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Performance Analysis of LDPC-Coded Diversity
Combining on Rayleigh Fading Channels With

Impulsive Noise
Zhen Mei, Martin Johnston, Member, IEEE, Stéphane Le Goff, and Li Chen, Senior Member, IEEE

Abstract— Spatial diversity is an effective method to miti-
gate the effects of fading, and when used in conjunction with
low-density parity-check (LDPC) codes, it can achieve excellent
error-correcting performance. Noise added at each branch of
the diversity combiner is generally assumed to be additive white
Gaussian noise, but there are many applications where the
received signal is impaired by noise with a non-Gaussian dis-
tribution. In this paper, we derive the exact bit-error probability
of different linear combining techniques on Rayleigh fading
channels with impulsive noise, which is modeled using symmetric
alpha-stable distributions. The relationship for the signal-to-noise
ratios of these linear combiners is derived and then different
non-linear detectors are presented. A detector based on the bi-
parameter Cauchy–Gaussian mixture model is used and shows
near-optimal performance with a significant reduction in com-
plexity when compared with the optimal detector. Furthermore,
the threshold signal-to-noise ratio of LDPC codes for different
combining techniques on these channels is derived using density
evolution and an estimation of the waterfall performance of
LDPC codes is derived that reduces the gap between simulated
and asymptotic performance.

Index Terms— Impulsive noise, LDPC codes, diversity
combining, finite length analysis.

I. INTRODUCTION

D IVERSITY combining is an important technique that
combats fading effects by exploiting spatial diversity.

Traditional combining schemes such as maximal-ratio com-
bining (MRC), equal-gain combining (EGC) and selection
combining (SC) are chosen depending on the required trade-
off between performance and complexity at the receiver. Con-
ventionally, the noise added at each branch of the diversity
combiner is assumed to be Gaussian. However, interference in
wireless transceivers can exhibit an impulsive behavior [1], [2]
and it is important to take this impulsive nature into account
when analyzing spatial diversity. As an important class of
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heavy-tailed distributions, symmetric α-stable (SαS) distrib-
utions have successfully modeled multiple access interference
in ad-hoc networks, near-field interference in wireless trans-
ceivers and underwater acoustic noise [3]–[5]. Nasri et al [6]
have analyzed the asymptotic bit-error probability (BEP)
of diversity combining schemes under general non-Gaussian
noise with independent and identically distributed (i.i.d.) com-
ponents, but this work cannot be applied to SαS distributions
because they have an infinite variance. In [7]–[9], the sta-
tistics of interference from a field of Poisson distributed
interferers modeled by SαS distribution was studied. The
outage probability of diversity combining schemes for these
applications was also derived [10]. For wireless channels with
general SαS noise, Rajan and Tepedelenlioǧlu [11] performed
a diversity combining analysis for Rayleigh fading channels
and complex isotropic SαS noise with dependent components,
where diversity gain and asymptotic BEP were derived.

On the other hand, SαS noises with i.i.d. components have
also been shown to be valid in some scenarios [5], [12], [13]
and this type of channels is called the additive white SαS
noise (AWSαSN) channel [14]. Optimal and sub-optimal
detectors of AWSαSN channels were also widely investigated
in the literature [15], [16]. Moreover, recently it was shown
that if the passband sampling frequency fs is four times the
carrier frequency fc, the components of the resulting SαS
noise become independent and the system can be exploited
to achieve the best error performance under maximum-
likelihood (ML) detection [14]. Inspired by this, the detection
of single-carrier and orthogonal frequency-division multiplex-
ing (OFDM) systems was then presented [17], [18]. More-
over, this feature provides an elegant way to analyze the
uncoded BEP over complex baseband SαS noise with i.i.d.
real and imaginary components [19]. For fading channels with
AWSαSN, linear combiners were compared in [20] and [21].
However, the analytic BEP has not been derived for different
combiners on Rayleigh fading channels with AWSαSN, which
will be addressed in this paper.

The performance of low-density parity-check (LDPC)
codes with spatial diversity for additive white Gaussian
noise (AWGN) channels has also been investigated in the liter-
ature [22], [23]. However, after a comprehensive survey of the
literature, there appears to be no publications that have investi-
gated the LDPC-coded performance of diversity combining on
non-Gaussian channels. In this paper, we derive the asymptotic
performance of LDPC codes with linear diversity combining
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schemes including SC, EGC and MRC on fading channels
with non-Gaussian impulsive noise. Furthermore, to reduce
the gap between the asymptotic and simulated performance
of LDPC codes, we propose a waterfall performance analysis
for LDPC codes on these channels. Of course, the asymptotic
performance assumes infinite length LDPC codes so it is more
useful if the performance of finite length LDPC codes can be
estimated. In the literature, the finite length performance has
only been investigated on binary symmetric channel (BSC),
binary erasure channel (BEC) and AWGN channels [24]–[27],
but in our paper, we extend the finite length performance
analysis of AWGN channels in [26] to more general fading
channels with impulsive noise.

The contributions of this paper are as follows: First,
the analytic or semi-analytic BEPs of SC, EGC and MRC on
Rayleigh fading channels with AWSαSN are derived. More-
over, the relationship for the performance of these combiners
is derived, regardless of fading types. Second, the asymptotic
and finite length performance of LDPC codes with different
linear combiners on these channels is investigated for the
first time in this paper. Finally, we compare different non-
linear detectors and propose to use a detector based on the
bi-parameter Cauchy-Gaussian mixture (BCGM) model [28]
that achieves near-optimal performance at a much reduced
complexity than the optimal detector on these channels.

This paper is organized as follows: Section II introduces
SαS noise model and some important properties of SαS
process. Section III derives the analytic and semi-analytic BEP
for linear diversity combining schemes. Then the relationship
for the dispersion of these combiners is derived. Moreover,
optimal and sub-optimal non-linear detectors are presented
and a near-optimal detector is proposed. Section IV derives
the coded BEP, which consists of the asymptotic performance
of LDPC codes with linear combiners and an estimation
of the waterfall performance for finite length LDPC codes.
In Section V, the decoding thresholds as well as numerical and
simulation results are given. Finally, we conclude the paper in
Section VI.

II. SYSTEM AND CHANNEL MODELS

A. Channel Model and SαS Distributions

Consider a channel comprising multiple branches where the
transmitted signal is received over Lr independent slowly-
varying flat fading channels. Assuming perfect phase and
timing synchronization, the received signal of the l-th branch
can be modeled as

rl = hl x + nl , 1 ≤ l ≤ Lr , (1)

where x is the modulated signal with binary phase-shift
keying (BPSK) modulation. hl = ale jφl is the complex
Gaussian channel gain, where al is the fading amplitude of the
l-th branch with a Rayleigh probability density function (pdf)
and φl is the phase of the hl . We assume that {al}L

l=1 are
independent random variables with E[a2

l ] = 1.
nl is the complex noise where the real and imaginary com-

ponents are i.i.d. and follow the univariate SαS distribution.

The characteristic function of α-stable distributions is

ϕ(t) = exp
{

jδt− | γ t |α (1 − jβsign(t)ω(t, α))
}
. (2)

where

ω(t, α) =
{

tan(πα/2), α �= 1

−2/π log |t|. α = 1

The α-stable distribution S(α, β, γ, δ) in (2) has four para-
meters, α, β, γ and δ. 1) The characteristic exponent α, has
a range (0, 2] and controls the heaviness of the tail; 2) the
skewness is denoted by β; 3) γ α is known as the dispersion,
which measures the spread of the pdf and is similar to the
variance of a Gaussian distribution; 4) the location parameter is
denoted as δ [29]. The α-stable distribution is called symmetric
if β and δ are 0. Hence the pdf of a SαS distribution is
defined as

fα(v; γ ) = 1

2π

∫ ∞

−∞
e−|γ t |α e− j tvdt . (3)

There are two special cases where the pdf of SαS distrib-
utions have closed-form expressions. When α = 2, it follows
a Gaussian distribution and the variance is related to the
dispersion by σ 2 = 2γ 2. When α = 1, the noise is Cauchy
distributed. SαS distributed random variables have several
useful properties, which are explained in [29] and [30]. Here
we introduce three important properties that will be used in
this paper:

Property 1: If vi ∼ S(α, 0, γi , 0), i = 1, 2, · · · , N , then
∑N

i=1 vi ∼ S(α, 0, γ , 0), where γ =
(∑N

i=1 γ α
i

) 1
α

.
Property 2: Let v ∼ S(α, 0, γ , 0) and c is an arbitrary

constant. Then cv ∼ S(α, 0, |c|γ, 0).
Property 3: Any real SαS random variable v ∼ S(α, 0, γ , 0)

can be written as v = √
BG, where B and G are independent,

with B ∼ S(α/2, 1, [cos(πα/4)]2/α, 0) and G is a Gaussian
random variable with zero mean and variance σ 2.

According to Property 3, since components of nl are mutu-
ally independent, the complex SαS noise can be described as

nl = √
B1G1 + j

√
B2G2, (4)

where B1 and B2 are i.i.d. and are distributed like B . Similarly,
G1 and G2 are i.i.d. Gaussian random variables which follow
N (0, σ 2). The SαS noise is independent from channel to
channel and independent of {hl}L

l=1. Hence, the instantaneous
SNR of the l-th channel is given as ηl = (a2

l Es)/Nl , where
Es is the symbol energy and Nl in the noise power in the l-th
channel.

In practice, the noise parameters α and γ are not known.
However, in the detection of SαS noise, the knowledge
of parameters is very important since most detectors and
decoders require this to achieve a good performance. Hence,
the parameter estimation methods are needed. In the literature,
algorithms based on sample fractiles [31], the extreme value
theory [32] and empirical characteristic functions (ECFs) [33],
have been proposed. In this paper, a fast estimation method
proposed in [32] is used and the LDPC-coded performance
with estimated parameters will be shown in Section V.
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B. Geometric Signal-to-Noise Ratio

The conventional signal-to-noise ratio (SNR) is not defined
for SαS noise since the second order moment of an SαS
process does not exist. Hence we use the geometric SNR
(SNRG) which is based on zero-order statistics [34]. SNRG
is defined as

SNRG = 1

2Cg

(
A

N0

)2

, (5)

where A is the amplitude of the modulated signal and Cg ≈
1.78 is the exponential of the Euler constant. The geometric
power N0 of the noise can be expressed as

N0 = (Cg)1/αγ

Cg
. (6)

Hence the Eb
N0

for a coded system with BPSK modulation is

Eb

N0
= 1

4RcC
( 2

α −1)
g γ 2

, (7)

where Rc is the code rate.

III. UNCODED BEP ANALYSIS OF DIVERSITY COMBINING

ON RAYLEIGH FADING CHANNELS WITH AWSαSN

In this section, the uncoded BEP of several linear diversity
combining methods (SC, EGC and MRC) on Rayleigh fading
channels with i.i.d. SαS noise will be derived analytically and
semi-analytically.

First, we derive the uncoded BEP of a point-to-point system
without fading. Similar to the Q-function, a right tail proba-
bility Qα(x) is defined for SαS distributions as

Qα(x) =
∫ ∞

x
fα(t; 1)dt, (8)

where fα(t; 1) is the standard SαS distribution with γ = 1.
In [19], the uncoded BEP was derived by only considering the
Cauchy noise which is a special case. In this paper, we give
a full derivation of BEP over general SαS noise as

Pb,α = P(x = +1)P(e|x = +1) + P(x = −1)P(e|x = −1)

= 1

2

∫ 0

−∞
fα(t − 1; γ )dt + 1

2

∫ ∞

0
fα(t + 1; γ )dt

=
∫ ∞

1
fα(u; γ )du, (9)

where e is a symbol error and P(x = +1) = P(x = −1) = 1
2 .

According to the standardization of SαS random variables,
if x ∼ S(α, 0, γ , 0), then x/γ ∼ S(α, 0, 1, 0) and the pdf
should be scaled by 1/γ [35]. Hence, (9) can be rewritten as

Pb,α =
∫ ∞

1

1

γ
fα(

u

γ
; 1)du

=
∫ ∞

1
γ

fα(v; 1)dv

= Qα

(
1

γ

)
. (10)

Since geometric SNR is defined for the whole range of α, (10)
is a general expression for all SαS channels. From (7)
and (10), we can obtain Pb,α in terms of Eb/N0 as

Pb,α = Qα

(
1

γ

)
= Qα

(√

4RcC
( 2

α −1)
g

Eb

N0

)

. (11)

When Rc = 1, (11) represents the BEP of an uncoded BPSK
system on SαS channels.

From (8), a double integral must be evaluated to calculate
Qα(x), but there is an alternative representation of the cumu-
lative distribution function (cdf) of SαS distributions given
in [35] to reduce the complexity of calculating Qα(x). Hence
for SαS distributions with x > 0:
(a) When α �= 1,

Qα(x) = c1 + sign(α − 1)

π

∫ π
2

0
exp

(
−x

α
α−1 V (θ; α)

)
dθ,

(12)

where

c1 =
{

1
2 α < 1

0 α > 1

and

V (θ; α) =
(

cos θ

sin αθ

) α
α−1 cos(α − 1)θ

cos θ
.

(b) When α = 1,

Qα(x) = −1

2
− 1

π
arctan(x). (13)

This new general expression of Qα-function reduces the com-
plexity of calculating Qα(x) by replacing the double integral
with a single integral.

A. Uncoded BEP of Selection Combining

For SC, the branch with the maximum SNR is chosen and
the combined signal y is given as

y =
Lr∑

l=1

wlrl = wkrk , (14)

where

wk =
{

1, if ηk = max
l

{ηl}
0, otherwise

,

and ηl = a2
l

Eb
N0

is the output SNR of the l-th branch. Therefore,
the combined signal can be rewritten as

y = hscx + nsc, (15)

where hsc = asce jφsc and nsc are the channel gain and the
noise of the branch with the largest output SNR, respectively.
When fading effects are considered, (11) can be seen as a
conditional BEP. For SC,

Pb|asc,α(η) = Qα

(√

4RcC
( 2

α −1)
g η

)

, (16)
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where η = a2
sc

Eb
N0

. Since hsc is random, we need to aver-
age (16) over the pdf of η to obtain the unconditional BEP.
Hence the analytic expression of the BEP for SC on Rayleigh
fading channels with SαS noise is given as

PSC
b,α =

∫ ∞

0
Pb|asc,α(η)p(η; η)dη

=
∫ ∞

0
Qα

(√

4RcC
( 2

α −1)
g η

)

p(η; η)dη, (17)

where p(η; η) is the pdf of the output SNR η of SC and
η = Eb

N0
. For SC, the branch with the maximum SNR is chosen,

hence the outage probability of SC with uncorrelated Rayleigh
fading is given as

Pout(ηs) = P [η < ηs] =
Lr∏

l=1

P [ηl < ηs ] =
(

1 − e−ηs/η
)Lr

.

(18)

Pout(ηs) represents the cdf of the output SNR as a function
of the threshold ηs . Hence, the pdf of the output SNR of SC
can be calculated by differentiating (18). The resulting pdf is
given as

p(η; η) = d Pout(η)

dη
= Lr

η
e−η/η

(
1 − e−η/η

)Lr −1
. (19)

By substituting (19) to (17), the analytic BEP for SC can be
obtained.

B. Uncoded BEP of Equal-Gain Combining

For EGC, all channels have a unit gain and the combined
signal y is obtained by dividing the received signal rl by the
phase of hl :

y =
Lr∑

l=1

e− jφl rl = x
Lr∑

l=1

al +
Lr∑

l=1

ñl , (20)

where ñl = nle− jφl . Similar to SC, the combined signal y
in (20) can be rewritten as

y = aegcx + negc, (21)

where aegc = ∑Lr
l=1 al and negc = ∑Lr

l=1 ñl . We note that
ñl = nle− jφl is still SαS distributed with the same α and γ
as nl . The proof is given in the Appendix A. Then according
to Property 1, negc ∼ S(α, 0, γegc, 0), where the dispersion of
negc is calculated as

γegc = L1/α
r γ. (22)

Since aegc is random, the conditional BEP for EGC is given
as

Pb|aegc,α = Qα

⎛

⎝L
− 1

α
r

√

4RcC
( 2

α −1)
g

a2
egcEb

N0

⎞

⎠

= Qα

(

aegcL
− 1

α
r

√

4RcC
( 2

α −1)
g

Eb

N0

)

. (23)

Hence the analytic BEP for EGC on Rayleigh fading channels
with SαS noise is calculated as

PEGC
b,α =

∫ ∞

0
Pb|aegc,α p(aegc)daegc

=
∫ ∞

0
Qα

(

aegcL
− 1

α
r

√

4RcC
( 2

α −1)
g

Eb

N0

)

p(aegc)daegc,

(24)

where p(aegc) is the pdf of the output channel gain aegc
of EGC. The exact pdf of aegc cannot be given in closed-
form, but accurate closed-form approximations of Rayleigh
sum distributions were proposed in [36] and [37] and in this
paper, we use these models to find p(aegc). When Lr = 2,
a small argument approximation (SAA) proposed in [36] is
used and the pdf of aegc is given as

p(aegc) = a(2Lr−1)
egc e− a2

egc
2b

2Lr −1bLr (Lr − 1)! , (25)

where

b = σ 2

Lr

(
Lr∏

x=1

(2x − 1)

)1/Lr

.

When Lr ≥ 3, an accurate closed-form approximation is given
in (26), as shown at the bottom of this page. The values of a0,
a1 and a2 for different Lr can be found in [37]. We note
that the standard deviation σ for Rayleigh distributions in the

calculation of b should be normalized as σ =
√

Lr
2 .

C. Uncoded BEP of Maximal-Ratio Combining

The maximal ratio combiner does not exist for SαS noise
when α �= 2 since the second order moment of alpha-stable
process is infinite [29]. Therefore, the MRC in this paper only
refers to particular weights and the pdf of the output SNR
cannot be obtained.

To find the BEP of MRC, a different approach must be
applied. The combined signal is divided by

∑Lr
l=1 wlal and

since the weights are chosen as wl = h∗
l = ale− jφl for MRC,

it becomes

ŷ = x + n̂, (27)

p(aegc) = a(2Lr−1)
egc e− a2

egc
2b

2Lr −1bLr (Lr − 1)! − (aegc − a2)
(2Lr−2)e− a1(aegc−a2)2

2b

2(Lr −1)b
(

b
a1

)Lr
(Lr − 1)!

× a0

[
b(2Lr aegc − a2) − a1aegc(aegc − a2)

2
]

(26)
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where

ŷ = y
∑Lr

l=1 a2
l

(28)

and

n̂ =
∑Lr

l=1 ale− jφl nl
∑Lr

l=1 a2
l

. (29)

We note that the BEP will not change if we divide y by a
positive constant and n̂ is still an SαS random variable but
with a different value of dispersion. According to Properties
1 and 2, the dispersion of n̂ is given as

γmrc =
(

Lr∑

l=1

∣
∣
∣∣
∣

ale− jφl

∑Lr
l=1 a2

l

∣
∣
∣∣
∣

α) 1
α

γ =
(∑Lr

l=1 aα
l

) 1
α

∑Lr
l=1 a2

l

γ (30)

The conditional BEP can be obtained by substituting (30) and
(7) into (11). The result is expressed as

Pb|amrc,α = Qα

(

ω

√

4RcC
( 2
α −1)

g
Eb

N0

)

, (31)

where

ω =
∑Lr

l=1 a2
l

(∑Lr
l=1 aα

l

) 1
α

. (32)

The pdf of ω cannot be evaluated as an analytic expression,
hence we adopt a Monte-Carlo simulation and histogram
method to find p(ω). Finally, the semi-analytic BEP of MRC
on Rayleigh fading channels with SαS noise is

PMRC
b,α =

∫ ∞

0
Qα

(

ω

√

4RcC
( 2
α −1)

g
Eb

N0

)

p(ω)dω. (33)

D. Performance Comparison of Linear Combiners

The SNR advantage of optimal linear combiners over MRC
and EGC was presented in [20] and [21]. In this subsection,
the noise power of SC, EGC and MRC are compared to give
an insight into the performance of different combiners. Similar
to MRC, (15) and (21) can also be rewritten as ŷ = x + n̂ with
no change on the BEP. n̂ = nsc/hsc for SC and n̂ = negc/aegc
for EGC. In this case, the dispersions of the noise for SC and
EGC are given as

γ̂sc = 1

am
γ and γ̂egc = L1/α

r
∑Lr

l=1 al

γ, (34)

where am = max
{
a1, a2, · · · , aLr

}
. The relationship of the

dispersion between these three combiners is given as
(a) When 0 < α ≤ 1,

γ̂sc ≤ γmrc ≤ γ̂egc ≤ L
1
α
r γ̂sc, (35)

(b) When 1 ≤ α < 2,

L
1
α −1
r γ̂sc ≤ γmrc ≤ γ̂egc ≤ L

1
α
r γ̂sc. (36)

We note that the relationships in (35) and (36) are independent
of fading types. The proof of (35) and (36) is given in the

Appendix B. According to (6), the noise power is proportional
to the dispersion of the noise. (35) and (36) imply that MRC
always performs better than EGC regardless of the fading type.
Particularly, SC shows the best performance when the channel
is extremely impulsive (α < 1). Moreover, according to (35)
and (36), the upper bound and lower bound of the performance
for MRC and EGC can be determined by SC. The SNR of
these combiners can be easily compared and the numerical
results will be given in Section V-A.

E. Optimal and Sub-Optimal Detectors

Although linear combiners are simple, they do not consider
the degradation caused by impulsive interference. As shown
in the literature, non-linear detectors can achieve better per-
formance [15], [21] on impulsive noise channels. The decision
metric of the optimal detector is given as

λop =
Lr∑

l=1

ln
P(xl = +1|rl, al)

P(xl = −1|rl, al)
=

Lr∑

l=1

ln
fα(rl − al; γ )

fα(rl + al; γ )
. (37)

We note that (37) gives the initial log-likelihood ratios (LLRs)
for soft-input-soft-output decoding.

The complexity in calculating (37) is very high since the
pdf of SαS distributions is not given in closed-form, so sub-
optimal detectors are required to reduce the complexity. In the
literature, the Cauchy detector has been shown to achieve a
good performance for a large range of α, especially when α
approaches one [38]. The Cauchy detector can be expressed
as

λCauchy =
Lr∑

l=1

ln

(
γ 2 + (yl + al)

2

γ 2 + (rl − al)2

)
. (38)

However, the Cauchy detector leads to a significant degrada-
tion when the channel is only slightly impulsive (α is close to
two), since Cauchy distribution is only a special case of SαS
distributions at α = 1. In order to better approximate SαS
distributions, two classes of mixture models were proposed.
One is Gaussian mixture model (GMM) which is the sum of a
finite number of scaled Gaussian pdf. However, GMM cannot
accurately capture the tail behavior of SαS distributions.
The other is Cauchy-Gaussian mixture (CGM) model which
utilizes the algebraic tail of Cauchy distribution. CGM model
is a multiplicative mixture of a Cauchy pdf and a Gaussian
pdf, but require three parameters: mixture ratio ε, the scale
parameter γ and the variance σ 2 of the Gaussian distribution.
The BCGM model is a new type of CGM models with only
two parameters, a mixture ratio ε and γ , and it approximates
SαS pdf well at α ∈ [1, 2] [28]. In this paper, we use
this BCGM model to achieve near-optimal performance. The
BCGM pdf is given as

fCG(x; γ ) = (1 − ε)
1

2
√

πγ
exp

(
− x2

4γ 2

)
+ ε

γ

π(x2 + γ 2)
.

(39)

A near-optimum value is achieved when

ε = 2�(−ω/α) − α�(−ω/2)

2α�(−ω) − α�(−ω/2)
, (40)
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where the gamma function is defined as �(x) = ∫ ∞
0 e−t t x−1dt

and ω < α. The BCGM detector can be obtained by replacing
the SαS pdf in (37) by (39). We note that the BCGM is only
valid when α ∈ [1, 2] and when α < 1, the BCGM detector
reduces to a Cauchy detector. The complexity of this new
detector is much lower than the optimal detector since its pdf
is given in closed-form. The uncoded and coded performance
of optimal and sub-optimal detectors will be examined in
Section V.

IV. CODED BEP ANALYSIS FOR LINEAR DIVERSITY

COMBINING TECHNIQUES

A. Asymptotic Performance of LDPC Codes

The ensemble of LDPC codes can be represented by a
bipartite graph comprising variable nodes and check nodes.
A regular LDPC code ensemble can be defined by a degree
pair (dv , dc), where dv and dc are the number of edges
incident to each variable node and check node, respectively.
An irregular LDPC code can be characterized by edge degree
distributions λ(x) and ρ(x), which are defined as

λ(x) =
∑

j≥2

λ j x j−1, ρ(x) =
∑

i≥2

ρi x
i−1. (41)

λ j and ρi are the fraction of edges that are connected to
variable and check nodes with degree j and i , respectively.

Several methods such as density evolution (DE), Gaussian
approximation (GA) and extrinsic information transfer (ExIT)
charts have been proposed to find the asymptotic performance
of LDPC codes [39]–[41]. However, only DE is valid for
general binary memoryless symmetric channels (BMSC) and
it is employed in this paper to calculate the threshold of a
specific ensemble of LDPC codes. In this section, we will
show how to apply DE to diversity combining techniques on
i.i.d. Rayleigh fading channels with additive SαS noise.

1) Initial PDF of Log-Likelihood Ratio (LLR): DE tracks
the pdf of LLRs during the iterative decoding process. To start
the process of DE, the initial pdf of the LLRs must be calcu-
lated. Assuming we have perfect side information, the initial
LLR of the decoder for SC or EGC is calculated as

v(0) = ln
P(x = +1|y, a)

P(x = −1|y, a)
= ln

fα(y − a; γ )

fα(y + a; γ )
, (42)

where a is the combining channel gain over i.i.d. Rayleigh fad-
ing channels, which is denoted as asc or aegc for SC or EGC,
respectively. Similarly, γ becomes γegc for EGC. The pdf
of (42) has no analytic expression with the exception of
α = 2 and Monte-Carlo simulations with a histogram method
are used to obtain the conditional pdf of v(0) as p(v(0)|a).
To obtain the unconditional density function of v(0), we need
to average p(v(0)|a) over the pdf of a as

p(0)
v =

∫ ∞

0
p(v(0)|a)p(a)da, (43)

where p(a) is the pdf of the combining channel gain a.
To derive the pdf of asc for SC, we change the variable

of (19), asc, using the relationship p(η)dη = p(asc)dasc and
a2

sc = η/η. Hence, the pdf of a is expressed as

p(asc) = 2ascLr e−a2
sc

(
1 − e−a2

sc

)Lr −1
. (44)

For EGC, the closed-form approximated pdf of aegc has
been given in (26). Alternatively, a simulation-based approach
can be used to find the pdf of aegc using a histogram method.

For MRC, a different approach is used to find the pdf of
the initial LLR. According to (27) and (30), the initial LLR
can be written as

v(0) = ln
fα(ŷ − 1; γmrc)

fα(ŷ + 1; γmrc)
. (45)

The relationship between γmrc and γ has been derived in (30),
γmrc = ξγ , where ξ is a random variable and is expressed as

ξ =
(∑Lr

l=1 aα
l

) 1
α

∑Lr
l=1 a2

l

. (46)

Hence the unconditional pdf of v(0) is obtained as

p(0)
v =

∫ ∞

0
p(v(0)|ξ)p(ξ)dξ, (47)

where p(ξ) is the pdf of ξ , which cannot be given in a closed-
form. Similarly, a simulation-based approach is used to find
p(ξ).

2) Density Evolution Analysis: After initialization, DE of
the sum-product algorithm (SPA) is a two-stage iterative
process which consists of DE for the check node update and
variable node update. With the initial LLR pdf p(0)

v obtained,
the DE of the check node update is given as

p(l)
u = �−1

⎛

⎝
∑

i≥2

ρi

(
�

[
p(l−1)
v

])⊗(i−1)

⎞

⎠, (48)

where ⊗ represents the convolution operation, p(l)
u is the pdf

of each check node output and p(l)
v is the pdf of each variable

node output at the l-th iteration. � and �−1 are the changes
in density due to g(·) and g−1(·) respectively, where

g(z) = (sign(z), ln coth |z/2|) . (49)

The DE of the variable node update is expressed as

p(l)
v = p(0)

v ⊗
∑

j≥2

λi

(
p(l)

u

)⊗( j−1)
. (50)

The summations in the variable node update become convolu-
tions in (50). We assume that the all-zero codeword (x = +1)
is transmitted, hence the fraction of incorrect messages for the
l-th iteration can be denoted as

P(l)
e =

∫ 0

−∞
p(l)
v (x)dx . (51)

For a given noise parameter γ , this two-stage iterative algo-
rithm is performed until the error probability either converges
to zero or stops at a certain value. The threshold γ ∗ of a
specific ensemble of LDPC codes is the supremum of all γ

such that P(l)
e converges to zero as the number of iterations

tends to infinity:

γ ∗ = sup

{
γ : lim

l→∞

∫ 0

−∞
p(l)
v (x)dx = 0

}
. (52)



MEI et al.: PERFORMANCE ANALYSIS OF LDPC-CODED DIVERSITY COMBINING ON RAYLEIGH FADING CHANNELS WITH IMPULSIVE NOISE 2351

The threshold γ ∗ indicates where the waterfall region begins
which allows us to estimate the performance of LDPC codes.
However, since DE assumes the code length is infinite and
cycle-free, there is still a gap between the threshold and actual
performance of LDPC codes.

B. Waterfall Performance Estimation of LDPC Codes

In the asymptotic analysis of LDPC codes, the channel
quality of transmitting each codeword is fixed since it assumes
the codeword has an infinite length. However, for finite-length
LDPC codes, the channel variation for each codeword should
be considered. In this subsection, we extend the analysis
in [26] to more general non-Gaussian channels by using DE
rather than GA. An accurate estimation of block and bit-error
probability of finite length LDPC codes on Rayleigh fading
channels with SαS is given by observing the real-time channel
quality.

First, we define Pobs
b,α as the observed bit-error rate (BER)

of any received codeword of length N , which is a random
variable. Then the number of errors N Pobs

b,α in a codeword
follow a binomial distribution B(N, Pb,α ) [26]. Pc

b,α is the
probability of a bit error and is denoted as either PSC

b,α,
PEGC

b,α or PMRC
b,α , depending on the type of combiner. When N

is large, the pmf of N Pobs
b,α can be approximated by a normal

distribution N (N Pc
b,α , N Pc

b,α(1 − Pc
b,α)). Hence, the pdf of

Pobs
b,α is given by N (Pc

b,α, Pc
b,α(1 − Pc

b,α)/N). Then the block-
error probability of LDPC codes with ensemble (λ, ρ) is
calculated as

Pα
B (N, λ, ρ) =

∫ 1

Pth

fPobs
b,α

(N, x)dx

= Q

(
Pth − μPobs

b,α

σPobs
b,α

)

, (53)

where μPobs
b,α

= Pc
b,α and σPobs

b,α
= Pc

b,α(1 − Pc
b,α)/N . Pth is

the corresponding BEP of the threshold SNR
(

Eb
N0

)

th
and the

block-error probability is Pobs
b,α > Pth.

The threshold SNR
(

Eb
N0

)

th
can be calculated from γ ∗ which

has been obtained in the previous section. Hence for SC,
EGC and MRC, Pth can be found by substituting

(
Eb
N0

)

th
into

(17), (24) and (33), respectively.
The coded BEP Pα

b (N, λ, ρ) can be derived from
Pα

B (N, λ, ρ). According to DE, we observe that the decoder
has a probability P(lmax)

e of failing, where lmax is the maximum
number of iterations when DE is performed. This probability
does not change significantly when the channel is slightly
worse than the threshold. Each codeword has a probability
Pα

B (N, λ, ρ) of being in error, hence the estimated coded BEP
is given as

Pα
b (N, λ, ρ) = P(lmax)

e Pα
B (N, λ, ρ). (54)

V. RESULTS AND DISCUSSION

A. SNR Comparison

To verify our SNR analysis of SC, EGC and MRC in
Section III-D, the SNR gain of SC over EGC and MRC is

Fig. 1. SNR gain of SC over EGC and MRC with different α for Lr = 3.

Fig. 2. Uncoded BEP of SC, EGC and MRC with Lr = 2 on Rayleigh
fading channels with SαS noise at α = 0.8.

presented in Fig. 1. We note that the SNR gain over EGC and
MRC is given as 20 log10(γ̂egc/γ̂sc) and 20 log10(γmrc/γ̂sc),
respectively. It is shown that MRC always performs better than
EGC, which agrees with (35) and (36). Moreover, we observe
that SC has the best performance for small values of α.
However, it degrades as α increases and starts to have no
gain over MRC and EGC from α = 1.3 and α = 1.55,
respectively. We note that the SNR comparison of different
combiners give a good insight into their performance. In the
following subsections, observations from Fig. 1 will be verified
by results of uncoded and coded BEP performance.

B. Uncoded BEP

In this subsection, both the analytic and simulated perfor-
mance of different combining methods with different levels
of impulsiveness are investigated. In addition to this, the per-
formance of optimal and sub-optimal detectors are presented.
As shown in Fig. 2 - 4, the analytic BEP matches well with
simulated BER for SC, EGC and MRC with different α (α =
0.8, 1.4, 1.9) and different number of branches (Lr = 2, 3, 4).

As seen in Fig. 2, when compared with the other two
linear diversity combining techniques, SC achieves the best
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Fig. 3. Uncoded BEP of SC, EGC and MRC with Lr = 3 on Rayleigh
fading channels with SαS noise at α = 1.4.

Fig. 4. Uncoded BEP of SC, EGC and MRC with Lr = 4 on Rayleigh
fading channels with SαS noise at α = 1.9.

performance at small values of α (α = 0.6) and this result
agrees with the observations in [21]. At the same SNR,
the relationship of the BEP for SC, EGC and MRC is PSC

b,α <

PMRC
b,α < PEGC

b,α . As the channel becomes less impulsive (α =
1.4), the performance of SC degrades when compared with
EGC and MRC and we have PMRC

b,α < PSC
b,α < PEGC

b,α , which
verifies our observation in Fig. 1 that SC starts to perform
worse than MRC and EGC at α = 1.3 and α = 1.55 since
1.3 < 1.4 < 1.55. When α = 1.9, SC shows the worst perfor-
mance among the three linear diversity combining techniques
and PMRC

b,α < PEGC
b,α < PSC

b,α . We observe that SC can achieve
superior performance when the effect of impulses is strong
and the performance degrades as α increases. Although MRC
only uses a particular set of weights, when compared with SC
and EGC it can still achieve a good performance especially
when α is close to two. We note that the BEP we obtained
in Fig. 2 - 4 shows good agreement with our numerical results
for the SNR comparison in Fig. 1.

The performance of optimal, Cauchy and BCGM detectors
are presented in Fig. 5. When the channel is extremely
impulsive, the BCGM detector reduces to the Cauchy detector

Fig. 5. Performance of different detectors with Lr = 3 on Rayleigh fading
channels with SαS noise at α = 1.9 and α = 1.2.

TABLE I

THE THRESHOLD SNRS IN DB OF REGULAR LDPC CODES WITH SC, EGC
AND MRC FOR RAYLEIGH FADING CHANNELS WITH SαS NOISE

and it is shown that the Cauchy detector achieves near-
optimal performance at α = 0.6. When α approaches one
(α = 1.2), both Cauchy and BCGM detectors achieve near-
optimal performance. However, when the channel is only
slightly impulsive, the gap between the optimal detector and
Cauchy detector becomes larger. When α = 1.9 and Lr = 3,
the optimum detector shows a gain of about 0.8 dB when
compared with the Cauchy detector. In contrast, our proposed
BCGM detector shows almost optimal performance in all
situations.

C. Coded BEP

In this subsection, the asymptotic and finite length per-
formance of regular and irregular LDPC codes are evalu-
ated with both numerical and simulation results. The rate
1/2 regular (3,6) LDPC codes and the irregular LDPC codes
with degree distribution of λ(x) = 0.4x2 + 0.4x5 + 0.2x8,
ρ(x) = x8 are used. The block lengths considered are
N = 1000, 4000, 20000 bits. For short or moderate length
LDPC codes (N ≤ 4000), the progressive edge-growth (PEG)
algorithm is used to maximize the local girth [42]. For long
LDPC codes (N = 20000), random construction is employed
since the complexity of PEG is very high.

Table I shows the threshold SNRs of (3, 6) regular LDPC
codes with SC, EGC and MRC for spatial diversity systems.
The relationship of asymptotic performance of LDPC codes
we obtained for these combiners show good agreement with
the uncoded performance we analyzed for different linear
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Fig. 6. Performance of regular (3, 6) LDPC codes with EGC for N =
1000, 4000, 20000 at Lr = 2 on Rayleigh fading channels with SαS noise at
α = 0.6.

combiners. As shown in Table I, SC shows the best perfor-
mance for very impulsive noise channels (α = 0.6 and α = 1)
for Lr = 2 and Lr = 4. When the channel is moderately
impulsive (α = 1.4), MRC starts to outperform SC and as the
channel becomes less impulsive, the gap between MRC and
SC becomes larger. For example, the threshold SNR of MRC
is 1.53 dB at α = 1.4 and Lr = 2, which is 0.37 dB smaller
than SC. When α = 1.8, the difference increases to 1.09 dB.
EGC only shows a good performance for slightly impulsive
channels (α = 1.8).

Moreover, an interesting observation is that more branches
do not always give better performance when impulses are
present. As illustrated in Table I, as α decreases, Lr = 4
achieves a smaller gain than Lr = 2 for EGC and MRC,
respectively. When α = 0.6, the thresholds of EGC and MRC
for Lr = 4 are even larger than for Lr = 2. This implies that
very severe impulses will lead to a larger degradation with
EGC and MRC when there are more branches, which means
that the received signals from other branches become a source
of interference.

In addition to the results of the asymptotic analysis given
in Table I, the waterfall performance estimation and simulation
results for both regular and irregular LDPC codes are presented
in Figs. 6 - 9. As shown in Fig. 6, our estimated results match
the simulation results closely with EGC at α = 0.6 which
is extremely impulsive. We observe a reduction in the gap
between the estimated and simulation results as the block
length N increases. The estimated performance inaccuracy
decreases from 0.3 dB to 0.15 dB as N increases from
1000 to 4000. When N = 20000, the analytic and simulated
performance are almost identical. We note that even for very
long LDPC codes (N = 20000), the gap between the threshold
SNR and simulation results is about 2.3 dB which is much
larger than our estimated results.

Fig. 7 presents the simulated block and bit error rates of
irregular LDPC codes with N = 4000, when the channel
is moderately impulsive. Here, three different LDPC codes
are constructed from the same degree distribution and their
performance is evaluated to show the generalization of our

Fig. 7. Performance of irregular LDPC codes with SC at Lr = 2 and
N = 4000 on Rayleigh fading channels with SαS noise at α = 1.5.

Fig. 8. Performance of irregular LDPC codes with different combiners at
Lr = 3 and N = 4000 on Rayleigh fading channels with SαS noise at
α = 1.8.

method. The performance is accurately estimated by our
analytic PB and Pb in (53) and (54) with a 0.2 dB difference
at the error rate of 10−5, while the gap between asymptotic
and simulated performance is 1.25 dB.

As presented in Fig. 8, different combiners with a slight
impulsive noise are compared. For linear combiners SC, EGC
and MRC, the threshold and numerical closed-form predic-
tion are given and again closely match with the simulation
results. We observe that the coded BEP of different combining
methods agrees with the uncoded BEP obtained in the above
section, where MRC still outperforms SC and EGC for slightly
impulsive channels. Meanwhile, the non-linear detectors out-
perform the linear combiners. The performance of the optimal
detector and our proposed detector are almost the same, which
is 0.7 dB better than MRC and the Cauchy detector.

The performance of SC with exact and estimated α and γ is
presented in Fig. 9. The curves named “sim. no est.” and “sim.
est.” represent simulation results with known and estimated
parameters, respectively. In our experiments, the average esti-
mation errors of α are 8%, 6% and 4% at N = 1000, 4000
and 20000, respectively. The corresponding average estimation
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Fig. 9. Performance of irregular LDPC-coded SC with exact and estimated
parameters on Rayleigh fading channels with SαS noise at α = 1.5 and
Lr = 3.

errors of γ are 16%, 17% and 18% at Eb/N0 = 0 dB
(γ = 0.64). As shown in Fig. 9, the difference between
the performance with known parameters and the performance
with estimated parameters is small, being less than 0.1 dB.
It implies that the LDPC decoder is very robust against
estimation errors.

We observe that the waterfall region prediction of LDPC
codes becomes more accurate as N increases. The reasons are
as follows: first, the Pth obtained from DE assume the LDPC
code is cycle-free and the block length is infinite. However,
the effect of cycles can not be avoid and it becomes more
serious at short block length which degrades performance. The
prediction of waterfall region is more accurate at long block
length since the concentration theorem states that the average
behavior of individual LDPC codes converges to the cycle-
free case as the block length grows [39]. Second, the Gaussian
approximation might be a source of inaccuracy since according
to central limit theorem (CLT), the pdf of Pα

obs converges to
Gaussian pdf only when N is large.

To numerically evaluate the accuracy of the Gaussian
approximation, the Kullback-Leibler (KL) divergence is
employed to calculate the difference between the two pdfs.
KL divergence is defined as DKL(P||Q) = ∑

i P(i) log P(i)
Q(i) ,

where P is the true pdf and Q is an approximation of P .
In our case, P is the binomial pdf B(N, Pc

b,α) and Q is the
normal distribution N (Pc

b,α, Pc
b,α(1 − Pc

b,α)/N). It is obvious
that P and Q are determined by N and Pc

b,α which is related
to α. In order to examine the influence of N and α on the
accuracy of the approximation, we take Fig. 6 and Fig. 9
as examples. As shown in Fig. 6, the channel is extremely
impulsive with α = 0.6. N = 1000, 4000, 20000 and Pc

b,α
can be calculated by (24). We note that this approximation
generally improves as N increases and Pc

b,α is not near to
0 or 1 [43]. Hence, in order to investigate the validity of
Gaussian approximation, for the worst case, we choose the
smallest Pc

b,α = 0.0948 which can be calculated from (24) at
Eb/N0 = 16 dB in Fig. 6. Hence the KL divergence between
the pdf of Pα

obs and Gaussian distribution is obtained as
6.4×10−4, 1.6×10−4, 3.2×10−5 for N = 1000, 4000, 20000,

respectively. Similarly, as shown in Fig. 9, when the channel is
moderate impulsive (α = 1.5), the KL divergence at Eb/N0 =
3 dB is obtained as 9.2 × 10−4, 2.3 × 10−4, 4.6 × 10−5 for
N = 1000, 4000, 20000, respectively. Hence, the Gaussian
approximation is very accurate even for short length LDPC
codes (N = 1000), since the KL divergence is very small.
In addition, the value of α has little impact on the accuracy of
approximation. The reason is the LDPC-coded performance is
much better than uncoded performance for each α, which will
result in a relatively large Pc

b,α at the range of Eb/N0.

VI. CONCLUSION

In this paper, we investigate the uncoded and coded per-
formance of linear diversity combining schemes on Rayleigh
fading channels with independent SαS noise. The asymptotic
performance of LDPC codes is derived using DE to verify
the effectiveness of our analysis. In addition, a closed-form
expression of the waterfall performance is given that reduces
the gap between the asymptotic and simulated performance of
LDPC codes. As discussed in the results section, MRC is not
the best linear combiner, especially when the channel becomes
more impulsive, and SC shows superior performance when the
effect of impulses is very strong. An interesting result is when
the channel is very impulsive, more branches have no benefit
and can even degrade the performance with EGC and MRC.
Meanwhile, non-linear detectors show a better performance
than linear combiners with higher complexity and we proposed
a reduced complexity detector by approximating the SαS pdf
through a closed-form BCGM pdf which can achieve near
optimal performance for all α.

VII. *APPENDIX A
THE DISTRIBUTION OF COMBINED NOISE FOR EGC

The combined noise in (21) is expressed as

negc =
Lr∑

l=1

ñl (55)

where ñl = nle− jφl and nl is an independently complex SαS
random variables. Hence, according to (4), ñl can be written
as

ñl = √
B1G1e− jφl + j

√
B2G2e− jφl

= √
B1G

′
1 + j

√
B2G

′
2, (56)

where G
′
1 = G1e− jφl and G

′
2 = G2e− jφl . According to the

isotropic property of Gaussian random variables, G
′
1 and G

′
1

are also Gaussian with the same mean and variance as G1 and
G2. Hence ñl also follows SαS distribution with the same α
and γ as nl .

APPENDIX B
THE RELATIONSHIP OF THE DISPERSION BETWEEN SC,

MRC AND EGC

First, we prove that γmrc ≤ γ̂egc for 0 < α < 2. According
to the power mean inequality, for real numbers k1, k2 and
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positive real numbers a1, a2, · · · , an , k1 ≤ k2 implies that

(∑n
i=1 ak1

i

n

) 1
k1

<

(∑n
i=1 ak2

i

n

) 1
k2

. (57)

Hence, in our case, we can obtain

(
Lr∑

l=1

aα
l

) 1
α

≤ L
1
α − 1

2
r

(
Lr∑

l=1

a2
l

) 1
2

. (58)

For MRC, by substituting (58) to (30), we can write

γmrc ≤ L
1
α − 1

2
r

(∑Lr
l=1 a2

l

) 1
2

γ ≤ L
1
α
r(∑Lr

l=1 al

)γ = γ̂egc. (59)

For EGC, one obtains

γ̂egc = L1/α
r

∑Lr
l=1 al

γ ≤ L1/α
r

am
γ = L1/α

r γ̂sc. (60)

When 0 < α ≤ 1, it was proved that γ̂sc ≤ γmrc in [21].
Hence, the relationship of linear combiners is given as

γ̂sc ≤ γmrc ≤ γ̂egc ≤ L1/α
r γ̂sc. (61)

When 1 ≤ α < 2, γ̂sc is not always less than γmrc. With the
help of (57), the relationship is derived as

γmrc ≥
∑Lr

l=1 al
∑Lr

l=1 a2
l

L
1
α −1
r γ

≥
∑Lr

l=1 al
∑Lr

l=1 alam

L
1
α −1
r γ

= 1

am
L

1
α −1
r γ = L

1
α −1
r γ̂sc. (62)

Hence, the relationship of the dispersion for SC, MRC and
EGC when 1 ≤ α < 2 is

L
1
α −1
r γ̂sc ≤ γmrc ≤ γ̂egc ≤ L1/α

r γ̂sc. (63)
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