.
Interpolating the group of polynomials with interpolation
cost Cþ 1 by C iterative steps can be regarded as operating
on a matrix of size C � (Cþ 1) by gaussian elimination and
its computational complexity is approximately

2

3
ðC þ 1Þ3 ð52Þ

However, in most of the situations g (e) � Cþ 1, which
means some elements in the row of the matrix are not
used and the row operation is not fully performed.
Therefore in most cases (52) is an upper bound for the
GS algorithm’s computational complexity. As the interpol-
ation cost grows with the error weight, so does the
computational complexity. Based on (52), Tables 4 and 5
predict the computational complexity for decoding
RS(63, 15) and RS(63, 31) both of which were first intro-
duced in Examples 1 and 2.

In computer simulations, we have measured the compu-
tational complexity for the two codes, shown in Fig. 2.
Comparing the measurements with Table 4 and 5, in most
cases (52) is a computational complexity upper bound for
the GS algorithm and the decoding complexity grows
with the error weight. With higher multiplicity m, the GS
algorithm has better error correction capability, but at the
expense of much higher computation. Comparing the com-
putational complexity between the original and modified
GS algorithm, it shows that the lower the error weight,
the more computation can be reduced. For RS(63, 15) the
modification can reduce the computational complexity by
40% in low error weight situations, but in high error
weight situations the complexity is only reduced by 3%.
For RS(63, 31), the complexity reduction varies from 30
to 2% with increasing error weight. In low error weight situ-
ations the conventional algebraic decoding algorithm would
be used since it is more efficient than the GS algorithm.
Therefore even with the complexity-reduced modification
the GS algorithm is not desirable for low error weight situ-
ations. However, in high error weight situations, where con-
ventional algebraic decoder could not be used, this
modification is useful for reducing the GS algorithm’s
complexity.

The modification’s error dependent property is analysed as
follows. During the iterative interpolation process, we define
the maximal leading order of the polynomial group Gik

as

max lodðGik
Þ ¼ maxflodðgik ;jÞjgik ;j [ Gik

g ð53Þ

The modification (44) will start to act when
maxlod(Gik

) . C. We use ia to denote the iterative index

Table 4: Computational complexity for RS(63, 15)

m C þ 1 Finite-field arithmetic operations

1 64 1.75 � 105

2 190 4.57 � 106

4 631 1.67 � 108

6 1324 1.55 � 109
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when the modification starts to act, which can be explained as

ia ¼ fikjmax lodðGik
Þ. C and max lod ðGik�1Þ � Cg ð54Þ

ia is error dependent. Under two different situations with
error weight e1 and e2 (e1, e2 � tm), decoding the same
code with multiplicity m, we have

iaðe1Þ � iaðe2Þ if e1 � e2 ð55Þ

which means the lower the error weight, the earlier the modi-
fication starts to act.

It has been observed that gik,0 is always the first poly-
nomial in the polynomial group to have leading order
over C. Therefore analysing the leading order increase
pattern of polynomial gik,0 is useful to explain the modified
algorithm’s error dependent property (55). According to the
polynomial property (33) and the leading order increase
relationship (40), one can see that during the iterative
process, gik,0’s leading monomial ML always satisfies
degy(ML) ¼ 0 and (40) can be simplified for gik,0 as

lodðgikþ1;0Þ ¼ lodðgik ;0Þ þ
degx gik ;0

k � 1

� �
þ 1 ð56Þ
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Fig. 2 Computation complexity of GS decoding

a RS(63, 15)
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Table 5: Computational complexity for RS(63, 31)

m C þ 1 Finite-field arithmetic operations

1 64 1.75 � 105

3 379 3.63 � 107

5 946 5.64 � 108
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At the beginning of the iterative process, lod(g0,0) ¼ 0.
From (56), gik,0 will be modified by (37) with lod(gikþ1,0) ¼
lod(gik,0) þ 1 for k21 times until degx(gik,0) ¼ k2 1.
Following that, gik,0 will again be modified by (37)
with lod(gikþ1,0) ¼ lod(gik,0) þ 2 for k2 1 times until
degx(gik,0) ¼ 2(k2 1). This periodic process continues
and the leading order of gik,0 is accumulated as
1(k2 1) þ 2(k2 1) þ � � � . Term gik,0 will be eliminated
once its leading order is over C, therefore the periodic
process will stop when lod(gikþ1,0) ¼ lod(gik,0)þ l, where
l is defined as

l ¼ min xjðk � 1Þ
Xx
i¼1

i . C

( )
ð57Þ

As there are (k2 1)(mþ 1)/2 iterative steps for each of the
periodic processes, under the zero error situation the upper
bound for ia(0) can be defined as

iað0Þ �
ðk � 1Þðmþ 1Þ

2
l ð58Þ

Once ia(0) has been determined, ia(e) would always satisfy

iaðeÞ � iað0Þ þ e
mþ 1

2

� �
ð59Þ

which means the lower the error weight, the earlier the
modification starts to act and more computation can be
reduced as a consequence. Tables 6 and 7 show some
experimental data of ia(e) from the authors’ implementation
of RS(63, 15) and RS(63, 31), both of which reveal that (59)
is being observed.
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Table 6: ia(e) for RS(63, 15)

m C l ia(0) upper bound ia(0) ia(1) ia(2) ia(3) ia(4) ia(5)

1 63 3 42 36 37 38 39 40 41

2 189 5 105 99 102 105 108 111 114

4 630 10 350 350 318 328 338 348 358

6 1323 14 686 651 672 693 714 735 756
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Table 7: ia(e) for RS(63, 31)

m C l ia(0) upper bound ia(0) ia(1) ia(2) ia(3) ia(4) ia(5)

1 63 2 60 47 48 49 50 51 52

3 378 5 300 271 277 283 289 295 301

5 945 8 720 673 688 703 718 733 748
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6 Simulation results

The authors have developed a software platform using the C
programming language for the GS algorithm with the com-
plexity reduced modification and a few simulation results
have been achieved. The performances of the two RS
codes which are defined by Examples 1 and 2 are shown
in Figs. 3 and 4. In the simulations the performance of a
conventional unique RS decoding algorithm (Berlekamp–
Massey algorithm) is used to compare with the GS algor-
ithm, and the Rayleigh fading channels have variance
s2 ¼ 0.5 per dimension. Figs. 3a and b show the perform-
ance of RS(63, 15) over AWGN and Rayleigh fading chan-
nels. Over AWGN channels about 0.4–1.3 dB coding gain
IET Commun., Vol. 1, No. 2, April 2007
can be achieved at BER ¼ 1025 with different multiplicity
m, while over the Rayleigh fading channels the coding gain
is about 1–2.8 dB. Figs. 4a and b show the performance of
RS(63, 31). For this code the GS algorithm has no perform-
ance advantage with multiplicity m ¼ 1. However, with
multiplicity m . 1, at BER ¼ 1025 it can achieve 0.2–
0.8 dB coding gain over AWGN channels and 0.5–1.4 dB
coding gain over Rayleigh fading channels.

7 Conclusions

This paper has explained in detail the GS algorithm for list
decoding RS codes from an algebraic–geometric point of
view. To improve the algorithm’s decoding efficiency, a
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novel modification to the interpolation part has been
presented. This modification is based on eliminating
unnecessary polynomials during the iterative interpolation
process. According to the complexity analysis, the decoding
complexity is error dependent and the modification can
reduce the decoding complexity, especially for low error
weight situations. Based on this modified GS algorithm, simu-
lation results are presented showing the coding gains over a
unique decoding algorithm with more significant gains for
low rate codes and in a fading environment. It is very
important that this performance advantage is still at the cost
of high decoding complexity. Therefore further work such
as the complexity reducing transformation for interpolation
[22] need to be carried out to make the GS algorithm more
efficient.
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