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Progressive List-Enlarged Algebraic Soft Decoding of
Reed-Solomon Codes
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Abstract—A progressive algebraic soft decoding algorithm is
proposed for Reed-Solomon (RS) codes, aiming to reduce the
computational complexity. The decoding starts with a small
initial factorization output list size (OLS), then updates the OLS
progressively leading to an incremental interpolation. Decoding
will terminate either when the output contains a codeword
that can be identified as the most likely one or the predefined
maximal OLS is reached. The algorithm can adjust the decoding
parameter according to the quality of the received information,
optimizing its complexity to the minimal but necessary level.

Index Terms—Algebraic soft decoding, complexity reduction,
Koetter-Vardy algorithm, list decoding, progressive interpolation.

I. INTRODUCTION

REED-SOLOMON (RS) codes are widely used nowadays.
For an (n, k) RS code, where n and k are the length

and dimension of the code respectively, the error-correction
capability of the classical unique decoding algorithms [1] [2]
is bounded by �n−k

2
�. The algebraic list decoding algorithm [3]

improves the error-correction bound to n−�√n(k−1)�− 1.
The algebraic soft decoding (ASD) algorithm [4] achieves
further error-correction improvements. Due to its high de-
coding complexity, complexity reduction approaches includ-
ing the facilitated reliability transform [5], the unnecessary
interpolated polynomial elimination [6] and the re-encoding
transformation [7] were introduced.

The ASD algorithm is flexible in nature since the decod-
ing capability and complexity can be adjusted by varying
its factorization output list size (OLS). In a good channel
condition, most of the received words contain a small number
of errors, and hence the ASD algorithm can perform most of
its decodings with a small OLS. However, to decode a deeply
corrupted received word which is atypical but may degrade
the performance by orders of magnitude, a large OLS is
required. Therefore, it is desirable to design an ASD algorithm
that can adjust its decoding parameters to the quality of the
received information. This inspires the proposed progressive
list-enlarged algebraic soft decoding (PLEASD) algorithm.
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Let Fq={α0, α1, · · · , αq−1} denote the finite field of size q.
Let xi (0 ≤ i ≤ n− 1) be n distinct nonzero elements of Fq.
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Fig. 1. The progressive list-enlarged algebraic soft decoding system.

Given a message polynomial u(x)=u0+u1x+· · ·+uk−1x
k−1,

the codeword of an (n, k) RS code can be generated as
c=(u(x0),u(x1), · · · , u(xn−1)). Assume c is transmitted over a
memoryless channel and r = (r0, r1, . . . , rn−1) is the received
vector. Let Π denote the reliability matrix whose entries
πi,j=Pr{cj = αi|rj} for 0 ≤ i ≤ q − 1 and 0 ≤ j ≤ n− 1.

Matrix Π is mapped to a multiplicity matrix M. The
ASD algorithm constructs a bivariate polynomial Q(x, y) =∑

a,b≥0 Qabx
ayb that has the minimal rank and satisfies all the

interpolation constraints implied by matrix M. The monomials
xayb are ordered by the (1, k − 1)-revlex order (ord) [8]. Let
xa′

yb′ be the leading monomial with Qa′b′ �= 0, the (1, k− 1)-
weighted degree and rank of Q are defined as deg1,k−1Q =

a′ + b′(k − 1) and rank(Q) = ord(xa′
yb′) respectively.

III. PLEASD ALGORITHM

A. System Model

The system model of the PLEASD algorithm is shown by
Fig. 1, where v is the iteration index that is initialized as 1.

Given an increasing OLS sequence �1, . . . , �v, . . . , �T , where
�v denotes the decoding OLS of iteration v and �T is the
predefined maximal OLS. To produce a series of multiplicity
matrices M(1), . . . ,M(v), . . . ,M(T ), the PLEASD algorithm will
perform Algorithm A of [4] iteratively. At each iteration, it is
testified whether the following equation [9] holds:

�v =

⌊
Δ1,k−1(C(M))

k − 1

⌋
, (1)

where C(M) =
∑

i,j mi,j(mi,j + 1)/2 is the cost of matrix M

and Δ1,k−1(C(M))=deg1,k−1x
ayb with ord(xayb)=C(M). Once

it is held, the matrix M(v) that corresponds to the OLS of �v is
produced. Let m(v)

i,j be the entry of M(v). With the nature of the
iterative reliability mapping Π �→ M, we have m

(v)
i,j ≥ m

(v−1)
i,j .

Given the multiplicity matrix M(v)(1 ≤ v ≤ T ), the in-
terpolation is to find a polynomial Q

(v)
min(x, y) that has the

minimal rank and satisfies all the interpolation constraints
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defined by M(v). This is equivalent to solving a linear system
derived from M(v), and can be implemented efficiently by
Koetter’s algorithm [8]. It delivers a group of polynomials
G = {g0, g1, · · · , g�v} with an initial group G0 = {1, y, · · · , y�v}.

Let Q
(v)
min be the minimal polynomial of G. Factorization

[10] is to determine a list of decoding output candidates whose
property can be characterized by

L = {f(x) : deg f(x) < k, y − f(x)|Q(v)
min}. (2)

If there exists f(x)∈L whose corresponding codeword can be
identified (using the lemma shown in the next subsection) as
the most likely codeword, the decoding will be terminated and
f(x) is given as the output. Otherwise, the iteration index will
be updated as v = v+1, and it is followed by the OLS update.
The decoding terminates once �v > �T . During the decoding,
a possible codeword candidate ĉ is identified and stored in
memory. If �v>�T and the most likely codeword has not been
found, the stored codeword ĉ is given as the output.

B. A Sufficient Condition for the Most Likely Codeword

Let r̂=(r̂0, r̂1,· · ·, r̂n−1) be the hard-decision received vector
with r̂j ∈ Fq. The maximum likelihood (ML) decoding is
to find a codeword ĉ = (ĉ0, ĉ1, . . . , ĉn−1) that maximizes the
metric

∑
0≤j≤n−1 log(πij ,j), where ij = index{i | αi = ĉj}. Let

π1st
j and π2nd

j denote the largest and the second largest values
in the j-th column of Π respectively, we have∑
0≤j≤n−1

log(πij ,j) =
∑

0≤j≤n−1

log(π1st
j )−

∑
j:ĉj �=r̂j

(log(π1st
j )− log(πij ,j)).

(3)
Therefore, the ML decoding is to find a codeword ĉ that
minimizes the metric

L(r̂, ĉ) =
∑

j:ĉj �=r̂j

(log(π1st
j )− log(πij ,j)). (4)

Reorder all the elements in {log(π1st
j )−log(π2nd

j ) : ĉj = r̂j} as
log(π1st

j1 )− log(π2nd
j1 ) ≤ log(π1st

j2 )− log(π2nd
j2 ) ≤ · · · . Define

L̃(r̂, ĉ) =

dmin−d∑
t=1

(log(π1st
jt )− log(π2nd

jt )), (5)

where dmin = n− k+1 is the minimum Hamming distance of
the code and d is the Hamming distance between ĉ and r̂. The
following lemma [11] can be used to identify the most likely
transmitted codeword.

Lemma 1. If a codeword ĉ satisfies
L(r̂, ĉ) ≤ L̃(r̂, ĉ), (6)

then there is no codeword which is more likely than ĉ.
It is worthwhile to point out that a codeword that satisfies

the condition of (6) must be the most likely codeword. How-
ever, the most likely codeword may not satisfy the condition.
To distinguish between these two cases, the former is referred
to as the verifiable most likely codeword.

C. The Feasibility of the PLEASD Algorithm

It is important to note that the minimal bivariate polynomial
found by Koetter’s algorithm is independent of the interpolat-
ing schedule. For example, to find Q(x, y) that passes through
(x, α) and (y, β) with multiplicities of 2 and 1 respectively, one
can first interpolate (x, α) and then (y, β) or vice versa. One
can even first interpolate part of the constraints of (x, α) and
(y, β), and then the remaining constraint of (x,α). Based on the

argument, we will show that the computation of Q
(v)
min can be

accomplished in a progressive way by using the intermediate
results from the (v-1)-th iteration according to the following
three steps.

Step 1: Perform Koetter’s algorithm for constraints defined
by M(v−1). The intermediate results are stored as follows.

Initialization: G0 = {1, y, · · · , y�v−1};
Iterations: For 1 ≤ t ≤ C(M(v−1)), Dp,qg(t)h (xj , αi) = 0 is the

t-th constraint defined by M(v−1), where Dp,qg(t)h (xj , αi) is the
(p, q)-th Hasse derivative evaluation at (xj , αi) and 0 ≤ p+q <

m
(v−1)
i,j . Let Λ(t−1) = {g(t−1)

h |Dp,qg(t−1)
h (xj , αi) �=0} and find

f (t−1) = min{g(t−1)
h ∈ Λ(t−1)}. (7)

Then, we can update Gt−1 to Gt = {g(t)0 , g
(t)
1 , · · · , g(t)�v−1

}
according to

g
(t)
h =

⎧⎪⎪⎨
⎪⎪⎩

g
(t−1)
h , g

(t−1)
h /∈ Λ(t−1)

[g(t−1)
h , f (t−1)]D, g

(t−1)
h ∈ Λ(t−1) & g

(t−1)
h �= f (t−1)

[xf (t−1), f (t−1)]D, g
(t−1)
h = f (t−1)

(8)
where [g, f ]D = Dp,qf(xj , αi)g −Dp,qg(xj , αi)f is the bilinear
modification.

Note that for any 1 ≤ t ≤ C(M(v−1)) and h ≤ �v−1, the rank
of g

(t)
h is less than that of y�v . We now extend the results to

the solutions that correspond to iteration v by the horizontal
expansion and vertical expansion successively.

Step 2 (Horizontal expansion): Firstly, consider the con-
straints defined by M(v−1). Let G̃t be the set of solutions at
the t-th iteration and 1 ≤ t ≤ C(M(v−1)). We will prove that
G̃t = Gt∪{g(t)�v−1+1, · · · , g(t)�v

}. That means, at the t-th iteration,
we only need to find ΔGt = {g(t)�v−1+1, · · · , g(t)�v

}. This can be
proved by the following induction.

Initially ΔG0 = {y�v−1+1, · · · , y�v} and G̃0 = G0 ∪ ΔG0.
Assume that at t-th iteration G̃t = Gt ∪ΔGt.

At the (t + 1)-th iteration, let f̃(t) = min{g(t)h ∈ G̃t :

Dp,qg(t)h (xj , αi) �=0}. We must have either f̃ (t)=f (t) or f̃ (t) �=f (t).
For f̃ (t)= f (t), the first part of G̃t is updated to Gt+1 without
modification. For f̃(t)�=f(t), no update is required for the first
part of G̃t. In both cases, only the calculation for updating ΔGt
is required. That is, G̃t+1=Gt+1∪ΔGt+1.

Finally, G̃S = GS ∪ΔGS , where S = C(M(v−1)).
Step 3 (Vertical expansion): Notice that G̃S satisfies the

constraints defined by M(v−1) but not the constraints defined
by M(v). We need to update G̃S by taking the incremental
constraints defined by M(v) and M(v−1) into account.

Let G be the output after the above three steps. It is
possible to get different G for different interpolation schedules.
However, the solution of the minimal polynomial Q

(v)
min is

irrelevant to the schedule and its identity is unique.
The proposed algorithm is summarized as Algorithm 1.

IV. PERFORMANCE AND COMPLEXITY COMPARISONS

In this section, the PLEASD algorithm is compared with
the conventional ASD algorithm by simulating the (63, 47)

RS code over additive white Gaussian noise (AWGN) channel
using binary-phase shift keying (BPSK) modulation. The
performance is measured by the frame error rate (FER), while
the computational complexity is measured by the average
interpolation cost (over frames) C(M). The cost C(M) repre-
sents maximum number of iterations in the interpolation step
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Algorithm 1 PLEASD for RS codes
Initialization: Initialize the OLS �0 = 0 and the polynomial
group G0 = {1}. Set M(0) = [0]q×n, v = 1 and t = 0.
Iterations:

1 Horizontal expansion: Initialize G̃t = Gt ∪ ΔGt with
ΔGt = {y�v−1+1, · · · , y�v}. For 1 ≤ t ≤ C(M(v−1)),
perform Koetter’s algorithm for constraints defined by
M(v−1) to extend the set of solutions Gt to G̃t = Gt ∪ΔGt.

2 Vertical expansion: Find M(v) and perform Koetter’s
algorithm for incremental constraints defined by M(v) and
M(v−1) to get G̃t for C(M(v−1))+1≤ t≤C(M(v));

3 Factorization: Find Q
(v)
min = minG̃S and S = C(M(v)).

Perform the factorization algorithm to check if the output
list contains a verifiable most likely codeword. If so,
report a decoding success and output ĉ. Otherwise, store
the minimal value of L(r̂, ĉ) and ĉ, then go to 4.

4 Updates: v ← v + 1 and update �v. If �v > �T , output ĉ
and exit the decoding; otherwise, Gt ← G̃t and go to 1.

which dominates the decoding complexity. Please note that the
average interpolation cost of the ASD algorithm is measured
without incorporating other complexity reduction approaches,
e.g., the re-encoding approach of [7].

A. The Conventional Parameters for the ASD Algorithm

In the ASD algorithm, the reliability transform (Algorithm
of [4]) maps matrix Π to M in an iterative manner. In
principle, any criterion to terminate the mapping process can
be utilized to parameterize the ASD algorithm. This can be
implemented by the following common ways. 1) For a given
s, one can perform Algorithm A until the entries of M satisfy
the condition s =

∑
i,j mi,j [4] [12]. 2) For a given cost C,

one can perform Algorithm A until C(M) ≥ C [13]. 3) For any
real value λ > 0, simply determine the multiplicity matrix by
M = �λΠ� [5]. 4) For a given factorization OLS �v, one can
perform Algorithm A until (1) is satisfied [9].

It is possible that to achieve a similar error-correction
performance, running the ASD algorithm with different pa-
rameters may incur different decoding complexities. To verify
this, Fig.2 compares the performance of ASD algorithm with
parameters s and �T . It can be seen that performance can
be improved by increasing the parameters s or �T . The FER
performance with s = 150, 250 and 400 are almost the same
as those with �T = 2, 4 and 7 respectively. The corresponding
average interpolation cost for different parameters are shown
in Fig. 3. It shows the computational complexity increases by
increasing the decoding parameters. To achieve the same error-
correction performance, the ASD algorithm with parameter
s yields a slightly lower cost. However, in both cases, the
complexity is almost insensitive to the channel signal-to-noise
ratio (SNR), except the case with s = 400 which results in a
slightly increased computational complexity by increasing the
SNR. This is because in the high SNR region, the multiplicity
values are only assigned for a limited number of entries in M.
With a fixed value of s, such a multiplicity distribution results
in a higher cost C(M).
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It is known that enhancing the factorization OLS results in
an improved error-correction performance since more decod-
ing output candidates are provided. More importantly, the OLS
is a necessary parameter to be known in the decoding because
OLS + 1 is the number of polynomials that participate into
the interpolation process. Therefore, the factorization OLS is
chosen as the progressive decoding parameter in this paper.

B. Comparison Between the PLEASD and ASD Algorithms

Performance Comparison The PLEASD algorithm is com-
pared to the ASD algorithm that performs decoding with
a fixed OLS of �T . The performances of the optimal ASD
algorithm with �T → ∞ and the Welch-Berlekamp (WB)
algorithm are shown as comparison benchmarks. Fig. 4 shows
that the PLEASD algorithm can slightly improve the FER
performance. This is due to the proposed algorithm generates
the output list L by factorizing a sequence of bivariate polyno-
mials Q

(1)
min, Q

(2)
min, · · · , Q(v)

min. In contrast, the conventional ASD
algorithm generates the output list L′ by only factorizing one
bivariate polynomial Q(T )

min. Since L′ ⊆ L, it can be seen that
even if the ASD algorithm fails to find the transmitted message
polynomial, the PLEASD algorithm may still be able to find it.
However, this situation rarely happens and hence only results
in a marginal error-correction performance improvement.
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Fig. 4. Performance of the PLEASD algorithm for the (63, 47) RS code.

Complexity Comparison To implement the PLEASD al-
gorithm, extra memory is needed to store the intermediate
polynomials f (t). The extra memory requirement is upper
bounded by O(C2(M(T ))). This is because we need to store at
most C(M(T )) polynomials f (t) and each of them has at most
C(M(T )) nonzero coefficients. Such a memory requirement
is similar to the complexity reduction approach of [14]. It
can be noticed that the PLEASD algorithm performs multiple
factorizations followed by the output verifications. However,
the complexity of multiple factorizations is still marginal
and can be easily compensated by reducing the interpolation
complexity. As for the output verification, the computational
complexity in the real number field is upper bounded by
O(nT�T ). This is because there are at most

∑
v≤T lv different

outputs. Each verification has a time complexity of O(n).
Fig. 5 shows the average interpolation cost for the (63, 47)

RS code. It can be observed that in the medium to high
SNR region (≥ 4 dB), significant complexity reduction can
be achieved by using the PLEASD algorithm. The complexity
reduction is mainly caused by the fact that the decoding
may deliver the most likely codeword earlier (albeit with low
probability at low SNR). More importantly, in the practically
working region (SNR ≥ 4.5 dB), most of the received word
can be decoded successfully with an OLS of 1. It results in
a significant complexity reduction. Recall the results shown
by Fig.4, with the same OLS of �T , both of the algorithms
achieve a similar error-correction performance. Therefore, the
complexity reduction is achieved without penalizing the al-
gorithm’s error-correction capability. The PLEASD algorithm
enables the original ASD decoding process to be more flexible.

V. CONCLUSIONS

A progressive list-enlarged algebraic soft decoding algo-
rithm for RS codes has been proposed. The algorithm exploits
the fact that the interpolation constraints can be categorized by
the nominal factorization OLS. The validity of the algorithm
has been proved by showing that the intermediate interpolation
results of the (v−1)-th iteration can be expanded to those of the
v-th iteration by the horizontal and vertical expansions succes-
sively. Simulation results show that the progressive algorithm
can reduce decoding complexity significantly without perfor-
mance loss compared to the conventional ASD algorithm. It
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Fig. 5. Complexity of the PLEASD algorithm for the (63, 47) RS code.

should be pointed out that this is a general approach that
could be combined with other complexity reduction methods
to further facilitate the decoding process.
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