
IET Communications
Research Article
Progressive algebraic Chase decoding
algorithms for Reed–Solomon codes
IET Commun., 2016, V
1416 & The Institution of Engin
ISSN 1751-8628
Received on 7th September 2015
Revised on 13th December 2015
Accepted on 27th February 2016
doi: 10.1049/iet-com.2015.0873
www.ietdl.org
Jiancheng Zhao1, Li Chen1 ✉, Xiao Ma2, Martin Johnston3

1School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
2School of Data and Computer Science, Sun Yat-sen University, Guangzhou 510006, People’s Republic of China
3School of Electrical and Electronic Engineering, Newcastle University, Newcastle-upon-Tyne NE1 7RU, UK

✉ E-mail: chenli55@mail.sysu.edu.cn

Abstract: This study proposes a progressive algebraic Chase decoding (PACD) algorithm for Reed–Solomon (RS) codes.
On the basis of the received information, 2η (η > 0) interpolation test-vectors are constructed for the interpolation-based
algebraic Chase decoding. A test-vector reliability function is defined to assess their potential for yielding the intended
message. The algebraic Chase decoding will then be performed progressively granting priority to decode the test-
vectors that are more likely to yield the message, and is then terminated once it is found. Consequently, the decoding
complexity can be adapted to the quality of the received information. An enhanced-PACD (E-PACD) algorithm is further
proposed by coupling the PACD algorithm with the adaptive belief propagation (ABP) decoding. The ABP decoding
generates new test-vectors for the PACD algorithm by enhancing the received information. It improves the Chase
decoding performance without increasing the decoding complexity exponentially. It is shown that the E-PACD
algorithm’s complexity can be significantly reduced by utilising the existing interpolation information of the previous
Chase decodings’. Our performance evaluations show that the two proposed decoders outperform a number of
existing algebraic decoding approaches. Complexity and memory analyses of the PACD algorithm are also presented,
demonstrating that this is an efficient RS decoding strategy.
1 Introduction

Reed–Solomon (RS) codes [1] are widely used in storage and
communication systems. The conventional decoding algorithms
[2, 3] produce a unique decoded message, with error-correction
capability limited to the half of the code’s minimum Hamming
distance. The generalised minimum-distance decoding algorithm
[4] is an improved unique decoding approach. The Guruswami–
Sudan (GS) [5, 6] algebraic list decoding algorithm was later
proposed to correct errors beyond the half distance bound by
performing a curve-fitting decoding process that contains two
major steps: interpolation and factorisation. The Koetter–Vardy
(KV) soft-decision list decoding algorithm [7] was later proposed
by introducing a reliability transform front-end. It significantly
outperforms the GS and the unique decoding algorithms with a
polynomial-time complexity.

However, the complexity of the algebraic list decoding algorithms
is orders of magnitude higher than that of the unique decoding
algorithms. This is mainly caused by the interpolation, which is an
iterative polynomial construction process [8, 9]. Addressing this
issue, a number of complexity reducing interpolation approaches
have been proposed. During interpolation, redundant polynomials
can be identified by assessing their leading order, which will be
eliminated removing the unnecessary computation [8].
Interpolation complexity can also be reduced by utilising the
Berlekamp–Massey decoding output, which leads to a reduced
interpolation multiplicity [10]. The re-encoding approach [11]
reduces the complexity by transforming the interpolation points to
have zero y-coordinates. Consequently, a large part of iterative
polynomial construction can be replaced by the polynomial
initialisation. The low-complexity Chase (LCC) decoding [12, 13]
reduces the complexity by exploiting the similarity among several
interpolation test-vectors. It has been shown that the LCC
algorithm can outperform the KV algorithm with less
computational cost. However, its complexity can increase
exponentially by increasing the number of unreliable symbols. By
arranging the test-vectors in a way such that the adjacent
test-vectors have only one different point, the backward–forward
(BF) interpolation can be applied, resulting in a hardware friendly
BF-LCC decoder [14, 15]. Moreover, a tree-based Chase decoding
approach that better defines the test-vector set was recently
reported in [16]. To adapt the algebraic decoding computation to
the quality of the received information, progressive algebraic soft
decoding was recently proposed by Chen et al. [17]. By
progressively enlarging the designed factorisation output list size
(OLS), it uses the least necessary algebraic decoding effort in
finding the intended message. In good channel conditions, most of
the decoding events can deliver the intended message with a small
OLS value. As a result, the average complexity of multiple
decoding events can be reduced. Similarly, an interpolation
algorithm that adjusts its computation to the number of
instantaneous errors was proposed in [18].

To reduce the average decoding complexity while maintaining a
high RS decoding performance, this paper proposes the
progressive algebraic Chase decoding (PACD) algorithm which
integrates the methodologies of progressive and LCC decodings. A
reliability function is defined to assess each test-vector’s potential
for yielding the intended message. The test-vector with a higher
potential is decoded before the less potential one, and the
decoding will be terminated once the intended message is yielded.
This is validated by the maximum-likelihood (ML) criterion [19].
To improve the decoding performance without incurring an
exponentially increased complexity, an enhanced-PACD
(E-PACD) algorithm is further proposed. Instead of increasing the
number of unreliable symbols for forming more test-vectors, it
couples the PACD algorithm with the adaptive belief propagation
(ABP) decoding [20, 21]. The ABP decoding enhances the
received information and generates new interpolation test-vectors
for the PACD algorithm. By eliminating the repeated test-vectors
and using the stored interpolation information, redundant
computation of the later PACD attempts can be avoided. It attains
a significant performance improvement without incurring an
ol. 10, Iss. 12, pp. 1416–1427
eering and Technology 2016

mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

exponentially increased computational cost. Our performance
evaluation demonstrates the two proposed decoders have superior
error-correction performance compared with a number of existing
algebraic decoding algorithms. The decoding complexity of the
PACD algorithm is analysed and validated by numerical results,
highlighting its channel dependence feature. It also shows that
incorporating progressive decoding enables the PACD algorithm to
be simpler than its predecessors, i.e. the LCC and the BF-LCC
algorithms. The memory requirement for the PACD algorithm is
also analysed.

The rest of this paper is organised as follows: Section 2 presents
the preliminaries of this paper. Section 3 presents the PACD
algorithm in detail. Section 4 introduces the E-PACD algorithm.
Section 5 presents the simulation results showing the
error-correction performance of the PACD and the E-PACD
algorithms. Sections 6 and 7 analyse the decoding complexity and
memory requirement of the PACD algorithm, respectively. Finally,
Section 8 concludes this paper.
2 Preliminaries

Let Fq = {0, 1, a, . . . , aq−2} denote the finite field of size q,
where α is the primitive element. In this paper, it is assumed that
Fq is an extension field of F2 and q = 2ρ, where ρ is a positive
integer. For convenience, Fq can also be denoted as
Fq = {0, 1, 2, . . . , q− 1}. Let Fq[x] and Fq[x, y] denote the
univariate and the bivariate polynomial rings defined over Fq,
respectively. We consider an (n, k) RS code, where n (n = q− 1)
and k (k < n) are the length and dimension of the code,
respectively. Given a message vector M = (M0, M1, . . . , Mk−1)
[Fkq, the message polynomial can be written as

M (x) =
∑k−1

u=0

Mux
u. (1)

The RS codeword can be generated by

C = (C0, C1, . . . , Cn−1) = (M (x0), M (x1), . . . , M (xn−1)), (2)

where {x0, x1, . . . , xn−1} [Fq\{0} and C [Fnq.
The parity-check matrix of the RS code is defined as

H =
1 a · · · an−1

1 a2 · · · a2(n−1)

..

. ..
. . .

. ..
.

1 an−k · · · a(n−k)(n−1)

⎛⎜⎜⎜⎝
⎞⎟⎟⎟⎠. (3)

An RS codeword C satisfies C ·HT = 0, where 0 is the all-zero
vector. Let σ(x) be a primitive polynomial of Fq and s(x) [F2[x].
Its companion matrix A is a ρ × ρ binary matrix. For a finite field
element αj (j = 0, 1, …, q− 2), the mapping aw 7! Aw can be
performed to obtain its binary image. Therefore, the binary image
of matrix H can be obtained by replacing its entries αj with Aw.
Let Hb denote such a binary parity-check matrix with size
(N−K) × N, where N = nρ and K = kρ. Given c = (c0, c1, . . . ,
cN−1) [FN2 as the binary representation of an RS codeword C, we
have c ·HT

b = 0.
The PACD algorithm organises monomials xayb using the (1,

−1)-lexicographic order (ord), where (a, b) [N2 and N denotes
the set of non-negative integers. For a monomial xayb, its
(1, −1)-weighted degree is defined as deg1,−1(x

ayb) = 1 · a + (−1) · b.
The (1, −1)-lexicographic order implies ord(xa1yb1) < ord(xa2yb2), if
deg1,−1(x

a1yb1) < deg1,−1(x
a2yb2) or deg1,−1(x

a1yb1) = deg1,−1(x
a2yb2)

and a1 > a2. Given a polynomial Q = ∑
a, b Qabx

ayb [Fq[x, y], if
xa

′
yb

′
is the leading monomial with coefficient Qa′b′ ≠ 0, its

leading order (lod) is lod(Q) = ord(xa
′
yb

′
). For two polynomials

(Q, Q′) [Fq[x, y], it holds that Q <Q′, if lod(Q) < lod(Q′).
IET Commun., 2016, Vol. 10, Iss. 12, pp. 1416–1427
& The Institution of Engineering and Technology 2016
3 PACD algorithm

The PACD algorithm constructs a set of interpolation test-vectors
which will be ordered according to their potential for yielding the
intended message. For all the test-vectors, interpolation of the
common elements will be performed once and its outcome will be
shared by all the test-vectors. Interpolation of the uncommon
elements will then be performed progressively granting priority to
decoding the test-vectors that are more likely to yield the intended
message.
3.1 Construction of the interpolation test-vectors

In this paper, the binary phase shift keying (BPSK) scheme is
utilised to map the RS coded bits to the modulated symbols as
ct 7! st:0 7!

1
√

, 1 7! −

1

√
, where t = 0, 1, 2, …, N− 1 and ɛ

is the transmitted symbol energy. Hence, a BPSK symbol vector
s = (s0, s1, . . . , sN−1) is transmitted. Let R denote the set of real
numbers. After a discrete memoryless channel, the received
symbol vector R = (R0, R1, . . . , Rn−1) [RN is obtained, where
Rj = (r jr, r jr+1, . . . , r(j+1)r−1) [Rr and j = 0, 1, …, n− 1.
With the received symbol vector R, the reliability matrix Π of size
q × n can be further obtained. By assuming the rows of matrix Π
are indexed by the elements of Fq, its entries πi, j are the symbol
wise a posteriori probabilities (APPs) defined as

pi, j = Pr [Cj = i|Rj], for i [Fq and 0 ≤ j ≤ n− 1. (4)

Let i1j = argmaxi[Fq
{pi, j} and i2j = argmaxi[Fq , i=i1j

{pi, j} denote
the row indices of the largest and the second largest entries of
column j, respectively. The most and the second most likely
hard-decision results of Cj are Y 1

j = i1j and Y 2
j = i2j , respectively.

The following metric is defined to assess the reliability of the
decision on symbol Cj [13]

gj =
pi2j , j

pi1j , j

(5)

and gj∈ (0, 1]. As gj approaches one, the decision is less reliable,
and vice versa. Sorting all gj values in ascending order yields a
new symbol index sequence j0, j1, …, jk−1, …, jn−1, which
indicates g j0

, g j1
, · · · , g jk−1

, · · · , g jn−1
. Let

Q = { j0, j1, . . . , jk−1} (6)

denote the index set of the k most reliable symbols and Θc = { jk, jk
+1, …, jn−1}. In the proposed Chase decoding algorithm, η least
reliable symbols will be selected from Θc. They can be realised as
either Y 1

j or Y 2
j . Let

F = { jn−h, jn−h+1, . . . , jn−1} (7)

denote the index set of the selected unreliable symbols and Φc = { j0,
j1, …, jn−η −1}. Note that Φ ⊆Θc. With the above definitions, the
interpolation test-vectors can be generally written as

Yv = (Yv, 0, Yv, 1, . . . , Yv, n−1), (8)

where

Yv, j =
Y 1
j , if j [Fc,

Y 1
j or Y

2
j , if j [F.

{
(9)

Since there are two decisions for each of the η unreliable symbols, 2η

interpolation test-vectors will be constructed and v = 1, 2, …, 2η.
1417

3.2 Ordering of the interpolation test-vectors

Among the 2η interpolation test-vectors, the PACD algorithm aims to
decode the ones that are more likely to yield the intended message,
so that the decoding can be terminated earlier. The following
reliability function is defined to assess the potential of each
test-vector

Vv =
∑n−1

j=0

log (pYv, j , j
), (10)

where the base of the logarithm is ten. A higher Ωv value indicates
test-vector Yv is more reliable and it has a higher potential for
yielding the intended message. Therefore, all 2η test-vectors will
be ordered according to their reliability function Ωv, and the one
that has a larger Ωv value will be decoded earlier. Since Ωv can
also be written as

Vv =
∑
j[Fc

log (pYv, j , j
)+

∑
j[F

log (pYv, j , j
), (11)

and all the reliability functions share a common part of∑
j[Fc log (pYv, j , j

), the ordering metric can be further simplified to

V′
v =

∑
j[F

log (pYv, j , j
). (12)

Sorting allV′
v values yields a new test-vector index sequence v1, v2,

…, v2η, which indicates V′
v1
. V′

v2
. · · · . V′

v2h
. The PACD

algorithm first decodes Yv1
, then decodes Y v2

etc. Note that the
first test-vector to be decoded is the hard-decision received word
Yv1

= (Y 1
0 , Y

1
1 , . . . , Y 1

n−1).
3.3 Common element interpolation

For a test-vector Yv, interpolation constructs a minimal polynomial
Q(x, y) that satisfies Q(xj, Yv, j) = 0 for all j. Since all the
interpolation test-vectors share the common symbols Y 1

j for j∈Φc,
interpolation will first be performed for those common elements.
Its outcome will be shared by all the test-vectors. In this paper, we
will discuss the test-vectors Yv of the form Yv =
(Yv, j0

, Yv, j1
, . . . , Yv, jn−1

). The interpolation order for the n
points is (x j0 , Yv, j0

) � (x j1 , Yv, j1
) � · · · � (x jn−1

, Yv, jn−1
).

The common element interpolation is assisted by the re-encoding
transform. The re-encoding polynomial is defined as [11]

C(x) =
∑
j[Q

Y 1
j cj(x), (13)

where

cj(x) =
∏

(j, d)[Q, j=d

x− xd
xj − xd

. (14)

The re-encoding polynomial implies C(xj) = Y 1
j for j∈Θ.

Therefore, given a test-vector Yv, by performing the re-encoding
transform

Y′
v, j = Yv, j −C(xj) (15)

for all of its entries, it can be transformed into

Yv′ = (0, . . . , 0, Y ′
v, jk

, . . . , Y ′
v, jn−1

). (16)
1418
Interpolation for points (xj, 0) where j∈Θ can be determined by

V (x) =
∏
j[Q

(x− xj). (17)

Interpolation can then begin by initialising the following polynomial
set

G∗ = {g∗1 (x, y), g
∗
2(x, y)} = {V (x), y}. (18)

Since G∗ = {V (x) · 1, V (x) · (y/V (x))}, the initialised polynomial
set can be further simplified to

G = {g1(x, y), g2(x, y)} = {1, y}, (19)

and the remaining interpolation points (xj, Y′
v, j) for j∈Θc are

transformed into

(xj, Y′′
v, j) = xj,

Y′
v, j

V (xj)

()
. (20)

After the re-encoding transform, polynomial set G will further
interpolate points (xj , Y′′

v, j) for j∈Θc.
Since η⩽ n− k, the test-vectors can share more than k common

symbols. Let us define

Ac = Qc >Fc = { jk , jk+1, . . . , jn−h−1}, (21)

Au = Qc >F = { jn−h, jn−h+1, . . . , jn−1}. (22)

In the common element interpolation, polynomials of G will further
interpolate points (xj, Y ′′

v, j) for j∈ Ac. For (xj, Y ′′
v, j), the

polynomials’ interpolation property can be judged by g1(xj, Y ′′
v, j)

and g2(xj , Y ′′
v, j) [6]. Hence, let

f (x, y) = min{gi(x, y) [G|gi(xj, Y ′′
v, j) = 0 and i = 1, 2}, (23)

and

g(x, y) = G\{f (x, y)}. (24)

By performing the following bilinear modifications

g′(x, y) = g(x, y)− g(xj, Y′′
v, j)

f (xj, Y′′
v, j)

· f (x, y), (25)

f ′(x, y) = (x− xj) · f (x, y), (26)

the updated polynomials will interpolate the point. Repeating the
above process for all the points that are indexed by Ac, an updated
polynomial set G̃ is obtained and

G̃ = {gi(x, y)|gi(xj, Y′′
v, j) = 0, ∀j [Ac and i = 1, 2}. (27)

It will be utilised by the following progressive uncommon element
interpolation.
3.4 Progressive uncommon element interpolation

The progressive uncommon element interpolation is first performed
for test-vector Y′

v1
by interpolating points (xj, Y ′′

v1, j
) for j∈ Au. If the

intended message can be found by factorising the interpolation
outcome, the decoding will be terminated. Otherwise, it will be
further performed for test-vectors Y′

v2
, Y′

v3
etc. For a test-vector
IET Commun., 2016, Vol. 10, Iss. 12, pp. 1416–1427
& The Institution of Engineering and Technology 2016

Fig. 1 Binary tree representation of the uncommon element interpolation
Y′
v, we define

G(t)
v = {gi(x, y)|gi(xj, Y′′

v, j) = 0, j

= jk , jk+1, . . . , jn−h+t−1 and i = 1, 2}. (28)

The polynomial set that has further interpolated t points (xj, Y′′
v, j)

are indexed by Au and 0⩽ t⩽ η. When t = 0, G (0)
v = G̃ because all

the test-vectors inherit the common element interpolation result.
With this notation, the PACD algorithm generates the polynomial
sets in the following order:

G(1)
v1

� G(2)
v1

� · · · � G(h)
v1
, G(1)

v2
� G(2)

v2
� · · ·

� G(h)
v2
, . . . , G(1)

v2h
� G(2)

v2h
� · · · � G(h)

v2h
.

In general, those polynomial sets can be denoted as G(t)
v4
, where

4 = 1, 2, . . . , 2h. If all 2η test-vectors are interpolated, η · 2η

polynomial sets will be generated. The following proposition
shows that they are not unique and the PACD algorithm reduces
the decoding computation utilising this property.

Proposition 1: For two test-vectors Y′
v4

and Y′
v4

′ , if Y′′
v4, j = Y′′

v4′ , j

for j = jn−η, jn−η +1, …, jn−η +t −1, then G(1)
v4

= G(1)
v4′ , G(2)

v4
= G(2)

v4′ ,

…, G(t)
v4

= G(t)
v4′ .

Without referring to the test-vector ordering, polynomial set G(t)
v is

obtained by interpolating the polynomials of G(t−1)
v for either of

the following two points:

P1
t = x jn−h+t−1

,
Y 1
jn−h+t−1

−C(x jn−h+t−1
)

V (x jn−h+t−1
)

()
,

P2
t = x jn−h+t−1

,
Y 2
jn−h+t−1

−C(x jn−h+t−1
)

V (x jn−h+t−1
)

()
.

If all the test-vectors are interpolated, the evolution of the polynomial
sets G(t)

v with t growing from zero to η can be illustrated as a binary
tree that is shown in Fig. 1. At layer t, there are 2t distinct
polynomial sets G(t)

v , each of which is shared by 2η −t test-vectors.
A complete path from the root G(0)

v to a leaf G(h)
v indicates the

uncommon element interpolation for a particular test-vector Y′
v.

The LCC algorithm [13] results in the binary tree growing in a
layer-by-layer manner. This implies that at layer t, polynomial sets
G(t)
v will be fully determined by interpolating the polynomial sets

G(t−1)
v . Finally, 2η polynomial sets G(h)

v will be generated. They are
the uncommon element interpolation outcomes of the 2η test-vectors.

In contrast, the PACD algorithm grows the binary tree in a
depth-first-search manner. It first generates a complete path from
G(0)
v1

to G(h)
v1
. If the intended message can be found by factorising

the minimal polynomial of G(h)
v1
, the decoding will be terminated.

Otherwise, it generates another path from G(0)
v2

to G(h)
v2

etc. Note that
the ML criterion that is stated as Lemma 1 of [19] will be utilised
to validate the factorisation output. However, based on Proposition
1, it can be realised that the interpolation of a later decoded
test-vector Y′

v4
with 4 . 1 does not necessarily need to start

from G(0)
v4
. It can utilise the intermediate interpolation information

that is generated and stored during decoding of the previous
4− 1 test-vectors. The intermediate interpolation information is
defined as

M4−1 = {G(t)
v4′ , 0 ≤ t , h and 1 ≤ 4′ ≤ 4− 1}. (29)

Note that G(h)
v4′ does not need to be stored since it will not be utilised

by a later decoded test-vector.
Without loss of generality, we now describe the uncommon

element interpolation of a test-vector Y′
v4
, where 4 = 1, 2, . . . ,

2h. If 4 = 1, it is the first test-vector to be decoded. There is no
IET Commun., 2016, Vol. 10, Iss. 12, pp. 1416–1427
& The Institution of Engineering and Technology 2016
stored interpolation information and M0 = ∅. Its uncommon
element interpolation will have to start from the root of the binary
tree, i.e. G(0)

v1
. It will then interpolate points (xj, Y′′

v1, j
) that are

indexed by Au, yielding polynomial set G(h)
v1
. Consequently, the

stored information is updated to M1. Otherwise, if 4 . 1, we
will first assess its similarity with the decoded test-vectors. In the
binary tree, let J4(4

′) denote the number of layers shared by
Y′

v4
and Y′

v4′ (4
′ , 4) as

J4(4
′) = max {t|Y′′

v4, jn−h+t′−1
= Y′′

v4′ , jn−h+t′−1
, for 0 ≤ t′ ≤ t}.

(30)

The decoded test-vectors Y′
v4′ that share the maximal number of

layers with Y′
v4

should be identified and denoted as

{Y′
v4∗ :4

∗ = argmax
4′,4

{J4(4
′)}}. (31)

Note that more than one decoded test-vector can be identified, but
only one of them will be selected and denoted as Y′

v4∗ . Recalling
Proposition 1, we know that G(t)

v4
= G(t)

v4∗ for t = 0, 1, . . . ,

J4(4
∗), while G(0)

v4∗ , G(1)
v4∗ , …, and G(J4(4∗))

v4∗ are the stored
information of M4−1. Therefore, to generate G(h)

v4
, we will first

initialise

G(J4(4∗))
v4

= G(J4(4∗))
v4∗ . (32)

Polynomial set G(J4(4∗))
v4

will then interpolate points (xj, Y′′
v4, j) for

j = jn−h+J4(4∗), . . . , jn−1, yielding polynomial set G(h)
v4
. The stored

information is further updated into M4.
After completing the uncommon element interpolation for a

test-vector Y′
v4
, the minimal polynomial of G(h)

v4
, i.e.

Q̃v4
(x, y) = min{gi(x, y) [G(h)

v4
, i = 1, 2} (33)

is chosen. Since

Q̃v4
(x, y) = q̃v4, 0(x)+ y · q̃v4, 1(x), (34)

and polynomial V(x) has been extracted from set G∗ at the beginning
of the common element interpolation, the interpolated polynomial
Qv4

(x, y) should be reconstructed by

Qv4
(x, y) = q̃v4 , 0(x) · V (x)+ y · q̃v4 , 1(x). (35)
1419

Fig. 2 The PACD algorithm for RS codes
It satisfies Qv4
(xj, Y′

v4 , j) = 0 for all j. A message polynomialM′(x)
that is in the form of (1) can be obtained by factorising Qv4

(x, y)
[22]. An estimation of the intended message polynomial is further
generated by

M̂ (x) = M ′(x)+C(x). (36)

If the re-encoding of M̂ (x) yields an ML codeword, the decoding will
be terminated. Otherwise, the next test-vector Yv4+1

will be decoded
Fig. 3 Block diagram of the E-PACD algorithm

1420
based on the memorised informationM4. If none of the 2
η message

candidates yields an ML codeword, the PACD algorithm results in a
full growth of the binary tree. Among all the message candidates, the
one that yields the most likely codeword will be selected.
Summarising the above descriptions, the PACD algorithm is
presented as in Algorithm 1 (see Fig. 2).
4 E-PACD algorithm

For the PACD algorithm, increasing η will lead to a stronger
error-correction capability, since there are more test-vectors to be
decoded. However, this also increases the decoding complexity
exponentially. To improve the PACD algorithm’s decoding
performance while maintaining a moderate decoding complexity,
the E-PACD algorithm is introduced by coupling the PACD
algorithm with the ABP decoding. The ABP decoding is
functioning with an adaptive binary parity-check matrix of an RS
code. The adaptive matrix is sparser than the original parity-check
matrix Hb, making it more suitable to be applied for belief
IET Commun., 2016, Vol. 10, Iss. 12, pp. 1416–1427
& The Institution of Engineering and Technology 2016

Fig. 4 Test-vector and the interpolation information
propagation. References [20, 21] have shown that ABP decoding can
improve the reliability of the received information, after which an
algebraic RS decoding algorithm can be used to achieve a superior
decoding performance. Therefore, this paper integrates the PACD
and the ABP decoder, where the ABP decoder can generate more
test-vectors for the PACD algorithm. More importantly, the
E-PACD algorithm’s complexity can be significantly reduced by
eliminating the decoded test-vectors and utilising the information
that is generated during the previous PACD attempts.

The block diagram of the E-PACD algorithm is presented in
Fig. 3. The PACD algorithm is performed based on the original
reliability matrix Π. If the intended message cannot be found, the
ABP decoder [20, 21] is applied again to generate an enhanced
reliability matrix Π′ which results in new test-vectors to be
decoded. The ABP decoder consists of bit reliability sorting,
Gaussian elimination and BP decoding, forming an iterative
process. Each ABP iteration yields an enhanced matrix Π′ for the
next progressive Chase decoding in finding the intended message.
The ABP decoding can be briefly described as follows.

With the received vector R, the bit wise APP values Pr [ct = 0|rt]
and Pr [ct = 1|rt] can be obtained. The log-likelihood ratio (LLR) of
ct is defined as

Lt = ln
Pr [ct = 0|rt]
Pr [ct = 1|rt]

, (37)

where t = 0, 1, …, N− 1. A larger |Lt| implies bit ct is more reliable,
and vice versa. Therefore, sorting all N LLR magnitudes in an
ascending order yields a refreshed bit index sequence t0, t1, …,
tN−K−1, …, tN−1, which indicates |Lt0 | , |Lt1 | , · · · , |LtN−K−1

|
, · · · , |LtN−1

|. Gaussian elimination will then be performed on
the binary parity-check matrix Hb, reducing the columns that
correspond to the N−K unreliable bits to weight-1 columns. It
results in an adapted matrix H ′

b that is sparser. The iterative BP
decoding will be performed based on H ′

b. By defining
L(t) W {l|hlt = 1, ∀hlt [H ′

b} and T(l) W {t|hlt = 1, ∀hlt [
H ′

b}, the BP decoding updates the bit wise LLRs by

L′t = Lt + q ·
∑

l[L(t)

2 tanh−1
∏

t′[T(l)\t
tanh

Lt′
2

()()
, (38)

where q [(0, 1] is the damping factor [20]. The updated LLRs will
be fed back for another sorting process, triggering the next round of
ABP decoding. In the meantime, each updated LLR will be
converted back to a pair of bit wise APP values by

Pr [ct = 0|rt] =
1

1+ e−L′ t
, Pr [ct = 1|rt] =

1

1+ eL
′
t
, (39)

with which an enhanced reliability matrix Π′ can be formed. Given a
defined η value, there will be 2η test-vectors for the next round of
PACD.

As shown in Fig. 3, if the intended message cannot be found from
the original PACD attempt, the ABP decoder is deployed. After each
ABP iteration, an enhanced matrix Π′ is formed. By storing the
image of the decoded test-vectors Yv, the newly generated
test-vectors are compared with the decoded vectors. This implies
that without performing the re-encoding transform, if the n
interpolation points (xj, Yv, j) of a new test-vector are identical to
those from a decoded test-vector, the new vector is redundant and
is eliminated from the current PACD attempt. To further reduce
the redundant computations during the multiple PACD attempts,
the following information of each PACD attempt will be stored. It
includes the symbol index sets Θ, Ac and Au, polynomials Ψ(x)
and V(x) and polynomial setÄG. Fig. 4 shows that for a test-vector
Yv′ , polynomials Ψ(x) and V(x) are defined by set Θ, while
polynomial set G̃ is defined by both Θ and Ac. Note that for j∈
Θc, symbols Y′′

v, j are transformed from symbols Y′
v, j by

Y′′
v, j =

Y′
v, j

V (xj)
.

IET Commun., 2016, Vol. 10, Iss. 12, pp. 1416–1427
& The Institution of Engineering and Technology 2016
We now use k to denote the index of each PACD attempt. The
above-mentioned information that is associated with each PACD
attempt is further denoted as Θk, Ac, k, Au, k, Ψk(x), Vk(x) and G̃k.
When k = 1, it implies that this is the original progressive Chase
decoder without deploying the ABP assistance. When k > 1, we
will first compare the image of the current test-vectors and the
decoded ones, eliminating the decoded test-vectors. For the
remaining test-vectors, the re-encoding transform will be
performed and the index sets Θk, Ac, k and Au, k will be defined.
Operation of the current PACD attempt can be categorised into the
following three scenarios:

Scenario I: If ∃k′ and 1⩽k′ < k, Θk′ =Θk and the symbols Y′′
v, j with

j∈ Ac, k are identical to those defined by Ac, k′, both polynomials
Ψk′(x) and Vk′(x), and the polynomial set G̃k′ can be utilised. For
the current PACD attempt, its decoding can start with G̃k = G̃k′
and further interpolate points (xj , Y′′

v, j) for j∈ Au, k.
Scenario II: If Scenario I does not occur, but ∃k′ and 1⩽k′ < k, Θk′

=Θk, the polynomials Ψk′(x) and Vk′(x) can be utilised. The current
PACD attempt can start its decoding with G = {1, y} and further
interpolate points (xj , Y′′

v, j) for j [Ac, k < Au, k.
Scenario III: If ∀k′ and 1⩽k′ < k, Θk′ ≠Θk, none of the memorised
information can be utilised. The current PACD will have to start by
performing the re-encoding transform with defining Φk(x) and Vk(x).
It then initialises polynomial set G = {1, y} and further interpolates
points (xj, Y′′

v, j) for j [Ac, k < Au,k.

Note that in Scenarios I and II, the interpolated polynomial will be
reconstructed by utilising Vk′(x) as in (35). The intended message
polynomial can be further recovered by utilising Ψk′(x) as in (36).
While in Scenario III, the above-mentioned operations will have to
utilise Vk(x) and Ψk(x) of the current PACD attempt.
5 Performance analysis

This section analyses the error-correction performance of the PACD
and the E-PACD algorithms. Figs. 5–7 show their performance in
decoding the (15, 11), the (31, 27) and the (255, 239) RS codes
over the additive white Gaussian noise (AWGN) channel,
respectively. The damping factor that optimises the E-PACD
performance for the code is also indicated in these figures. In the
simulations, the E-PACD algorithm functions with three ABP
iterations and there is one BP iteration for each adapted matrix
H ′

b. It is compared with the GS algorithm with an interpolation
multiplicity of one. For the mentioned RS codes, GS decoding
with multiplicity of one reaches the hard-decision list decoding
bound of n− ⌊

n(k − 1)
√ ⌋ − 1. It is also compared with the KV

algorithm with a designed factorisation OLS of three, which
achieves its optimal performance [The optimal KV decoding
performance is obtained by (28) of [7]]. The ML decoding bounds
are also given as benchmarks to assess the error-correction
potential of the E-PACD algorithm. In the following discussion,
coding gains are evaluated at a frame error rate (FER) of 10−4.

Our simulation results show that by increasing η, performance of
the PACD algorithm can be improved, since more test-vectors are
decoded. In particular, by increasing η from one to four, coding
gains of 1.2 and 1 dB can be further achieved for the (15, 11) and
the (31, 27) RS codes, respectively. However, for the (255, 239)
RS code, less significant coding gains are obtained by increasing
η. This is because the (255, 239) RS code has a much larger
codebook cardinality. For an (n, k) RS code defined in Fq, its
codebook cardinality is qk. The PACD algorithm decodes 2η
1421

Fig. 5 Performance of the (15, 11) RS code over the AWGN channel
test-vectors, attempting to recover the transmitted codeword from
one of them. With the same η value, a larger codebook cardinality
can lead to a lower probability of recovering the transmitted
codeword. Consequently, Chase decoding plays a less significant
role in enhancing the error-correction performance. For the (15,
11) and (31, 27) RS codes, the PACD algorithm with η = 2
outperforms the optimal KV performance. While for the (255,
239) RS code, the PACD algorithm can only outperform the
optimal KV performance when η = 7. It should be pointed out that
with the same η value and the same decoded message selection
criterion, the PACD algorithm has the same performance as the
LCC algorithm [13] and the BF-LCC algorithm [14]. This is
evidenced by Fig. 5, which shows the LCC and the BF-LCC
performances with η = 4.

The E-PACD algorithm further improves the error-correction
performance. By performing ABP decoding, the received
information is enhanced resulting in a stronger Chase decoding
capability. For both the (15, 11) and (31, 27) RS codes, the
E-PACD when η = 1 outperforms the PACD when η = 4. Given
there are at most three ABP iterations, the E-PACD algorithm
when η = 1 will decode at most eight test-vectors while the PACD
algorithm when η = 4 would have to decode up to 16 test-vectors.
It indicates that with extra ABP decoding, the E-PACD algorithm
can achieve a better performance with less finite field arithmetic
Fig. 6 Performance of the (31, 27) RS code over the AWGN channel

1422
operations. A similar performance improvement of the E-PACD
algorithm can also be observed for the (255, 239) RS code.
However, for the E-PACD algorithm, increasing η does not yield
the same coding gain as for the PACD algorithm. This is because
the E-PACD performance gains mainly come from the ABP
decoding that enhances the reliability of the received information,
and the role of parameter η plays a less significant role. Moveover,
Figs. 5 and 6 show that for the (15, 11) and the (31, 27) RS
codes, the E-PACD performances are close to the ML decoding
bounds [23]. It is important to point out that the performance
gains offered by the PACD and the E-PACD algorithms over the
benchmark decoding approaches are realised in a more efficient
decoding manner. The following section further analyses the
computational complexity of the PACD algorithm and also sheds
light on the complexity of the E-PACD algorithm.
6 Complexity analysis

Since the PACD algorithm gives priority to decoding the higher
potential test-vectors and terminates once the intended message is
found, it reduces the complexity that would otherwise be spent on
decoding all 2η test-vectors. Therefore, with less corrupted
received information, the intended message can be decoded earlier
IET Commun., 2016, Vol. 10, Iss. 12, pp. 1416–1427
& The Institution of Engineering and Technology 2016

with a lower decoding complexity, which is measured as the number
of finite field arithmetic operations to decode an RS codeword.

For the PACD algorithm, the complexity of each decoding event
varies as it can terminate after decoding any of the 2η test-vectors.
We define the worst case decoding event as all 2η test-vectors
being decoded. In contrast, the best case decoding event would be
only one test-vector that has been decoded. The complexity of the
two decoding events will be analysed and they should envelop the
actual decoding complexity. In the proposal, interpolation consists
of the re-encoding, the common element interpolation and the
uncommon element interpolation, for which we use C(1)int , C(2)int and
C(3)int to denote their complexity, respectively. The interpolation
complexity is

Cint = C(1)int + C(2)int + C(3)int . (40)

Further considering the complexity of factorisation Cfac and the ML
codeword validation Cval, the PACD algorithm’s complexity in
decoding a test-vector can be formulated as

CPACD = Cint + Cfac + Cval. (41)

For the re-encoding, calculating the numerator and denominator of
the Lagrange basis polynomial cj(x) of (14) requires∑k−1

i=2 2i = (k + 1)(k − 2) and 2(k− 1) finite field operations,
respectively. Multiplying cj(x) by y1j further requires k finite field
operations. The re-encoding polynomial Ψ(x) of (13) is a sum of k
Lagrange basis polynomials. Hence, forming Ψ(x) requires k(2(k−
1) + (k + 1)(k− 2) + k) + k = k(k + 3)(k− 1) finite field operations.
Furthermore, calculating polynomial V(x) of (17) requires∑k

i=2 2i = (k + 2)(k − 1) finite field operations. Substituting xj
with j [Q

c
into Ψ(x) and V(x) requires 3(k− 1)(n− k) and 3k(n

− k) finite field operations, respectively. Therefore, the re-encoding
complexity is

C(1)int = k(k + 3)(k − 1)+ (k + 2)(k − 1)+ (6k − 3)(n− k)

≃ (k + 1)3 + 6k(n− k).
(42)

The interpolation complexity is proportional to the size of the
polynomial, e.g. given g0(x, y) and g1(x, y) both of which have i
coefficients, calculating g0(xj, Y′′

v, j) and g1(xj, Y′′
v, j) and updating

the two polynomials as in (25) and (26) require at least 6i and 4i
finite field operations, respectively. Considering size of
polynomials grows as they interpolate the points, and there are n
− k− η points for the common element interpolation, its
Fig. 7 Performance of the (255, 239) RS code over the AWGN channel

IET Commun., 2016, Vol. 10, Iss. 12, pp. 1416–1427
& The Institution of Engineering and Technology 2016
complexity is

C(2)int =
∑n−k−h

i=1

10i = 5(n− k − h)(n− k − h+ 1). (43)

Note that the re-encoding and the common element interpolation will
be performed once and are shared by all the test-vectors.

In the worst-case decoding event, the uncommon element
interpolation results in a full expansion of the binary tree (see
Fig. 1). There are 2t polynomial groups at layer t. Each
polynomial in the layer has approximately n− k− η + t + 1
coefficients. Interpolation of a point requires 10(n− k− η + t + 1)
finite field operations. With t < η, each polynomial group will
interpolate two points P1

t and P2
t . Therefore, the uncommon

element interpolation complexity is

C(3)int =
∑h−1

t=0

2t · 2 · 10(n− k − h+ t+ 1)

= 20(2h(n− k − 1)− (n− k − h− 1)).

(44)

For convenience, the factorisation complexity is analysed by also
considering the process that realises the transform of Q̃v(x, y) to
Qv(x, y) as in (35). Let ω denote the number of coefficients of
q̃v, 0(x, y), then q̃v, 1(x, y) has approximately n− k + 1− ω
coefficients. Since V(x) has k + 1 coefficients, 2ω(k + 1) finite field
operations are required in realising q̃v, 0(x, y) · V (x). In factorising
each polynomial, k message symbols need to be determined.
Determining each message symbol requires a finite field operation
and updating the polynomial requires 2(n− k + 1− ω) finite field
operations [22, 24]. In the worst-case decoding event, 2η

interpolated polynomials need to be factorised and the factorisation
complexity is

Cfac = 2h · 2v(k + 1)+ 2h · k(2(n− k + 1− v)+ 1)

= 2h+1k(n− k + 1)+ 2h+1v+ 2hk. (45)

By approximating ω = (n− k)/2

Cfac ≃ 2h+1k(n− k + 1)+ 2hn. (46)

For the ML codeword validation, finite field operations are required
to re-encode the message candidates. In the worst-case decoding
event, there are 2η message vectors to be encoded and the
1423

Table 2 Worst case complexity of the PACD algorithm in decoding the
(31, 27) RS code

Ana. Sim. Ana. Sim.
(η = 2) (η = 2) (η = 4) (η = 4)

C(1)int 22,600 22,214 22,600 22,214
C(2)int 30 35 0 0
C(3)int 220 239 980 1044
Cfac 1204 1207 4816 4830
Cval 6572 6385 26,288 25,553
CPACD 30,626 30,080 54,684 53,641

Table 1 Worst case complexity of the PACD algorithm in decoding the
(15, 11) RS code

Ana. Sim. Ana. Sim.
(η = 2) (η = 2) (η = 4) (η = 4)

C(1)int 1992 1875 1992 1875
C(2)int 30 33 0 0
C(3)int 220 223 980 983
Cfac 500 445 2000 1783
Cval 1260 1203 5040 4813
CPACD 4002 3779 10,012 9454
generation of each codeword symbol requires 2k− 1 finite field
operations. Hence, the ML validation complexity is

Cval = 2h · n(2k − 1). (47)

Summarising the above analysis, in the worst-case decoding event,
the PACD algorithm’s complexity can be approximated as

CPACD ≃ (k+1)3+6k(n− k)+2h+1(k(2n− k+1)+10(n− k−1)),

(48)

in which C(2)int and term 20(n− k− η + 1) of C(3)int have been
marginalised. Therefore, with a small η, the PACD complexity is
dominated by the re-encoding. With increasing η, 2η +1(k(2n− k + 1)
+ 10(n− k− 1)) increases exponentially. The uncommon element
interpolation, factorisation and the ML codeword validation
become the dominant factor.

Tables 1 and 2 validate the above analysis from the simulation
results that are obtained by decoding the (15, 11) and the (31,
27) RS codes, respectively. They are averaged over 1000 worst
case decoding events. It can be seen that the simulation results
match well with the analytical results, validating the above
analysis. Note that for the two RS codes, when η = 4, Ac = ∅
which leads to C(2)int = 0.

In the best case decoding event, only the first test-vector will be
decoded. The uncommon element interpolation results in a
complete root-to-leaf path of the binary tree. Therefore, the
complexity of the common and the uncommon element
interpolations can be merged as

∑n−k
i=1 10i = 5(n− k)(n− k + 1).

By considering only one test-vector to be processed, Cfac and Cval
become 2k(n− k + 1) + n and n(2k− 1), respectively. Therefore, in
the best case decoding event, the PACD algorithm’s complexity
Fig. 8 Average complexity in decoding the (15, 11) RS code using the PACD alg

1424
becomes

CPACD ≃ (k + 1)3 + 2k(2n− k + 1)+ (n− k)(5n+ k + 5), (49)

and it is dominated by the re-encoding.
Simulation results on the average complexity in decoding the (15,

11) and the (31, 27) RS codes over the AWGN channel are shown in
Figs. 8–10. Again, the complexity is averaged over 1000 decoding
events per signal-to-noise ratio (SNR). In Figs. 8 and 9, the
comparison benchmarks include the GS algorithm, the LCC and
the BF-LCC algorithms both of which are considered as the
predecessors of the PACD algorithm. They both show that by
increasing the SNR, the average complexity of the PACD
algorithm can be reduced significantly due to its progressive
decoding mechanism. In contrast, the average complexity of the
LCC and the BF-LCC algorithms is less sensitive to the channel
condition, since they always terminate after decoding all the
test-vectors. For the PACD algorithm, in the low SNR region (≤2
dB), the worst case decoding events dominate. Hence, its average
complexity is similar to that of the LCC and the BF-LCC
algorithms. While in the high SNR region (≥7 dB), the best case
decoding events dominate. As a result, its average complexity
converges to the minimal level, which is also the complexity of
the GS algorithm. Note that in the best case decoding event, the
PACD algorithm is less complex than the LCC algorithm with
η = 1. This is because the PACD algorithm can always deliver the
intended message by decoding the highest potential test-vector,
while the LCC algorithm when η = 1 would have to decode two
test-vectors. Moreover, with the same η value, the BF-LCC
algorithm is slightly more complex than the LCC algorithm. This
extra difference is incurred by the backward interpolation of the
BF-LCC algorithm, in which the size of the polynomial is always
greater than that of the LCC algorithm.
orithm

IET Commun., 2016, Vol. 10, Iss. 12, pp. 1416–1427
& The Institution of Engineering and Technology 2016

Fig. 9 Average complexity in decoding the (31, 27) RS code using the PACD algorithm
It should be acknowledged that both the LCC and the BF-LCC
algorithms can be easily equipped with the progressive decoding
feature. That means both algorithms can terminate their decoding
once the intended message is found, resulting in a similar channel
dependent complexity performance as the PACD algorithm. Fig. 8
further shows the complexity of the two benchmarks with the
progressive decoding mechanism. For the progressive LCC and
BF-LCC algorithms, it is ensured that the first test-vector to be
decoded is the hard-decision received word, which is the same as
the PACD algorithm. It shows the PACD algorithm remains the
simplest compared with its predecessors. At the low SNR region
in which the worst case decoding events dominate, the BF-LCC
algorithm is more complex. This is triggered by the backward
interpolation and larger size of the interpolated polynomials. In the
opposite end of the SNR spectrum, the PACD and the BF-LCC
algorithms have a similar complexity, since in most of the
decoding events they both result in only one root-to-leaf path in
the binary tree. However, the LCC algorithm still results in a full
growth of the binary tree, bringing in a high computational cost.
This comparison shows the merit of performing the progressive
Chase decoding in a defined order. To further consolidate the
claim, Table 3 shows the probability of yielding the ML codeword
Fig. 10 Average complexity comparison in decoding the (15, 11) RS code

IET Commun., 2016, Vol. 10, Iss. 12, pp. 1416–1427
& The Institution of Engineering and Technology 2016
by decoding a particular ordered test-vector. It is measured over
the AWGN channel with 100,000 decoding events per SNR. Be
aware that there can be more than one test-vector that yields the
ML codeword and all of them will be counted in the statistics. It
shows that the reliability function of (10) can well identify the
more potential test-vectors. It will result in an earlier termination
of the Chase decoder.

Fig. 10 further sheds light on the complexity of the E-PACD
algorithm in decoding the (15, 11) RS code. All the algorithms are
assisted by the re-encoding transform. It can be seen that
complexity of the KV algorithm also decreases with an increased
SNR. This is because at high SNR, the multiplicity matrix [7]
becomes sparser with greater non-zero entries. As a result, the
re-encoding transform will be more capable in reducing the
interpolation complexity. On the basis of Fig. 5 we know that with
η = 4, both the PACD and the E-PACD algorithms can outperform
the KV algorithm with an OLS of three, while Fig. 10 shows that
they are less complex. In the low SNR region, the E-PACD
algorithm is more complex than the PACD and the LCC
algorithms. This is because the intended message often cannot be
found after decoding all the first 2η test-vectors and more PACD
attempts are needed. However, note that though the E-PACD
1425

Table 3 Probability of the ordered test-vectors yielding an ML codeword for the (15, 11) RS code and η = 3

SNR, dB Y′
v1

Y′
v2

Y′
v3

Y′
v4

Y′
v5

Y′
v6

Y′
v7

Y′
v8

3 0.364 0.329 0.315 0.296 0.268 0.246 0.221 0.171
4 0.661 0.621 0.595 0.569 0.525 0.488 0.430 0.317
5 0.888 0.862 0.839 0.811 0.776 0.728 0.634 0.398
algorithm functions with three ABP iterations, at the low SNR
region, its average complexity is far less than four times of that of
the PACD algorithm. This is because the redundant decodings
have been eliminated by utilising the memorised interpolation
information of each PACD attempt. Fig. 5 shows that the E-PACD
algorithm with η = 1 outperforms the PACD algorithm with η = 4,
while Fig. 10 also demonstrates that the former requires less finite
field operations.
7 Memory analysis

This section further analyses the memory requirement of the PACD
algorithm. The difference between the PACD algorithm and the LCC
algorithm lies in the uncommon element interpolation, for which the
PACD algorithm needs to memorise the intermediate interpolation
information, i.e. the intermediate nodes of the binary tree. The
memory requirement is analysed in the worst case decoding event.

The memory requirement is measured as the number of
polynomial coefficients that need to be stored during the decoding.
We assume that one coefficient is stored in one memory unit. Both
the PACD and LCC algorithms initialise the polynomial set G as
in (19), and each of its polynomials has one coefficient. We now
analyse the memory requirement of both the LCC and the PACD
algorithms and further compare them.

The LCC algorithm grows the binary tree in a layer-by-layer
manner. It finally obtains 2η leaves that correspond to 2η

polynomial sets. Before reaching the leaves, the LCC algorithm
needs to memorise all the nodes of layer η− 1. Since the
polynomials in the layer are obtained by interpolating n− k− 1
points, storing each polynomial requires at most 2(n− k) memory
units. With two polynomials in each set, the memory requirement
of the LCC algorithm is

MLCC= 2h−1 · 4(n− k). (50)

In contrast, the PACD algorithm grows the binary tree in a
depth-first-search manner. Instead of storing all 2η leaves, it needs
to store all the intermediate nodes of the binary tree, i.e. G(t)

v with
0⩽ t < η, and the leaf that corresponds to the current test-vector.
The polynomial set of the root is obtained by interpolating n− k−
η common points. Therefore, storing the root requires 2(n− k− η
+ 1) memory units. After interpolating t points in the uncommon
element interpolation, storing a polynomial set that is a node at
layer t requires 4(n− k− η + 1 + t) memory units. Moreover,
storing the leaf that corresponds to the current test-vector requires
4(n− k + 1) memory units. Therefore, the memory requirement of
the PACD algorithm is

MPACD =
∑h−1

t=0

2t · 4(n− k − h+ 1+ t)+ 4(n− k + 1)

= 4(2h(n− k − 1)+ (h+ 2)). (51)

ComparingMLCC of (50) andMPACD of (51) yields a discrepancy of

MLCC −MPACD = 4(2h−1(n− k − 2)+ h+ 2). (52)

It is obvious that MLCC −MPACD . 0, ∀h. Equation (52) shows
that the discrepancy grows with increased η. It will be more
expensive to store all the leaves than all the intermediate nodes of
the binary tree. However, it should be pointed out that for the
1426
LCC algorithm, the stored polynomial set can be erased once it
has been factorised. While for the PACD algorithm, the
intermediate nodes have to be stored until the decoding terminates.
Therefore, the PACD algorithm demands a longer occupation of
the assigned memory. Nonetheless, memory requirement will be
an inevitable cost in realising progressive decoding [17].
8 Conclusion

This paper has proposed the PACD algorithm and an enhanced
variant for RS codes. In the PACD algorithm, each test-vector will
be sequentially decoded according to its potential for yielding the
intended message. Progressive decoding will be terminated once
the intended message has been found. By examining the similarity
between the decoded test-vectors and the current one, complexity
of decoding the current test-vector can be reduced by fully
utilising the existing interpolation information. Furthermore, the
E-PACD algorithm has been introduced by coupling the PACD
algorithm with the ABP decoding that is capable to generate new
test-vectors by enhancing the received information. As a result,
stronger algebraic Chase decoding performance can be obtained
without increasing the decoding complexity exponentially.
Complexity analysis of the PACD algorithm has been conducted
to formulate its computational cost. Complexities of the worst case
and the best case decoding events have been analysed, bounding
the actual complexity of a PACD event. Together with the
performance analysis, it has been shown that the PACD algorithm
can outperform both the GS and the KV algorithms with less
computational cost. Assisted by the ABP decoding, the E-PACD
algorithm significantly outperforms the PACD algorithm without
incurring an exponentially increased decoding complexity.
Memory analysis of the PACD algorithm has also been performed
demonstrating the cost of storage requirement in realising the
progressive decoding.
9 Acknowledgments

This work is sponsored by the National Natural Science Foundation
of China (NSFC) with project ID 61372079, the National Basic
Research Program of China (973 program) with project Number
2012CB316100 and the Fundamental Research Funds for the
Central Universities in China.
10 References

1 Reed, I.S., Solomon, G.: ‘Polynomial codes over certain finite fields’, J. Soc. Ind.
Appl. Math., 1960, 8, pp. 300–304

2 Massey, J.L.: ‘Shift register synthesis and BCH decoding’, IEEE Trans. Inf.
Theory, 1969, 15, (1), pp. 122–127

3 Welch, L., Berlekamp, E.R.: ‘Error correction for algebraic block codes’. Proc.
IEEE Int. Symp. Information Theory (ISIT), St. Jovite, Canada, September 1983

4 Sorger, U.: ‘A new Reed–Solomon code decoding algorithm based on Newton’s
interpolation’, IEEE Trans. Inf. Theory, 1993, 39, (2), pp. 358–365

5 Sudan, M.: ‘Decoding of Reed–Solomon codes beyond the error-correction
bound’, J. Complex., 1997, 13, (1), pp. 180–193

6 Guruswami, V., Sudan, M.: ‘Improved decoding of Reed–Solomon and
algebraic-geometric codes’, IEEE Trans. Inf. Theory, 1999, 45, (6), pp. 1757–1767

7 Koetter, R., Vardy, A.: ‘Algebraic soft-decision decoding of Reed–Solomon
codes’, IEEE Trans. Inf. Theory, 2003, 49, (11), pp. 2809–2825

8 Chen, L., Carrasco, R.A., Chester, E.G.: ‘Performance of Reed–Solomon codes
using the Guruswami-Sudan algorithm with improved interpolation efficiency’,
IET Commun.., 2007, 1, (2), pp. 241–250

9 McEliece, R.J.: ‘The Guruswami-Sudan decoding algorithm for Reed–Solomon
codes’. IPN Progress Report, 42-153, May 2003
IET Commun., 2016, Vol. 10, Iss. 12, pp. 1416–1427
& The Institution of Engineering and Technology 2016

10 Wu, Y.: ‘New list decoding algorithms for Reed–Solomon and BCH codes’, IEEE
Trans. Inf. Theory, 2008, 54, (8), pp. 3611–3630

11 Koetter, R., Ma, J., Vardy, A.: ‘The re-encoding transformation in algebraic
list-decoding of Reed–Solomon codes’, IEEE Trans. Inf. Theory, 2011, 57, (2),
pp. 633–647

12 Bellorado, J., Kavcic, A.: ‘A low-complexity method for chase-type decoding of
Reed–Solomon codes’. Proc. IEEE Int. Symp. Information Theory (ISIT),
Seattle, WA, July 2006

13 Bellorado, J., Kavcic, A.: ‘Low-complexity soft-decoding algorithms for Reed–
Solomon codes – part I: an algebraic soft-in hard-out chase decoder’, IEEE
Trans. Inf. Theory, 2010, 56, (3), pp. 945–959

14 Zhu, J., Zhang, X., Wang, Z.: ‘Backward interpolation architecture for algebraic
soft-decision Reed–Solomon decoding’, IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., 2009, 17, (11), pp. 1602–1615

15 Zhang, X., Zhu, J.: ‘Algebraic soft-decision decoder architectures for long Reed–
Solomon codes’, IEEE Trans. Circuits Syst. II, 2010, 57, (10), pp. 787–792

16 Tang, S., Ma, X.: ‘A new Chase-type soft-decision decoding algorithm for Reed–
Solomon codes’, Available at http://www.arxiv.org/abs/1309.1555

17 Chen, L., Tang, S., Ma, X.: ‘Progressive algebraic soft-decision decoding of Reed–
Solomon codes’, IEEE Trans. Commun., 2013, 61, (2), pp. 433–442
IET Commun., 2016, Vol. 10, Iss. 12, pp. 1416–1427
& The Institution of Engineering and Technology 2016
18 Cassuto, Y., Bruck, J., McEliece, R.J.: ‘On the average complexity of Reed–
Solomon list decoders’, IEEE Trans. Inf. Theory, 2013, 59, (4), pp. 2336–2351

19 Kaneko, T., Nishijima, T., Inazumi, H., et al.: ‘An efficient
maximum-likelihood-decoding algorithm for linear block codes with algebraic
decoder’, IEEE Trans. Inf. Theory, 1994, 40, (2), pp. 320–327

20 El-Khamy, M., McEliece, R.J.: ‘Iterative algebraic soft-decision list decoding of
Reed–Solomon codes’, IEEE J. Sel. Areas Commun., 2006, 24, (3), pp. 481–490

21 Jiang, J., Narayanan, K.R.: ‘Iterative soft-input soft-output decoding of Reed–
Solomon codes by adapting the parity-check matrix’, IEEE Trans. Inf. Theory,
2006, 52, (8), pp. 3746–3756

22 Roth, R., Ruckenstein, G.: ‘Efficient decoding of Reed–Solomon codes
beyond half the minimum distance’, IEEE Trans. Inf. Theory, 2000, 46, (1),
pp. 246–257

23 El-Khamy, M., McEliece, R.J.: ‘Bounds on the average binary minimum distance
and the maximum likelihood performance of Reed–Solomon codes’. Proc. the
42nd Allerton Conf. on Communication, Control and Computing, Monticello,
USA, October 2006

24 Chen, L., Carrasco, R.A., Johnston, M., et al.: ‘Efficient factorisation algorithm for
list decoding algebraic-geometric and Reed–Solomon codes’. Proc. IEEE Int.
Communications Conf. (ICC), Glasgow, UK, May 2007
1427

http://www.arxiv.org/abs/1309.1555
http://www.arxiv.org/abs/1309.1555
http://www.arxiv.org/abs/1309.1555
http://www.arxiv.org/abs/1309.1555
http://www.arxiv.org/abs/1309.1555
http://www.arxiv.org/abs/1309.1555

	1 Introduction
	2 Preliminaries
	3 PACD algorithm
	4 E-PACD algorithm
	5 Performance analysis
	6 Complexity analysis
	7 Memory analysis
	8 Conclusion
	9 Acknowledgments
	10 References

