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Progressive Algebraic Soft-Decision Decoding of
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Abstract—The algebraic soft-decision decoding (ASD) algo-
rithm is a polynomial-time soft decoding algorithm for Reed-
Solomon (RS) codes. It outperforms both the algebraic hard-
decision decoding (AHD) and the conventional unique decoding
algorithms, but with a high computational cost. This paper
proposes a progressive ASD (PASD) algorithm that enables
the conventional ASD algorithm to perform decoding with an
adjustable designed factorization output list size (OLS). The OLS
is enlarged progressively leading to an incremental computation
for the interpolation and an enhanced error-correction capability.
Multiple factorizations are performed in order to find out the
intended message polynomial which will be validated by a cyclic
redundant check (CRC) code. The incremental interpolation con-
straints are introduced to characterize the progressive decoding.
The validity analysis of the algorithm shows the PASD algorithm
is a natural and computationally saving generalization of the
ASD algorithm, delivering the same interpolation solution. The
average decoding complexity of the algorithm is further theo-
retically characterized, revealing its dependence on the channel
condition. The simulation results further validate the analysis by
showing that the average decoding complexity can be converged
to the minimal level in a good channel condition. Finally,
performance evaluation shows the PASD algorithm preserves the
error-correction capability of the ASD algorithm.

Index Terms—Algebraic soft-decision decoding, complexity
reduction, Koetter-Vardy algorithm, progressive interpolation,
Reed-Solomon codes.

I. INTRODUCTION

REED-Solomon (RS) codes are widely used in the
communication systems and storage devices for error-

correction. The conventional unique decoding algorithms [1] -
[3] are efficient, but their error-correction capability is lim-
ited by the half Hamming distance bound. The general-
ized minimum-distance (GMD) decoding [4] [5] improves
the error-correction performance. The recent algebraic hard-
decision decoding (AHD) (or the so called list decoding)
algorithm [6] [7] can correct errors beyond the distance bound.
By introducing a reliability transform front-end to the AHD
algorithm, the algebraic soft-decision decoding (ASD) algo-
rithm [8] further achieves a significant performance gain over
the AHD and GMD algorithms. Unlike other soft-decoding
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algorithms [9] [10] for RS codes, the ASD algorithm is
a polynomial-time soft decoding algorithm that inherits a
moderate decoding complexity. However, it is still orders of
magnitude higher than that of the unique decoding algorithms,
bringing an expensive implementation cost.

The ASD algorithm’s high decoding complexity is mainly
caused by the interpolation process [11] [12]. So far, various
interpolation complexity reduction approaches exist. In [13] -
[16], coordinate transform of the interpolation points were
introduced. They are either transformed into a set of points
with a zero y-coordinate [13] - [15], or formed with the
knowledge of the error locator and the error-correction poly-
nomials that are yielded by the Berlekamp-Massey (BM)
algorithm [16]. In [17], a Chase type interpolation was in-
troduced. Interpolation complexity can be reduced by incor-
porating the coordinate transform of [14] and identifying the
common interpolation points of various test received vectors.
In [11] [18], the interpolated polynomials with a leading order
greater than the interpolation cost were eliminated during the
interpolation, reducing the unnecessary decoding computation
and system memory. While in [19], interpolation is sequen-
tially performed on the polynomial that is most likely to be
chosen for factorization. It avoids spending computations on
those unlikely interpolated polynomials. More than reducing
the interpolation complexity, other main complexity reduction
approaches include a facilitated reliability transform [20] and
a hybrid decoding system [21].

However, the complexity reduction potential of the ASD
algorithm has not been fully exploited. The ASD algorithm is
flexible in nature since decoding with a different designed fac-
torization output list size (OLS) enables the algorithm to have
a different error-correction capability and complexity. It im-
plies the ASD algorithm can be performed through iterations
during which the designed OLS is enlarged progressively. That
will result in a gradually enhanced error-correction capability
and the incremental computations between iterations. Con-
sequently, both of the algorithm’s error-correction capability
and decoding complexity are channel dependent. Motivated by
the fact that different decoding events require different error-
correction capabilities, this paper proposes the progressive
ASD (PASD) algorithm in which the original ASD algorithm
is performed through iterations enlarging the designed OLS
gradually. The original reliability transform algorithm [8] is
modified to generate a series of multiplicity matrices w.r.t.
different designed OLS values. The incremental interpolation
constraints are further introduced in order to characterize the
progressive interpolation algorithm. Factorization is performed
after each round of interpolation in an attempt to find out the
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message polynomial which will be validated by a cyclic redun-
dancy check (CRC) code. It enables the PASD algorithm to
adjust its error-correction capability and decoding complexity
to the quality of the received information. The validity analysis
of the algorithm proves it is a natural and computationally
saving generalization of the original interpolation problem.
Decoding with the same designed OLS, the PASD algorithm
only reschedules the interpolation order without affecting
the final solution. The average decoding complexity of the
algorithm is further theoretically characterized, unveiling its
dependence on the channel condition. Simulation results show
that more significant complexity reduction can be achieved
by improving the channel condition. Finally, the performance
evaluation shows both the PASD and ASD algorithms have a
similar error-correction performance.

The rest of the paper is organized as the follows: Section II
shows some preliminaries for the paper. Section III presents
details of the PASD algorithm. Section IV analyzes the validity
of the algorithm. Section V and VI present the complexity
analysis and performance evaluation for the PASD algorithm,
respectively. Finally, Section VII concludes the paper.

II. PRELIMINARIES

Let Fq = {α0, α1, . . . , αq−1} denote the finite field of
size q, Fq[x] and Fq[x, y] denote the rings of univariate and
bivariate polynomials defined over Fq , respectively. Given
a message vector (u0, u1, . . . , uk−1) ∈ F

k
q , the message

polynomial u(x) ∈ Fq[x] can be written as:

u(x) = u0 + u1x+ · · ·+ uk−1x
k−1. (1)

In the PASD algorithm, the message in bits will need to be
CRC encoded first. Then the coded bits are converted to the
message vector as shown above. The codeword c̄ of an (n, k)
RS code can be generated by:

c̄ = (c0, c1, . . . , cn−1) = (u(x0), u(x1), . . . , u(xn−1)), (2)

where c̄ ∈ F
n
q and x0, x1, . . . , xn−1 are n distinct nonzero

elements of Fq .
Assuming c̄ is transmitted through a discrete memoryless

channel and ȳ = (y0, y1, . . . , yn−1) ∈ R
n is the received

vector. The ASD algorithm will first obtain a reliability matrix
Π of size q×n based on ȳ. Entry πij of Π is the a posteriori
probability value which is defined as:

πij = Pr[cj = αi | yj ]. (3)

The reliability matrix Π is then transformed into a multiplicity
matrix M of the same size [8]. Entry mij represents the
interpolation multiplicity for the point (xj , αi). The interpo-
lation is to construct a bivariate polynomial Q ∈ Fq[x, y]
that passes through all the points with different multiplicities
which are indicated by the matrix M. Given a polynomial
Q =

∑
a,b Qabx

ayb, its Hasse derivative evaluation at the
point (xj , αi) can be defined as [22]:

Dr,s(Q(x, y))|x=xj ,y=αi =
∑

a≥r,b≥s

(
a

r

)(
b

s

)
Qabx

a−r
j αb−s

i ,

(4)

where (r, s) is a pair of nonnegative integers. To have
a zero of multiplicity mij at (xj , αi), Q must satisfy
Dr,s(Q(x, y))|x=xj ,y=αi = 0 for all r + s < mij . To clarify
the interpolation constraints, the following definition is given.

Definition I: Let Λ(mij) denote the set of interpolation
constraints defined by mij as:

Λ(mij) = {Dr,s(Q(x, y))|x=xj ,y=αi = 0, ∀ r + s < mij}.
(5)

Then Λ(M) denotes a collection of all the sets Λ(mij) defined
by the entries of M as:

Λ(M) = {Λ(mij), ∀ mij ∈ M}. (6)

Since the number of interpolation constraints defined by mij

is |Λ(mij)| =
(
mij+1

2

)
= (mij + 1)mij/2, the total number

of constraints defined by matrix M is given by:

C(M) = |Λ(M)| = 1

2

q−1∑
i=0

n−1∑
j=0

mij(mij + 1), (7)

which is also called the interpolation cost. Since the in-
terpolation constraints can be uniquely defined by (r, s)
and the point (xj , αi), in the followings of the paper, we
simply use (r, s)ij to denote the interpolation constraints
Dr,s(Q(x, y))|x=xj ,y=αi = 0 and Λ(mij) = {(r, s)ij , ∀ r +
s < mij}. Moreover, the Hasse derivative evaluation (4) is
denoted by D(r,s)ij (Q(x, y)).

Monomials xayb are organized by the (1, k − 1)-revlex
order 1. Given a polynomial Q ∈ Fq[x, y], if xa′

yb
′

is the
leading monomial with Qa′b′ �= 0, the (1, k − 1)-weighted
degree of Q is defined as deg1,k−1 Q = deg1,k−1 x

a′
yb

′
and

its leading order is defined as lod(Q) = ord(xa′
yb

′
). Given

two polynomials (P,Q) ∈ Fq[x, y], we can declare P ≤ Q if
lod(P ) ≤ lod(Q).

For matrices Π and M, we use ij to denote the row index
at column j that yields αij = cj as:

ij = index{αi | αi = cj}. (8)

We further define the multiplicity based codeword score as:

SM(c̄) =
n−1∑
j=0

mijj , (9)

and the reliability based codeword score as:

SΠ(c̄) =

n−1∑
j=0

πijj . (10)

With (8), we know the codeword c̄ = (αi0 , αi1 , . . . , αin−1).
Hence, SΠ(c̄) represents the sum of the reliability values of
all codeword symbols. Therefore, given a codeword c̄ and two
distinct reliability matrices Π1 and Π2, we claim Π1 has a
better quality if SΠ1(c̄) > SΠ2(c̄).

According to Lemma 4 of [8], if the message polynomial
u(x) evaluates to the codeword as in (2), then (x−x0)

mi00(x−
x1)

mi11 · · · (x− xn−1)
min−1n−1 | Q(x, u(x)). Since SM(c̄) is

1The (1, k − 1)-weighted degree of monomial xayb is defined as
deg1,k−1 x

ayb = a + (k − 1)b. Given two distinct monomials xa1yb1

and xa2yb2 , we have ord(xa1yb1 ) < ord(xa2yb2 ), if deg1,k−1 x
a1yb1 <

deg1,k−1 x
a2yb2 , or deg1,k−1 x

a1yb1 = deg1,k−1 x
a2yb2 and b1 < b2.
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Fig. 1. Block diagram of the PASD decoder.

the degree of (x−x0)
mi00(x−x1)

mi11 · · · (x−xn−1)
min−1n−1

and degQ(x, u(x)) = deg1,k−1 Q(x, y), if

SM(c̄) > deg1,k−1 Q(x, y), (11)

then Q(x, u(x)) = 0 and the message polynomial u(x) can
be found out by factorizing Q(x, y) [7] [8] [11]. Factorization
[7] [25] [26] [27] is to find out a list of output candidates p(x)
that are in the form of u(x),

L = {p(x) : Q(x, p(x)) = 0}. (12)

The cardinality of L is referred as the factorization OLS. Since
deg1,k−1 Q(x, y) is upper bounded by Δ1,k−1(C(M)) and
Δ1,k−1(C(M)) = deg1,k−1(x

ayb|ord(xayb) = C(M)) [23],
the message polynomial u(x) can also be found out if

SM(c̄) > Δ1,k−1(C(M)). (13)

III. PROGRESSIVE ALGEBRAIC SOFT-DECISION

DECODING

This section will introduce the PASD algorithm, including
the decoder block diagram, the progressive reliability trans-
form algorithm and the progressive interpolation algorithm.

A. Decoder Block Diagram

Fig.1 shows the block diagram of the PASD decoder, and it
is an iterative process. Let v denote the iteration index which
is initialized as v = 1 at the beginning. Let lv denote the
designed factorization OLS of iteration v, which is updated
during the iterations as:

lv = lv−1 + l′, (14)

where l′ is the step size for the designed OLS update. Unless
otherwise stated, it is assumed that l1 = 1 and l′ = 1 in this
paper. A designed maximal OLS is denoted by lT , indicating
the maximal decoding complexity that the decoder tolerates.
Unlike the ASD algorithm, the PASD algorithm performs
decoding with the following series of designed OLS values:

l1, l2, . . . , lv−1, lv, . . . , lT . (15)

Based on the series of designed OLS values, a series of
multiplicity matrices are generated by the reliability transform
algorithm as:

M1,M2, . . . ,Mv−1,Mv, . . . ,MT . (16)

Matrix Mv denotes the multiplicity matrix that corresponds to
lv . During the generation of the multiplicity matrices, entries
mij are increased monotonically. Hence

C(M1) < C(M2) < · · · < C(Mv−1) < C(Mv) < · · · < C(MT ).
(17)

At the beginning of the PASD algorithm, interpolation will
be performed based on matrix M1 with C(M1) constraints.
Factorization will then be performed to determine if u(x) ∈ L,
which is validated by the CRC code. If u(x) has not been
found, the decoder will update its designed OLS as (14)
and deploy the progressive reliability transform algorithm to
generate M2. Interpolation will now be performed with the
incremental interpolation constraints such that all constraints
defined by M2 are satisfied. The decoding continues until the
message polynomial is found, or the designed maximal OLS
lT is exceeded. The latter case represents a decoding failure.

B. Progressive Reliability Transform

The reliability transform algorithm (algorithm A of [8]) is
an iterative algorithm that transfers the reliability values into
the multiplicity values. In this paper, it is modified to generate
a series of multiplicity matrices of (16) progressively. Since
they all correspond to a designed OLS, the algorithm will stop
once a designed OLS of lv is reached, yielding an intermediate
multiplicity matrix Mv . Since the outputs are the y-roots of
polynomial Q(x, y), the designed OLS is:

lv =
⌊Δ1,k−1(C(Mv))

k − 1

⌋
. (18)

It provides an intermediate stopping criterion for the reliability
transform algorithm, delivering a multiplicity matrix Mv that
corresponds to a designed OLS of lv. Note that the actual
factorization OLS in each decoding event might be smaller
than this value. Unless otherwise stated, we will simply use
the OLS to stand for the designed OLS in the rest of the paper.

During this progressive transform, the original reliability
matrix Π is preserved. Let Π∗

v denote the intermediate relia-
bility matrix of iteration v. Matrices Π∗

v and Mv are initialized
as Π∗

0 = Π and M0 = [0]q×n that is an all-zero matrix. At
iteration v, matrices Π, Π∗

v−1, Mv−1 and lv are taken as the
inputs to the reliability transform algorithm. Let Π∗

v = Π∗
v−1

and Mv = Mv−1. The algorithm will then be performed until
lv is reached, delivering Π∗

v and Mv.

C. Progressive Interpolation

The interpolation process is implemented by Koetter’s al-
gorithm [12]. In order to explicitly describe the progressive
interpolation, the incremental interpolation constraints will be
first defined as the follows.

Definition II: Let m
(v−1)
ij and m

(v)
ij denote the entries of

the matrices Mv−1 and Mv, respectively, the incremental
interpolation constraints introduced by the two matrices are
defined as a collection of all the residual sets between Λ(m

(v)
ij )

and Λ(m
(v−1)
ij ):

Λ(ΔMv) = {Λ(Mv) \ Λ(Mv−1)} = {Λ(m(v)
ij ) \ Λ(m(v−1)

ij )}.
(19)
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Note that |Λ(ΔMv)| = C(Mv)− C(Mv−1) and the interpo-
lation at iteration v is to be performed w.r.t. the incremental
constraints defined by Λ(ΔMv). Also be aware that since
M0 = [0]q×n and Λ(M0) = ∅, Λ(ΔM1) = Λ(M1). Based
on the above introduction, it can be realized that:

Λ(MT ) = Λ(ΔM1)∪Λ(ΔM2)∪· · ·∪Λ(ΔMv)∪· · ·∪Λ(ΔMT ).
(20)

The proposed algorithm is to perform interpolation w.r.t. the
constraints of Λ(ΔM1), Λ(ΔM2), . . ., Λ(ΔMv), . . ., Λ(ΔMT )
progressively and determine whether the message polynomial
can be found from any of the intermediate interpolation results.

At the beginning of the progressive interpolation, a group
of polynomials is initialized:

G1 = {g0, g1, . . . , gl1} = {1, y, . . . , yl1}. (21)

For each constraint (r, s)ij ∈ Λ(ΔM1), the Hasse derivative
evaluation will be performed for each polynomial of G1.
Among those polynomials that do not satisfy the current
constraint, the minimal one will be selected as:

f(r,s)ij = min{gt | D(r,s)ij (gt) �= 0}. (22)

Then, the polynomials of G1 will be updated according to the
following rules [12]:

gt =

⎧⎪⎨
⎪⎩
gt, if D(r,s)ij (gt) = 0

[gt, f(r,s)ij ]D, if D(r,s)ij (gt) �= 0 and gt �= f(r,s)ij
[xgt, gt]D, if D(r,s)ij (gt) �= 0 and gt = f(r,s)ij ,

(23)

where [g, f ]D = D(r,s)ij (f)g − D(r,s)ij (g)f denotes the
bilinear modification for the polynomials of Fq[x, y]. The
selected minimal polynomials f(r,s)ij will have to be stored
in memory along with their corresponding constraints (r, s)ij .
They will be reused in the following iterations.

Without loss of generality, we describe the following inter-
polation process as being performed at iteration v based on the
intermediate results of the previous iteration. The progressive
interpolation process can be viewed as a polynomial group
expansion process that yields Gv based on Gv−1. As a result,
each polynomial of Gv satisfies the constraints of Λ(Mv) and
has a maximal y-degree of lv . Let G̃v−1 = {g̃0, g̃1, . . . , g̃lv−1}
denote the updated polynomial group of iteration v− 1. Each
of its polynomials satisfies the constraints of Λ(Mv−1). The
polynomial group expansion at iteration v consists of two
successive steps that are described below.

Expansion I: Expand the number of polynomials of the
group from lv−1+1 to lv+1 and enable each polynomial of the
expanded group to satisfy the constraints defined by Λ(Mv−1).
The incremental polynomial group ΔGv is initialized as:

ΔGv = {glv−1+1, . . . , glv} = {ylv−1+1, . . . , ylv}, (24)

and |ΔGv| = l′. Polynomials of ΔGv will then be engaged
with the Hasse derivative evaluations and bilinear modifica-
tions w.r.t. the constraints of Λ(Mv−1). Note that the minimal
polynomials f(r,s)ij that were identified during the generation
of G̃v−1 will be reused to update the polynomials of ΔGv .
After the C(Mv−1) constraints have been satisfied, an updated

incremental polynomial group ΔG̃v = {g̃lv−1+1, . . . , g̃lv} is
obtained. The new polynomials group Gv is formed by

Gv = G̃v−1 ∪ΔG̃v. (25)

Expansion II: Expand the size (i.e., the number of nonzero
coefficients) of the polynomials of group Gv and enable all
the polynomials to satisfy the constraints of Λ(Mv). Since
now all polynomials of Gv satisfy the constraints of Λ(Mv−1),
they only need to perform interpolation w.r.t. the incremental
constraints that are defined by Λ(ΔMv). Interpolation of this
step enables C(Mv)−C(Mv−1) extra constraints to be satisfied,
resulting in the size of the polynomials being increased. Sim-
ilarly, we use G̃v = {g̃0, g̃1, . . . , g̃lv} to denote the updated
polynomial group.

After Expansion II, the minimal polynomial of G̃v will be
selected to be factorized:

Q(v)(x, y) = min{g̃t | g̃t ∈ G̃v}. (26)

If u(x) ∈ L, decoding will be terminated and outputs u(x).
Otherwise, the iteration index will be updated as v = v +
1, followed by the OLS update. The next iteration will be
performed.

Summarizing the above description, a complete PASD al-
gorithm is stated below.

Algorithm 1 PASD decoding of RS codes
Input: Reliability matrix Π, the maximal OLS lT and the step
size l′;
Output: A list of the candidate message polynomials L;
Initialization: Set Π∗

0 = Π, M0 = [0]q×n, the iteration index
v = 1, the OLS l1 and the polynomial group G0 = {1};
Step 1: Perform the progressive reliability transform to gen-
erate matrix Mv;
Step 2: Determine the incremental interpolation constraints
Λ(ΔMv);
Step 3: Perform Expansion I to generate the polynomial group
Gv;
Step 4: Perform Expansion II to update the group from Gv

to G̃v;
Step 5: Find out the minimal polynomial Q(v)(x, y) from G̃v

and perform factorization. If u(x) ∈ L, terminate the decoding
and output u(x); otherwise, go to Step 6;
Step 6: Update the iteration index as v = v+1 and the OLS
as (14);
Step 7: If lv > lT , terminate the decoding and declare a
decoding failure; else, go to Step 1;

Notice that when v = 1, M0 = [0]q×n, and Λ(M0) = ∅,
Expansion I is performed as initializing the polynomial group
G1. Since factorization is performed during each iteration, the
number of factorization will be increased compared to the
ASD algorithm. However, the computational complexity of
the factorization is marginal compared to the interpolation.
Increasing the number of factorization will not penalize the
system efficiency. This claim will be later justified in Section
V. It is important to point out that the proposed algorithm
requires extra system memory to store both the minimal
polynomials f(r,s)ij and the intermediate matrices Π∗

v and Mv.
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More than using the OLS as a decoding constraint, the ASD
algorithm can also use the interpolation cost C(M) or the sum
of multiplicities S (S =

∑
i,j mij). Hence, either C(M) or S

can be the decoding parameter that is progressively enlarged.
In fact, with one of the three parameters being defined, the
scales of the other two parameters are also defined. However,
the OLS tends to be the most suitable choice. The reason has
two folds. First, the ASD algorithm corrects more errors by
providing more factorization output candidates, i.e., enlarging
the OLS. Second, based on the above description, the OLS
needs to be known for interpolation, since it also decides the
number of polynomials in the group Gv . Although C(M) or S
maybe chosen as the progressive decoding parameter, the OLS
still needs to be known. By using the OLS as a progressive
decoding parameter, the algorithm knows when the number of
polynomials in the group needs to be increased. It is important
to point out that the proposed decoding approach can also be
incorporated with the coordinate transform approach of [14]
to further facilitate the decoding. Due to the space limit, it is
not discussed in this paper, but left as a future work.

IV. VALIDITY ANALYSIS

This section analyzes the validity of the proposed decoding
algorithm. Our analysis shows this progressive decoding algo-
rithm only imposes a specific interpolation schedule. Decoding
with the same OLS of lv (v ≤ T ), the progressive interpolation
is a natural generalization of the original interpolation problem
in the ASD algorithm.

Due to the independence of the interpolation constraints,
it is known that for any two distinct constraints (r1, s1)i1j1
and (r2, s2)i2j2 that belong to Λ(Mv), one can perform
interpolation w.r.t. the constraint (r1, s1)i1j1 , then (r2, s2)i2j2 ,
or vice versa. That implies interpolation of the ASD algorithm
can be carried out with an arbitrary schedule. Its final solution
that is seen as the solution for a system with C(Mv) linear
constraints remains unchanged. Let w denote the interpolation
constraint (r, s)ij ∈ Λ(Mv), kernel Kw of the constraint is
defined as:

Kw = {Q ∈ Fq[x, y] | Dw(Q) = 0, degy Q ≤ lv}. (27)

The cumulative kernel Kw can then be defined as: Kw =
Kw−1 ∩ Kw = K1 ∩ K2 ∩ · · · ∩ Kw−1 ∩ Kw [12]. Hence,
performing interpolation w.r.t. all the constraints defined by
Λ(Mv) provides the cumulative kernel KC(Mv) that is:

KC(Mv) = {Q ∈ Fq[x, y] | Dw(Q) = 0, ∀ w ∈ Λ(Mv)

and degy Q ≤ lv}. (28)

Polynomial Q(v)(x, y) is the minimal polynomial of the
cumulative kernel:

Q(v)(x, y) = min{Q(x, y) | Q(x, y) ∈ KC(Mv)}. (29)

Based on (20), we know Λ(Mv) = Λ(ΔM1)∪Λ(ΔM2)∪· · ·∪
Λ(ΔMv). Decoding with the same OLS of lv , both the ASD
and PASD algorithms satisfy the same set of interpolation
constraints, providing the same cumulative kernel. Due to
the uniqueness of the minimal candidate of the cumulative
kernel, both algorithms offer the same solution for Q(v)(x, y).

Therefore, performing the progressive interpolation can be
seen as performing a conventional interpolation algorithm
with the progressive interpolation schedule that is defined as
the follows. Given a series of interpolation constraint sets
Λ(ΔM1), Λ(ΔM2), . . . , Λ(ΔMv) (v ≤ T ), the interpo-
lation w.r.t. the constraint (r1, s1)i1j1 is always performed
prior to the interpolation w.r.t. the constraint (r2, s2)i2j2 ,
if (r1, s1)i1j1 ∈ Λ(ΔMv′), (r2, s2)i2j2 ∈ Λ(ΔMv) and
v′ < v ≤ T .

However, more than rescheduling the interpolation order,
the progressive algorithm also implies a progressive polyno-
mial group expansion as indicated by (25). We now prove
finding the solution of ΔG̃v does not change the solution of
G̃v−1. According to the polynomial updating rules of (23), the
outcome of the polynomial updates is defined by the minimal
polynomial f(r,s)ij . To justify ΔG̃v and G̃v−1 can be found
separately, we have to prove during the generation of ΔG̃v , the
identities of the found polynomials f(r,s)ij remain unchanged.

Lemma 1: For all the polynomials f(r,s)ij with (r, s)ij ∈
Λ(Mv−1), we have

lod(f(r,s)ij ) < lod(ylv−1+1). (30)

Proof: Given Q(v−1) as the chosen polynomial at itera-
tion v − 1, it has satisfied C(Mv−1) interpolation constraints.
Based on (42) of [11], its leading order satisfies:

lod(Q(v−1)) ≤ C(Mv−1). (31)

Q(v−1) was constructed based on the updating rules of (23).
Let ĝ ∈ Fq[x, y] denote the polynomial that was updated
to Q(v−1) by either Q(v−1) = [ĝ, f(r,s)ij ]D or Q(v−1) =
[xĝ, ĝ]D. For the former one, lod(f(r,s)ij ) < lod(ĝ) =

lod(Q(v−1)) ≤ C(Mv−1). For the latter one, f(r,s)ij = ĝ and
lod(f(r,s)ij ) < lod(Q(v−1)) ≤ C(Mv−1). Therefore, for any
f(r,s)ij with (r, s)ij ∈ Λ(Mv−1):

lod(f(r,s)ij ) < C(Mv−1). (32)

Based on (18), it is also known that:

lv−1 =
⌊Δ1,k−1(C(Mv−1))

k − 1

⌋
.

It implies:

deg1,k−1(y
lv−1+1) > Δ1,k−1(C(Mv−1)), (33)

and consequently

lod(ylv−1+1) > C(Mv−1). (34)

Considering both (32) and (34), the inequality of (30) can be
realized.

At iteration v of the progressive interpolation, the incre-
mental polynomial group ΔGv is initialized as (24) in Ex-
pansion I. Each of its polynomials will perform interpolation
w.r.t. the constraints of Λ(Mv−1). Given a certain constraint
(r, s)ij ∈ Λ(Mv−1), if all polynomials’ Hasse derivative
evaluations are zero, no update is required. Otherwise, the
minimal polynomial f(r,s)ij needs to be identified. Now, there
are two possible cases. In case one, there is no f(r,s)ij
stored in memory since all polynomials of G̃v−1 satisfied
the constraint without performing bilinear modification. The
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minimal polynomial f(r,s)ij will be chosen from ΔGv and
stored in memory. The bilinear modification is performed
only involving the polynomials of ΔGv. In case two, there
is f(r,s)ij stored in memory. Based on Lemma 1, we know
the polynomials of ΔGv will not be chosen as f(r,s)ij . The
minimal polynomials f(r,s)ij in memory will be used to update
the polynomials of ΔGv. In both cases, the identities of those
existing polynomials f(r,s)ij remain unchanged. Consequently,
the solution of G̃v−1 remains intact. Therefore, the polynomial
groups G̃v−1 and ΔG̃v can be found separately.

Armed with the above knowledge, we can see that if both al-
gorithms decode with the same OLS of lv, Λ(Mv) constraints
are to be satisfied and Λ(Mv) = Λ(Mv−1) ∪ Λ(ΔMv). For
interpolation w.r.t. the constraints of Λ(Mv−1), the progressive
interpolation and the original interpolation deliver the same
solution for Gv. Then, polynomials of Gv will interpolate
w.r.t. the constraints of Λ(ΔMv). Again, both of the algorithms
deliver the same solution for G̃v . Therefore, the progressive
interpolation is a natural generalization of the original inter-
polation algorithm, but imposing a progressive interpolation
schedule and a progressive polynomial group expansion.

V. COMPLEXITY ANALYSIS

This section analyzes the computational complexity of the
PASD algorithm and shows the relationship between the
average decoding complexity and the channel condition. The
average complexity is measured as the average number of
finite field arithmetic operations for decoding one codeword
frame at a certain channel condition, e.g., the signal-to-noise
ratio (SNR) and denoted by ρ.

Let OPASD(lT ) denote the average complexity of the PASD
algorithm whose designed maximal OLS is lT , and it can be
formulated as:

OPASD(lT ) =

T∑
v=1

PlvOlv + (1−
T∑

v=1

Plv)OlT , (35)

where Olv denotes the complexity of decoding a codeword
frame with an OLS of lv. And Plv denotes the probability of
the PASD algorithm produces a valid output with an OLS of
lv, but not with any other OLS that is less than lv. Recall the
successful decoding condition of (13), Plv can be stated as:

Plv = Pr[SMv
(c̄) > Δ1,k−1(C(Mv)) and

SMv′ (c̄) ≤ Δ1,k−1(C(Mv′)), ∀ v′ < v]. (36)

In (35), the first term
∑T

v=1 PlvOlv represents the average
complexity of the successful decoding events. Since the prob-
ability of the decoding failure is 1 − ∑T

v=1 Plv and it can
only occur at iteration T , the second term (1−∑T

v=1 Plv)OlT

represents the average complexity of the decoding failures.
We would later show relationship between the probability Plv

and the quality of received information Π. Consequently, the
average complexity OPASD(lT ) becomes channel dependent.
In order to fully characterize OPASD(lT ), we will now analyze
Olv and Plv , respectively.

Theorem 2: The complexity of decoding a codeword frame
with an OLS of lv is:

Olv = O(C2(Mv)(lv + 1)). (37)

Proof: The complexity Olv consists of Oint
lv

and Ofac
lv

which are the complexities of the interpolation and the
factorization, respectively. Based on Section IV, we know
that with the same OLS of lv, the progressive interpolation
and the conventional interpolation are equivalent. We can
analyze Oint

lv
as that of the conventional interpolation. The

chosen interpolated polynomial Q(v) has a leading order
of lod(Q(v)) ≤ C(Mv) [11]. It implies Q(v) has at most
C(Mv) + 1 nonzero coefficients which is referred as the size
of the polynomial. Performing the Hasse derivative evaluation
and the bilinear modification for such a polynomial requires
O(C(Mv) + 1) field operations. Considering interpolation as
a process that manipulates lv + 1 polynomials with a similar
size and it has C(Mv) iterations, its complexity is

Oint
lv = O(C(Mv)(C(Mv) + 1)(lv +1)) ∼= O(C2(Mv)(lv +1)).

(38)
Factorization is implemented by the recursive coefficient

search (RCS) algorithm [25] [26] [27]. The computation of the
recursive process is dominated by the polynomial update step
(see Section 4.2 of [11]). Again, its complexity is proportional
to the size of the polynomial. Performing one round of
RSC determines one coefficient of the output candidate and
it requires O(C(Mv) + 1) field operations. Since one valid
output candidate consists of k coefficients. With an OLS of
lv , the RSC algorithm will be called at most klv times [25].
Therefore, at iteration v, the factorization complexity is upper
bounded by O((C(Mv)+1)klv). Since the factorization is run
at each iteration, its complexity can be determined by:

Ofac
lv = O((C(M1) + 1)kl1 + (C(M2) + 1)kl2 + · · ·

+(C(Mv) + 1)klv)

= O(k

v∑
η=1

(C(Mη) + 1)lη). (39)

Since Ofac
lv

< O(kv(C(Mv) + 1)lv) and practically kv 

C(Mv), we know Ofac

lv

 Oint

lv
. The decoding complexity is

still mainly defined by the interpolation and Olv
∼= Oint

lv
.

The above analysis shows that although the factorization
is performed at each iteration, the decoding complexity is
still dominated by the interpolation process. Complexity Olv

increases with lv being enlarged and it is quadratic in C(Mv).
Since C(Mv) is also a function of lv, the following corollary
gives a more apparent relationship between Olv and lv .

Corollary 3: When lv is sufficiently large, the decoding
complexity Olv becomes:

Olv = O
( (k − 1)2

4
(l4v + l5v)

)
. (40)

Proof: According to Corollary 5 of [23], when lv is
sufficiently large, we have:

Δ1,k−1(C(Mv)) ∼=
√
2(k − 1)C(Mv). (41)

Based on (18), it is known

Δ1,k−1(C(Mv)) ∼= (k − 1)lv. (42)

In conjunction of the above two equations, we can derive

C(Mv) ∼= (k − 1)l2v
2

. (43)
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By substituting (43) into (37), (40) can be concluded.
Corollary 3 indicates the decoding complexity Olv increases

exponentially with lv. It also indicates with the same OLS, the
decoding complexity increases as the code rate increases. Note
that although the decoding complexity expression of (40) does
not include the codeword length n, n does play an important
role in the calculation of C(Mv). When lv becomes sufficiently
large, C(Mv) can be approximated by lv and k. The above
analysis shows the computational price of enlarging the OLS
value. Therefore, it is desirable to utilize an appropriate OLS
value for the decoding.

The most important feature of the PASD algorithm is
that it performs decoding with an adaptable OLS, excluding
the occasions of performing a successful decoding with an
unnecessarily large OLS value. This feature can be realized
by analyzing the successful decoding probability Plv .

By defining

γ =
k − 1

n
and ΦΠ(c̄) =

√∑
i,j π

2
ij

SΠ(c̄)
, (44)

the successful decoding probability Plv can be characterized
as the follows.

Theorem 4: The successful decoding probability Plv can be
approximated as:

Plv
∼= Pr[lv = minL(Π) | L(Π) = {l | l > lth(Π)}], (45)

where

lth(Π) =
2 +

√
nγ√∑
i,j π2

ij

2γ[1−√
k − 1ΦΠ(c̄)]

. (46)

Proof: The nature of the PASD algorithm is to find the
minimal OLS value for the decoding. According to equa-
tion (36), probability Plv can be seen as the probability
that lv is the minimal OLS value that produces SMv

(c̄) >
Δ1,k−1(C(Mv)). Therefore, the intuitive question for defining
Plv is given the received information Π, what is the minimal
OLS value to guarantee a successful decoding. Then, Plv

is the probability of lv being such a minimal OLS value.
Deriving from (13), the inequality (44) of [8] gives a sufficient
condition for the successful decoding. After a few algebraic
manipulations, we have an OLS threshold that is stated as (46).
It is a random variable. Decoding with an lv value greater than
such a threshold, the successful decoding can be guaranteed.
Therefore, given a received information Π, one can define
the OLS threshold lth(Π) and a set of nonnegative integers
L(Π) = {l | l > lth(Π)}. Decoding with an OLS value
picked up from the set L(Π) can always produce the intended
message polynomial. Plv can be seen as the probability of lv
being the minimal value of the set L(Π).

Theorem 4 shows the probability Plv is channel dependent.
But the OLS threshold lth(Π) is a rather loose bound. Prac-
tically, the minimal OLS value for a successful decoding is
smaller than the threshold. Also, notice that in a badly deterio-
rated channel (e.g., ρ → −∞), we have πij

∼= 1/q, ∀ πij ∈ Π.

Consequently,
√∑

i,j π
2
ij

∼=
√

n
q , SΠ(c̄) ∼= n

q and ΦΠ(c̄) ∼=√
q
n . As a result, 1 − √

k − 1ΦΠ(c̄) becomes negative and
the OLS threshold looses its validity. On the other hand, it
turns out to be hard to draw a closed form expression for

the Plv that can be seen as a function of Π and provide the
bounding reference for probability. Alternatively, we attempt
to analyze the OLS threshold w.r.t. the channel condition. Such
an analytical insight illustrates the relationship between the
probability Plv and the channel condition.

Observation 5: By refining ΦΠ(c̄) < 1√
k−1

, the OLS
threshold lth(Π) is a decreasing function w.r.t. ρ.

Proof: Based on (46), it can be seen that the validity of
lth(Π) can be held when ΦΠ(c̄) <

1√
k−1

. Together with such
a refinement, the above analysis shows when ρ → −∞,

l
(1)
th (Π) = lim

ρ→−∞ lth(Π) =
2 +

√
γq

2γ ·Θ(Π)
, (47)

where Θ(Π) = 1 − √
k − 1ΦΠ(c̄) is a function of Π and it

tends to 0 as ΦΠ(c̄) approaches 1√
k−1

. On the other end of
the spectrum where the channel is sufficiently good (e.g., ρ →
+∞), πij

∼= 1 if i = ij , and πij
∼= 0 otherwise. Consequently,√∑

i,j π
2
ij

∼= √
n, SΠ(c̄) ∼= n and ΦΠ(c̄) ∼= 1√

n
. Therefore,

when ρ → +∞,

l
(2)
th (Π) = lim

ρ→+∞ lth(Π) =
2 +

√
γ

2γ[1−√
(k − 1)/n]

. (48)

Since l
(2)
th (Π) < l

(1)
th (Π), and the OLS threshold lth(Π) is a

decreasing function w.r.t. ρ.
In conjunction of Theorem 4 and Observation 5, we have

the following remark.
Remark 6: By improving the channel condition, the OLS

threshold lth(Π) is decreased. Probability Plv will therefore
be in favor of a smaller lv value. Consequently, the average
decoding complexity OPASD(lT ) becomes channel dependent.
When the channel condition is sufficiently good, Pl1 ap-
proaches 1 and OPASD(lT ) ∼= Ol1 . In contrast, as the channel
condition deteriorates, the successful decoding probabilities
Plv become very small, and OPASD(lT ) ∼= OlT .

Tables I and II show the simulation results of Plv against
the channel SNR for the (15, 5) and the (63, 47) RS codes,
respectively. They are measured in the AWGN channel using
the binary phase shift keying (BPSK) modulation. The CRC-4
code [28] is used for the output validation. It can be seen that
with the SNR being improved, the probability Plv starts to be
in favor of smaller lv values. Take the (63, 47) RS code as an
example. When SNR = 8dB, most of the decoding events are
performed with l1 = 1 and OPASD(5) ∼= Ol1 .

Fig.2 shows the simulation results on the average decoding
complexity for PASD decoding of the (15, 5) RS code. It can
be seen that the average decoding complexity of the ASD
algorithm is insensitive to the channel condition. In contrast,
the average decoding complexity of the PASD algorithm can
be reduced by increasing ρ. It converges to the minimal
level of Ol1 at 7dB. Table I shows with lT = 5, 91.56%
of the decoding events are performed with an OLS of 1 at
7dB, leveraging the average decoding complexity. Fig.3 further
compares the ASD and the PASD algorithms with the hybrid
decoding algorithm [21] for the (63, 47) RS code. The hybrid
system incorporates either the ASD or the PASD algorithm
with the BM algorithm. The ASD (or PASD) algorithm will
only be deployed when the BM algorithm fails. It shows
that the average decoding complexity can be further reduced
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TABLE I
THE STATISTICS OF Plv FOR DECODING THE (15, 5) RS CODE WITH lT = 5.

����������Plv (%)
SNR (dB)

2 3 4 5 6 7 8

Pl1 11.08 22.06 37.93 58.77 78.14 91.56 97.74
Pl2 18.36 29.89 35.96 31.80 19.75 8.18 2.25
Pl3 12.78 14.38 10.98 5.07 1.38 0.20 0.01
Pl4 9.16 7.35 4.98 2.07 0.41 0.04 0.00
Pl5 6.01 4.81 2.95 0.79 0.13 0.01 0.00

TABLE II
THE STATISTICS OF Plv FOR DECODING THE (63, 47) RS CODE WITH lT = 5.

����������Plv (%)
SNR (dB)

2 3 4 5 6 7 8

Pl1 0.00 0.00 3.71 32.54 78.55 97.13 99.87
Pl2 0.00 1.51 28.47 56.30 21.25 2.87 0.13
Pl3 0.00 1.61 15.92 6.59 0.17 0.00 0.00
Pl4 0.00 1.23 9.68 1.95 0.02 0.00 0.00
Pl5 0.00 1.22 5.54 0.77 0.00 0.00 0.00
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Fig. 2. Average complexity on PASD decoding of the (15, 5) RS code.

and the average decoding complexity of the hybrid system
is also channel dependent. With SNR ≤ 5.2dB, the average
decoding complexity of the PASD algorithm is lower than that
of the BM & ASD hybrid system. Notice that for both of the
codes, in the low SNR region (≤ 2dB), most of the decoding
events reach lT and perform a large number of factorizations.
However, it does not result in a complexity increase compared
to the ASD algorithm. The reason is two folds. First, the
complexity increase brought by running more factorizations
is compensated by the complexity reduction of running the
interpolation with a smaller OLS value. Second, in the low
SNR region, most of the factorizations do not provide a single
output. That says the RSC algorithm has only been called for
less than k times. Overall, our results verify Theorem 2 which
shows the extra factorization complexity can be neglected.
Fig.4 compares the average decoding complexity of the (15,
5) and (15, 11) RS codes. It shows with the same OLS, PASD
decoding of the (15, 5) RS code has a lower complexity. It
verifies the conclusion of Corollary 3.

As an extra comment to the complexity, the PASD algorithm
does require more memory for storing the minimal polynomi-
als f(r,s)ij during the progressive interpolation. Performing the
PASD algorithm with an OLS of lv, the storage complexity
is at most O(C2(Mv)). Of course, the actual usage of the
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Fig. 3. Average complexity on PASD decoding of the (63, 47) RS code.
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Fig. 4. Average decoding complexity comparison between the (15, 11) and
(15, 5) RS codes.

memory is also channel dependent. With a maximal OLS
of lT , the worst case memory of O(C2(MT )) should be
guaranteed.

VI. PERFORMANCE EVALUATION

This section presents the error-correction performance of
the PASD algorithm. Again, simulations are run in the AWGN
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Fig. 6. CER performance of the (63, 55) RS code over the AWGN channel.

channel with the BPSK modulation.
Figs. 5 and 6 show the codeword error rate (CER) of the

(63, 47) and (63, 55) RS codes, respectively. The optimal
performances of the AHD algorithm (with m → ∞) and the
ASD algorithm (with lT → ∞) are also shown as the com-
parison benchmarks. The PASD algorithm is to be compared
with the ASD algorithm with the same lT value. For the PASD
algorithm, the CRC-4 code is used for output validation. While
for the ASD algorithm, the message polynomial is selected
using the maximum likelihood (ML) criterion. That means
the list of output candidates will be re-encoded, and the one
whose codeword has the minimal Euclidean distance to the
received vector will be selected. The presented results show
the two algorithms perform similarly. Notice that the use of
CRC code will cause a loss of code rate. Consequently, a
slight performance loss is expected. However, since the CRC
code provides a more accurate output message identification
than the ML criterion, it compensates the rate loss. Take
the (63, 47) RS code as an example. The systems with and
without the CRC code have code rates of 0.735 and 0.746,
respectively. It is expected that the CRC coded system will
suffer 10 log10

0.746
0.735 = 0.06dB performance loss. However,

Fig.5 shows the CRC assisted PASD algorithm only suffers at
most 0.02dB performance loss at CER of 10−5. In an ideal
communication system, one could assume the use of an aided
gene. It will notify the decoder once the intended message
has been found. In such a system, rate loss is prevented. Fig.7
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Fig. 7. BER performance of the (255, 239) RS code over the AWGN channel.

shows the bit error rate (BER) performance of the widely used
(255, 239) RS code with an aided gene and a CRC code. The
CRC-16 code is used. The code rates of the gene aided system
and the CRC coded system are 0.937 and 0.929, respectively.
The CRC coded system suffers 0.03dB performance loss at
BER of 10−5. Above all, the presented results demonstrate
the practicality of the PASD algorithm. It preserves the error-
correction performance of the original ASD algorithm.

VII. CONCLUSIONS

This paper has proposed a progressive algebraic soft-
decision decoding algorithm for the RS codes. It has been
shown that the designed factorization OLS can be enlarged
progressively, leading to a progressive interpolation for which
the decoding computation can be performed incrementally.
More than preserving the error-correction capability, it adjusts
the decoding complexity according to the quality of the
received information. The validity analysis of the algorithm
showed that the progressive interpolation is a natural gener-
alization of the original interpolation problem. With the same
decoding OLS, they deliver the same solution. It is important
to acknowledge that such a progressive decoding approach is
on the expense of the system memory. The complexity analysis
further characterized the channel dependence feature of the
proposed algorithm. With improving the channel condition,
the algorithm will perform more decoding events with a
small OLS value and reduce the average decoding complexity.
Simulation results reaffirmed the analysis and revealed that in
the practically interested SNR region, significant complexity
reduction can be achieved. Finally, performance evaluation
showed that the PASD algorithm preserves the error-correction
performance of the ASD algorithm.
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