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Abstract—In delay-tolerant networks (DTNs), stable end-to-end
connections do not always exist. Messages are forwarded, assisted
by the mobility of nodes, in a store–carry–forward paradigm. The
mobility of nodes in most DTNs has a certain statistical regularity;
thus, using historical information in DTNs to compute the delivery
quality of nodes can help to select good forwarding nodes. This
paper aims to establish a routing scheme based on multihop deliv-
ery quality, which is designed to reduce the energy consumption
of message forwarding while maintaining a high delivery rate. We
characterized the multihop delivery quality of each node with an
expected delay and an expected probability, parameterized by the
remaining hop count. Based on these two quality metrics, we devel-
oped two algorithms, namely, the delay-inferred forwarding (DIF)
algorithm and the probability-inferred forwarding (PIF) algorithm.
The basic idea of DIF and PIF is to find the optimal forwarding
path by minimizing the expected delay and by maximizing the
expected probability, respectively, in the hop graph that is defined
in this paper. We performed extensive trace-driven simulations to
compare our algorithm to other representative routing algorithms
using several real traces. We observed the following: 1) Compared
with the delegation algorithm, which uses one-hop delivery qual-
ity, both DIF and PIF significantly improve the message delivery
rate, and they yield more improvements as the mobility of nodes
becomes more regular; and 2) compared with the state-of-the-art
optimal opportunistic forwarding (OOF) algorithm, which also uses
a multihop delivery quality, DIF and PIF have significantly smaller
forwarding overhead (with the maximum reduction in the number
of forwarding being over 40%), whereas they are quite close to
OOF in terms of both delivery rate and average delay.

Index Terms—Delay-tolerant networks (DTNs), expected delay,
expected probability, multihop delivery quality, routing algorithm.

I. INTRODUCTION

D ELAY-TOLERANT networks (DTNs) [1], [2] are sparse
mobile networks, where stable end-to-end connections

do not always exist. Messages are forwarded, assisted by the
mobility of nodes, in a store–carry–forward paradigm. Due
to the uncertainty in node contacts, DTNs use opportunistic
routing, which forwards multiple copies of a message only to
nodes with high delivery quality to improve the delivery rate.
The delivery quality of each node is usually calculated assum-
ing long-term regularity in the historical contact information
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of a DTN. Compared with short-term information (e.g., the
time that has elapsed since the last encounter [3]–[6]), long-
term regularity is relatively stable over time and able to avoid
frequent updates.

To represent the delivery quality, most opportunistic routing
schemes use the one-hop quality (e.g., the encounter frequency
of a pair of nodes [7]), which has some drawbacks. The most
obvious one is that they cannot find multihop good forwarders
for a particular destination. Liu and Wu’s recent optimal
opportunistic forwarding (OOF) [8] employs a multihop de-
livery quality parameterized by the remaining hop count and
achieves a significant improvement in performance in terms of
delivery rate, with the number of message copies being limited.
Currently, battery power duration is the key bottleneck in most
mobile devices, and limiting the number of message copies can
effectively reduce the power consumption.

In this paper, to further reduce the number of message copies,
we introduce two new algorithms to compute the multihop
delivery quality based on a hop graph. Here, an expected delay
and an expected probability parameterized by the remaining
hop count are used to characterize the multihop delivery quality
of each node. The expected delay (or expected probability)
denotes the time (or probability) for a message to be delivered
to destination within a particular remaining hop count. Based
on them, two algorithms, called the delay-inferred forwarding
(DIF) algorithm and the probability-inferred forwarding (PIF)
algorithm are then developed. The basic idea is to find the
optimal forwarding paths by minimizing the expected delay or
maximizing the expected probability in a hop graph. The main
contributions of this paper can be summarized as follows.

• The time complexity of our algorithms is only O(HN),
having a substantial reduction compared with the O(HN
logN) of the OOF scheme (here, H is the maximum hop
count of each message, and N is the number of nodes).

• Trace-driven simulations using several real traces are per-
formed, which show that our algorithms significantly re-
duce the number of message copies, whereas they are quite
close to the OOF scheme in terms of the both delivery rate
and average delay.

Our proposed algorithms make two assumptions. First, the
mobility of nodes has a certain statistical regularity (e.g., some
nodes may encounter each other more frequently than others
may). Such an assumption is in line with most natural or
human-related mobile networks. Second, the storage capacity
of each node is large enough to store the mean intermeeting
times of all nodes. Since the storage capacity on mobile devices
is increasing rapidly, this is a reasonable assumption. Suppose
that the number of nodes in the network is 1000 and that
the mean intermeeting time of each pair of nodes occupies a
storage space of 4 B. Then, our algorithms only require 4 MB
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Fig. 1. Hop-count-limited forwarding scheme.

(4 × 1000 × 1000 B) of storage to save the information of all
pairs of nodes, which can be easily stored in a typical Secure
Digital card with 2 GB of storage.

The remainder of this paper is organized as follows. In
Section II, we introduce necessary preliminaries and give an
overview of our algorithms (DIF and PIF). Hop graphs are
defined and presented in Section III. DIF and PIF algorithms are
then presented based on the hop graphs in Sections IV and V,
respectively. Simulations and discussions are presented in
Section VI, and finally, conclusions are drawn in Section VII.

II. PRELIMINARIES AND OVERVIEW

Here, we will first introduce a hop-count-limited forwarding
scheme and an expected delay parameterized by the remaining
hop count, which are used in the design of our algorithms. Then,
we will give a brief overview of our algorithms.

A. Hop-Count-Limited Forwarding Scheme

In the hop-count-limited forwarding scheme [8], each mes-
sage holds a value, called the remaining hop count. It represents
the maximum number of hops that the message can still be
forwarded. When a message with a remaining hop count k
is forwarded from one node to another, the remaining hop
count of both copies in the two nodes becomes k − 1. When
k = 0, the message cannot be forwarded to any node, except
the destination. Therefore, the forwarding history of a message
is similar to a full binary tree. An advantage of this forwarding
scheme is that it has a constant forwarding cost. Specifically,
for a message with initial hop count H , the maximum number
of copies of the message is 2H , which is shown in Fig. 1 for
H = 3. Here, A,B,C, . . . ,H are nodes in the network, and
each level shows the nodes holding a message copy and the
current remaining hop count after forwarding.

B. Expected Delay

Most of the routing algorithms only compute one-hop deliv-
ery quality, which cannot find multihop good forwarders. For
example, although j seldom meets with the destination d, j may
encounter m in the near future, which has high probability of
meeting with d. Thus, j is a good forwarder, but it cannot be
identified using one-hop delivery quality.

To rectify the aforementioned drawback, an expected delay
Di, d, k [8], [9] parameterized by the remaining hop count k
is defined in the OOF algorithm. Di, d, k denotes the expected

time that it takes to deliver a message from i to destination d
with remaining hop count k. A smaller expected delay means a
higher delivery quality.

The expected delay Di, d, k in OOF is calculated using the
method of backward induction. First, the equation for the
expected delay is derived as follows:

Di, d, k = Wi,N

×

⎛
⎝1 +

∑
j∈N\{d}

2

Ii, j×
(

1
Di, d, k−1

+ 1
Dj, d, k−1

)
⎞
⎠ (1)

where N is a set of forwarding nodes of the current message,
Ii, j is the mean intermeeting time between nodes i and j, and
Wi,N is the average waiting time for i to encounter the first
node in N . Second, the expected delay Dj, d, k−1, Dk, d, k−1, . . .
of nodes j, k, . . . are then sorted in ascending order. Third, N is
initialized as an empty set, and then each node from the sorted
queue is added into N until Di, d, k reaches its minimum value.

The given analysis shows that the calculation of Di, d, k

requires sorting, which has time complexity O(N logN). As-
suming that the maximum value of the remaining hop count is
H , the OOF algorithm has time complexity of O(HN logN)
to calculate all of its expected delays from 0 to H .

C. Motivation and Overview

In this paper, we aim to establish a routing scheme, which
can reduce the number of message copies while maintaining
a high delivery rate. To achieve this goal, the key is to pick
out the good forwarders and only forward messages to them.
Such objective needs delivery quality to be defined. At the same
time, the selection of good forwarders and establishment of the
forwarding rule are also necessary.

First, we use an expected delay and an expected probability
that are parameterized by the remaining hop count to describe
the delivery quality of nodes, respectively. These representa-
tions can accurately reflect the delivery quality of nodes of
a particular hop. In other words, we can find multihop good
forwarders using the expected delay or the expected probability.

Second, we establish the forwarding rule by comparing de-
livery quality (expected delay or expected probability) between
different nodes and the destination. Assuming a message of
hop k, the remaining hop counts of both copies in the two nodes
become k − 1 after forwarding. By comparing the delivery
qualities of hops k and k − 1, we can decide whether to forward
a message.

Third, we define a hop graph to calculate the delivery quality.
Computing the expected delay or the expected probability is
equivalent to finding the shortest path in a hop graph. Our algo-
rithms seek to find the optimal forwarding path by minimizing
the expected delay or maximizing the expected probability.

In summary, the main idea is to describe the delivery quality
of each node accurately and then to select good forwarders for
each message. The expected delay and the expected probability
are two alternative ways to represent the delivery quality, and
we developed two routing algorithms (DIF and PIF) based
on these metrics. The two algorithms have similar steps, and
simulations in Section VI will show that they perform well.
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Fig. 2. Delay hop graph and probability hop graph.

III. GRAPH MODELS

We model a DTN as a hop graphG=(V,E), whereV is the set
of nodes, and E is the set of edges between the nodes. Based on
how we define an edge, we can create two different hop graphs:
the delay hop graph and the probability hop graph. In a delay hop
graph, an edge is a nonempty set of (remaining hop count, expec-
ted delay) pairs between a pair of nodes, whereas in a probabil-
ity hop graph, an edge denotes a nonempty set of (remaining
hop count, expected probability) pairs between two nodes.

Fig. 2 shows an example of such graphs, where the graph
on the left is a delay hop graph, and the one on the right is a
probability hop graph. There are three nodes in each graph, and
the maximum remaining hop count is three. The edge between
any two nodes is a set containing three elements, each of which
has a particular remaining hop count and the expected delay or
expected probability between those two nodes associated with
that remaining hop count. Each value of expected probability in
a probability hop graph ranges between zero and one. For exam-
ple, when the remaining hop count is zero, the expected delay
between node A and node B is 12, and when the remaining hop
count is one, the expected probability between them is 0.7.

Based on a delay hop graph, we can calculate the expected
delay from one node to another along a particular path. For
example, if a message is forwarded along the path from A to
B and then to C, the expected delay is

D{A → B → C} = dA,B + dB,C = 12 + 6 = 18 (2)

where dA,B denotes the value of the delay for remaining hop
count 0 for the edge between A and B in the delay hop graph.

Using the multiplication rule of probability, we can calculate
the expected probability along a particular path in the proba-
bility hop graph. Assuming again that a message is forwarded
along the path from A to B and then to C, the expected
probability is

P{A → B → C} = pA,B × pB,C = 0.5 × 0.3 = 0.15 (3)

where pA,B denotes the probability value for remaining hop
count 0 for the edge between A and B in the probability hop
graph.

We need to calculate each expected delay or expected proba-
bility value associated with a particular remaining hop count
in the graph. We decide whether to forward a message by
comparing the values of different edges, which we will discuss
in the following.

IV. DELAY-INFERRED FORWARDING

Here the DIF algorithm is presented, which uses the expected
delay Di, d, k to characterize the multihop delivery quality of
each node. The proposed algorithm uses the hop-count-limited
forwarding scheme to restrict the maximum number of hops
of each message, and it seeks to find the optimal message
forwarding path by minimizing the expected delay in the delay
hop graph.

A. Forwarding Rule

When a message with the remaining hop count k is for-
warded from one node to another, the two nodes will both
have a message copy, in which their remaining hop counts
become k − 1. If one of the two copies successfully reaches
the destination node, the message is considered delivered.
Let the expected delay after forwarding be D. Then, D =
min{Di, d, k−1, Dj, d, k−1}. Therefore, a message should be
forwarded if D < Di, d, k, which implies the expected delay
will be smaller after forwarding. In fact, when forwarding,
we have D = Dj, d, k−1, which is stated more formally in
Theorem 1.

Theorem 1: When a message with remaining hop count k
is forwarded from node i to node j, the expected delay D is
exactly equal to Dj, d, k−1 after forwarding.

Proof: For any source i and destination d, the expected
delays with different remaining hop counts satisfy

Di, d, k ≤ Di, d, k−1 ≤ Di, d, k−2 ≤ · · · ≤ Di, d,0. (4)

This is because with a higher remaining hop count, there is
a higher chance of finding a better forwarding path, and the
expected delay will be smaller. If D = Di, d, k−1, we have
D = Di, d, k−1 < Di, d, k according to the given analysis, which
contradicts (4). Since D = min{Di, d, k−1, Dj, d, k−1}, D =
Dj, d, k−1. �

The steps of forwarding in the DIF algorithm can be listed as
follows.

• Let the remaining hop count be k and the expected delay
between the node i and the destination node d be Di, d, k.

• Suppose that for the remaining hop count k − 1, the ex-
pected delay between the node j (that i meets with) and
the destination node d is Dj, d, k−1.

• If Dj, d, k−1 < Di, d, k, forwarding the message to j will
decrease the expected delay D; therefore, i will forward
the message.

• If Dj, d, k−1 ≥ Di, d, k, forwarding the message to j will
either increase the expected delay D or keep it the same;
therefore, i will not forward the message.

B. Calculation of the Expected Delay

The expected delay Di, d, k of the current hop k can be
derived from the last hop. The following analysis first presents
the calculation of the expected delay for remaining hop count 0.
Then, the expected delay for hop 1 is induced from that for
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Fig. 3. Calculation of Di, d, 1 in the delay hop graph.

hop 0. Finally, the expected delay for any hop (k > 1) is derived
using induction.

1) Di, d, k with k = 0
k = 0 means that the messages are delivered directly to

the destination node, without passing through any relay
nodes. Therefore, the expected delay of hop 0 (Di, d,0) is
only the expected delay directly between i and d. Suppose
that the waiting time for the link connecting two nodes
follows a uniform distribution i.e., T ∼ U [0, Ii, d], where
Ii, d is the mean intermeeting time between nodes i and
d. Then, according to the definition, we will have

Di, d,0 = E(T ) = (0 + Ii, d)/2 = Ii, d/2. (5)

2) Di, d, k with k = 1
If k = 1, there is one relay node available, which

means messages can be first forwarded to the relay node
and then be delivered to the destination node. Let the
relay node be j; then, Di, d,1 = Di, j,0 +Dj, d,0. Since
Di, j,0 = Ii, j/2, we can rewrite the equation for hop 1 as

Di, d,1 = Ii, j/2 +Dj, d,0 (6)

which shows a clear calculation of the one-hop delay
from the zero-hop delay.

The delay hop graph of hop 1 is shown in Fig. 3, from
which we omit some edges for better readability. Node
j in the graph represents any relay node, except node i
or node d, and all expected delays of hop 0 are known.
To obtain the minimum value of Di, d,1, we can traverse
all the relay nodes, calculate different values using (6),
and select the smallest value for Di, d,1. Specifically,
Di, d,1 = min{Ii, j/2 +Dj, d,0}.

However, recall (4): Di, d,1 ≤ Di, d,0. If min{Ii, j/2 +
Dj, d,0} > Di, d,0, the expected delay will become larger
if the message is forwarded through any relay node (i.e.,
the path from i to j and then to d is longer than the
one directly from i to d in the graph). In this situation,
the optimal solution will be using the direct path and not
forwarding the message to any relay node.

According to the given analysis, the calculation process
of Di, d,1 is as follows: 1) Initialize Di, j,1 = Di, j,0;
2) for all the relay nodes, compute Ii, j/2 +Dj, d,0; and
3) if min{Ii, j/2 +Dj, d,0} < Di, d,1, update the value
of Di, d,1 using (6).

3) Di, d, k with k > 1
The analysis of k > 1 is similar to that of k = 1. We

use Fig. 4 as an example for discussing the calculation

Fig. 4. Calculation of Di, d, k in the delay hop graph.

method. Suppose i needs to send a message to d, and the
expected delay is Di, d, k. If the next hop of i is j, we have

Di, d, k = Di, j,0 +Dj, d, k−1 = Ii, j/2 +Dj, d, k−1. (7)

Dj, d, k−1 is the expected delay of the message deliv-
ered from i to d with the remaining hop count k − 1. The
path between j and d may be multihop, i.e., there may
be other nodes between them. However, (7) is a recursive
definition, suggesting that there is no need to know the
next hop after j or a specific path from j to d. We only
need to compute the sum of Ii, j and Dj, d, k−1, and then
select the optimal node j that minimizes Di, d, k.

Combining the analyses for k = 1 and k > 1, the specific
steps for computing Di, d, k (k ≥ 1) are as follows: 1) Initialize
Di, j, k = Di, j,k−1; 2) for all the relay nodes, compute Ii, j/2 +
Dj, d, k−1; and 3) if min{Ii, j/2 +Dj, d, k−1} < Di, d, k, update
the value of Di, d, k (Di, d, k = min{Ii, j/2 +Dj, d, k−1}).

Algorithm 1 Calculation of Di, d, k in DIF

1: N ← the number of nodes
2: Ii, j ← the mean intermeeting time of node i and j
3: Initialize Dmin = Di, d, k−1

4: for j in 1, . . . , N do
5: if j �= i and j �= d then
6: if Ii, j/2 +Dj, d, k−1 < Dmin then
7: Dmin = Ii, j/2 +Dj, d, k−1

8: end if
9: end if
10: end for
11: Di, d, k = Dmin

DIF first initializes Di, d, k to Di, d, k−1 and then finds a
smaller value of Ii, j/2 +Dj, d, k−1 in the node set if there exists
one. Therefore, the time complexity for calculating Di, d, k for
a particular hop k is O(N). Supposing that the maximum value
of the remaining hop count is H , the DIF algorithm has time
complexity of O(HN) for calculating expected delays from 0
to H . In other words, the DIF algorithm need to establish a
routing table for each node that contains the expected delays
from hop 0 to H . Since the computational complexity for each
hop is O(N), the establishment of the whole routing table
requires a time complexity of O(HN). Compared with the
O(HN logN) for OOF, the DIF algorithm has lower computa-
tional complexity.
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C. Cost of DIF

According to (4), for any source node i and destination node
d, the expected delays of different hops satisfy

Dk ≤ Dk−1 ≤ Dk−2 ≤ · · · ≤ D0 (8)

where only the hop count parameter is reserved for better
readability.

Normalizing by D0, we have Dk ∈ (0, 1] for any k according
to (8). Thus, we can further rewrite (8) with the upper bound
being 1 as follows:

Dk ≤ Dk−1 ≤ Dk−2 ≤ · · · ≤ 1. (9)

Let the gap between D0 and D1 be G0; therefore, G0 ∈
[0, 1). Consider a node that has updated its gap n times. The
node’s current gap is represented by the random variable Gn.
Since the gap is updated at random, we can write

Gn+1 = Gn × U (10)

where U is independent of Gn and follows a uniform distribu-
tion in the interval [0, 1). We have

E[Gn+1|Gn] = Gn/2. (11)

Therefore, by induction, E[Gn] = G0/2n.
Equation (10) implies that Gn approximately follows a

lognormal distribution. Thus, the distribution of Gn is highly
skewed with most of the probability mass below the mean, and
we can have Gn≤E[Gn]=G0/2n with large probability [10].

According to the DIF forwarding rule, we define the target
set B = {i|1 −Di ≤ G0/

√
N}, where N denotes the number

of nodes in the network. This set contains all the message copies
generated from hops n, n+ 1, . . ., and so on [10]. In addition,
the generation of message copies from hop 0 to hop n− 1 can
be regarded as the creation process of a dynamic tree, in which
the nodes all have a gap above the threshold value G0/

√
N .

Due to the highly skewed feature of the distribution of Gn

described earlier, the gap of the node at generation n in the
tree is at most G0/2n ≤ G0/

√
N with large probability when

n approximates to log
√
N . In other words, the maximum depth

of the tree is n, which satisfies 2n ≈
√
N [10].

Therefore, the number of all of the message copies generated
from all hops can be calculated as

CDIF(G0) = 2n + |B| ≈
√
N + |B| (12)

where CDIF denotes the total number of message copies in
the DIF.

Now, we need to bound the size of the target set B. Let the
variable g denote the gap between 1 and D1 (i.e., g = 1 −D1)
for any node, and we define a set parameterized by a threshold
t (t ∈ [0, 1]) as B′(t) = {g|g ≤ t}, where the set contains all
the nodes with g less than the threshold t. Since 0 < D1 ≤ 1,
for any node, the value of g randomly ranges from 0 to 1. Hence

E [|B′(t)|] = t×N. (13)

For example, if t is set to 1, E[|B′(1)|] = N , and if t is set to
0.5, E[|B′(0.5)|] = N/2.

The definition of the target set B and (9) imply that any
element in B has to satisfy

1 −D1 ≤ G0√
N

=⇒ g ≤ G0√
N

. (14)

This is, by definition, the set B′(G0/
√
N). That is to say, the

elements in the set B are all in the set B′(G0/
√
N). Therefore

|B| ≤ E

[∣∣∣∣B′
(

G0√
N

)∣∣∣∣
]
=

G0√
N

×N = G0 ×
√
N. (15)

From (12) and (15), we have

CDIF(G0) ≈
√
N + |B| ≤ (1 +G0)×

√
N. (16)

Since G0 ∈ [0, 1), CDIF can be further bounded to

CDIF < 2 ×
√
N. (17)

Recall that the maximum number of message copies is 2H in
our hop-count-limited forwarding scheme. Then, we have

CDIF ≤ 2H (18)

where H is usually set to 3 (i.e., H = 3).
From (17) and (18), CDIF can be derived as

CDIF ≤ min{2 ×
√
N, 2H}. (19)

V. PROBABILITY-INFERRED FORWARDING

Here, we will define the expected probability Pi, d, k to
describe the multihop delivery quality of each node and present
the PIF algorithm using this expected probability. The steps
of the PIF algorithm are similar to that of DIF. Instead of
minimizing the expected delay as in DIF, PIF finds the optimal
forwarding path by maximizing the expected probability in the
probability hop graph.

Algorithm 2 Calculation of Pi, d, k in PIF

1: N ← the number of nodes
2: Ii, j ← the mean intermeeting time of node i and j
3: Mi, j ← the meeting probability of node i and j
4: T ← the time slot width
5: Initialize Pmax = Pi, d, k−1

6: for j in 1, . . . , N do
7: if j �= i and j �= d then
8: Mi, j = 1 − exp(−T/Ii, j)
9: if Mi, j × Pj, d, k−1 > Pmax then
10: Pmax = Mi, j × Pj, d, k−1

11: end if
12: end if
13: end for
14: Pi, d, k = Pmax
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A. Forwarding Rule

We first define the expected probability Pi, d, k, which also
has the parameter of the remaining hop count to characterize
the multihop delivery quality of each node. Pi, d, k denotes
the expected probability for a message delivered from i to d
with the remaining hop count k. When a message with the
remaining hop count k is forwarded from one node to another,
the two nodes will both have a copy, in which the remaining
hop count becomes k − 1. If one of the two copies success-
fully reaches the destination node, the message is considered
delivered. Let the expected probability after forwarding be
P ; we can have P = max{Pi, d, k−1, Pj, d, k−1}. Therefore, a
message should be forwarded if P > Pi, d, k, which means that
the expected probability will be larger after forwarding. In fact,
P = Pj, d, k−1, the proof of which is similar to the proof in DIF
and, thus, is not presented here.

The steps of forwarding in the PIF algorithm and thus can be
listed as follows.

• Let the remaining hop count be k and the expected prob-
ability between the node i and the destination node d be
Pi, d, k.

• Suppose that with the remaining hop count k − 1, the
expected probability between the node j (that i meets
with) and the destination node d is Pj, d, k−1.

• If Pj, d, k−1 > Pi, d, k, forwarding the message to j will
increase the expected probability; therefore, i will forward
the message.

• If Pj, d, k−1 ≤ Pi, d, k, forwarding the message to j will
decrease the expected probability or keep it the same;
therefore, i will not forward the message.

B. Calculation of Expected Probability

First, we define a variable Mi, j , which denotes the encounter
probability of nodes i and j. Assuming an exponential inter-
meeting time, we can estimate the Mi, j [4] by

Mi, j = 1 − exp(−T/Ii, j) (20)

where T is the residual time to live (TTL) of the message, and
Ii, j is the mean intermeeting time between nodes i and j. Since
we are only concerned with making relative comparisons be-
tween different pairs of nodes, we can set T = 1 for simplicity.

The calculation of the expected probability Pi, d, k with the
current hop count k also uses the induction method. The fol-
lowing analysis first presents the calculation of the expected
probability with the remaining hop count 0 and then generalizes
to the calculation of the expected probability of a particular hop
k (k ≥ 1).

1) Pi, d, k with k = 0
When k=0, the expected probability is Pi,d,0. If i en-

counters d, messages can be forwarded. Thus, Pi,d,0 is just
the encounter probability of i and d. Using (20), we have

Pi, d,0 = Mi, d = 1 − exp(−T/Ii, d). (21)

2) Pi, d, k with k ≥ 1
We calculate Pi, d, k (k ≥ 1) using induction, as we did

for Di, d, k in DIF.

Fig. 5. Calculation of Pi, d, k in the probability hop graph.

TABLE I
SIMULATION SETTINGS

Suppose i needs to send a message to d and the
expected probability is Pi, d, k. If the next hop is j, we
can have

Pi, d, k =P{i → j ∩ j → d}
=P{i → j} × P{j → d|i → j}
=Mi, j × Pj, d, k−1 (22)

where P{i → j} represents the expected probability of
messages delivered from i to j.

As shown in Fig. 5, the path between j and d may be mul-
tihop, i.e., there may be other nodes between them. However,
(22) is a recursive definition, suggesting that there is no need
to know the next hop after j or a specific path from j to d. We
only need to compute the product of Mi, j and Pj, d, k−1 and
then select the optimal node j that maximizes Pi, d, k.

The computational steps of Pi, d, k (k ≥ 1) are as follows:
1) Initialize Pi, j, k = Pi, j, k−1; 2) for all the relay nodes, com-
pute max{Mi, j × Pj, d, k−1} [Mi, j can be calculated using
(20)]; and 3) if max{Mi, j × Pj, d, k−1} > Pi, d, k, update the
value of Pi, d, k as Pi, d, k = max{Mi, j × Pj, d, k−1}.

Similar to DIF, the PIF algorithm also has a time complexity
of O(HN) for calculating all of the expected probabilities from
0 to H .

VI. SIMULATIONS AND DISCUSSIONS

Here, we will investigate the performance of our algorithms
(DIF and PIF) and compare them to other representative routing
algorithms using four Cambridge Haggle traces [11] and the
UMassDieselNet trace [12]. These four Cambridge Haggle
traces are the Cambridge trace, the Content trace, the Infocom
trace, and the Infocom2006 trace, respectively. We do not
include the Intel trace because the trace contains only nine
nodes, where all algorithms can almost flood the network, and
there would be no clear distinction among them.

Each simulation result was averaged over 40 000 randomly
generated messages, and the detailed simulation settings are
shown in Table I. We assumed an infinite forwarding bandwidth
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Fig. 6. Simulation results in Cambridge trace. (a) Delivery rate in Cambridge trace. (b) Average number of copies in Cambridge. (c) Delay in Cambridge trace.

Fig. 7. Simulation results in Content trace. (a) Delivery rate in Content trace. (b) Average number of copies in Content trace. (c) Delay in Content trace.

Fig. 8. Simulation results in Infocom2006 trace. (a) Delivery rate in Infocom2006 trace. (b) Average number of copies in Infocom2006 trace. (c) Delay in
Infocom2006 trace.

in simulations because we focused on how to select good
forwarders and, thus, discussed a high-level forwarding strategy
in this paper. However, we have added simulation results in
the following to show that our algorithms are also suitable for
limited bandwidth.

A. Comparison of Algorithms

We investigate the proposed algorithms against four repre-
sentative algorithms, including epidemic routing [13], spray-
and-wait [14], delegation forwarding [10], and OOF. The
reasons for choosing these algorithms are the following. First,
with unlimited bandwidth, the theoretical delivery rate of the
epidemic routing algorithm is the highest; therefore, it can be
used as an upper bound on the delivery rate. Second, spray-
and-wait is a representative algorithm based on the epidemic
routing algorithm, which uses logical tickets to keep the total
number of copies of each message smaller than L. Third,
delegation forwarding is a representative algorithm based on
the one-hop delivery quality. Its delivery rate is quite high, and
the number of message copies is also bounded to a very low

level (because of the increasing threshold value of forwarding).
Finally, the OOF algorithm also employs expected delay to
describe the multihop delivery quality. Our algorithms have
lower complexity and forwarding overhead than OOF, as shown
in the simulation results.

B. Results and Discussions

The simulation results using these traces are shown in
Figs. 6–10. The routing algorithms are compared in terms
of their delivery rate, average number of copies, and average
delay, which are shown in subfigures (a)–(c) in Figs. 6–10,
respectively. Since the TTL of a message has an important im-
pact on routing performance, our simulations compare different
algorithms by changing the TTL. Therefore, the horizontal axis
of each figure is the TTL, and it is given in days. However, the
vertical axis of each subfigure has different meanings. First, in
the subfigure showing the delivery rate, the vertical axis ranges
from 0 to 1, which means the proportion of messages success-
fully reaching the destination. Second, in the one showing the
average number of copies, the vertical axis represents the total
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Fig. 9. Simulation results in Infocom trace. (a) Delivery rate in Infocom trace. (b) Average number of copies in Infocom trace. (c) Delay in Infocom trace.

Fig. 10. Simulation results in UMassDieselNet trace (bus-route-based). (a) Delivery rate in UMassDieselNet trace. (b) Average number of copies in
UMassDieselNet trace. (c) Delay in UMassDieselNet trace.

number of copies of a message, which reflects the energy cost
of forwarding (i.e., fewer copies means lower energy cost). The
results of epidemic routing are not shown in the figures because
they are much larger than those for the other algorithms in
terms of the average number of copies. Third, in the subfigure
showing the average delay, the vertical axis represents the
average time (in days) for a message from source to destination
using a particular algorithm.

The delivery rates of the algorithms are compared in
Figs. 6(a)–10(a). We make several observations. First, in some
traces [i.e., in Figs. 6(a), 9(a), and 10(a)], the delivery rates of
DIF and PIF are close to the epidemic routing algorithm, which
is theoretically optimal in terms of the delivery rate. Second,
DIF and PIF algorithms perform slightly better than OOF, but
the improvement is marginal. Therefore, we can consider the
three algorithms to have the same performance in terms of
delivery rate. Third, compared with the delegation forwarding
algorithm, DIF and PIF algorithms significantly improve the
delivery rate, and it increases even more as the mobility of
nodes becomes more regular. For example, in Fig. 7(a), DIF
and PIF roughly double the delivery rate when compared with
delegation forwarding.

The average number of copies of the algorithms are com-
pared in Figs. 6(b)–10(b). First, compared with OOF, which
also uses multihop delivery quality, both DIF and PIF algo-
rithms have better performance in all traces (the number of
message copies is fewer than that in OOF). The detailed percent
reduction of DIF and PIF over OOF is shown in Table II, where
COOF, CDIF, and CPIF denote the average number of copies
per message in OOF, DIF, and PIF, respectively. The percent
reduction of DIF is computed as (COOF − CDIF)/COOF ×
100%, and the percent reduction of PIF is computed as
(COOF − CPIF)/COOF × 100%. We observe that when the

TABLE II
PERCENT REDUCTION IN MESSAGE COPIES IN

DIF AND PIF OVER OOF FOR EACH TRACE

DTN environments are more regular (i.e., as in the Cambridge
or the Content trace), the improvement DIF and PIF offer is
more obvious. For example, DIF reduces message copies by
42.5% in the Content trace, and PIF reduces them by 44.3%.
Second, compared with the delegation forwarding algorithm
which uses one-hop delivery quality, our DIF and PIF algo-
rithms require a slightly higher number of message copies in
most traces. However, they can become conservative in mes-
sage forwarding, when adapting to large TTLs. In the UMass
DieselNet trace, for example, when the TTL is larger than
20 days, the number of copies in the DIF algorithm becomes
fewer than that in the delegation forwarding algorithm. The
reason is that DIF and PIF algorithms use the multihop delivery
quality, which allows them to know when they have enough
time to find the optimal forwarding path.

Figs. 6(c)–10(c) show the average delay of the algorithms
in each trace. The epidemic routing algorithm has the lowest
average delay, and the highest average delay is displayed by
the spray-and-wait algorithm. The OOF algorithm is the second
best in terms of the average delay, and DIF and PIF are both
close to OOF. To summarize, algorithms using the multihop
delivery quality (i.e., OOF, DIF, and PIF) have the lowest
delay among all of the algorithms, except the Epidemic Routing
algorithm.
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Fig. 11. Simulation results versus message rate in UMassDieselNet trace (bus route based). (a) Delivery rate versus message rate in UMassDieselNet trace.
(b) Average number of copies versus message rate in UMassDieselNet trace. (c) Delay versus message rate in UMassDieselNet trace.

C. Effect of Bandwidth

To investigate the effect of bandwidth on our algorithms,
we also performed simulations where we varied the message
rate. The simulations were conducted as follows. First, we
limited the number of messages that two nodes in contact can
exchange, which is proportional to the length of the contact
given by the trace data. Specifically, we restricted the maximum
number of messages to 50 messages per second. Second, we set
a message generation rate such that the number of messages
each algorithm needs to forward in each contact opportunity
under this message generation rate will exceed this bandwidth
limitation. We varied the message generation rate from 25 to
115 messages per second (with the step size being 10) in each
set of simulations to evaluate and compare the performance of
the algorithms under different levels of limitation in bandwidth.

Due to space limitations, we only show the bandwidth-
related simulation results for the UMassDieselNet trace in
Fig. 11(a)–(c), respectively. The horizontal axis in the figures
represents the message rate. We observe that the epidemic rout-
ing algorithm degrades most significantly when the message
rate exceeds the bandwidth (50 messages per second), but the
effect on other algorithms with hop count limitation is minor.
Thus, the performance of our algorithms are quite robust to
bandwidth limitation.

VII. CONCLUSION

In this paper, we have discussed a routing scheme, which
can make better use of historical information in the network
and improve the routing performance. Specifically, an expected
delay and an expected probability parameterized by the re-
maining hop count were used to characterize the multihop
delivery quality of each node, and DIF and PIF algorithms
were then developed based on the delay-weighted graph and
the probability-weighted graph, respectively. The proposed DIF
and PIF algorithms find the optimal forwarding path by min-
imizing the expected delay and by maximizing the expected
probability, respectively. For comparison, we implemented DIF
and PIF, as well as other representative algorithms to perform
extensive trace-driven simulations on several real traces.

Analysis and simulation results yielded the following obser-
vations. First, in some traces, the delivery rates of DIF and PIF
algorithms were close to that of the epidemic routing algorithm,
which is theoretically optimal. However, epidemic routing has
much more forwarding overhead than DIF and PIF algorithms

due to its flooding-based forwarding. Second, although the DIF
and PIF algorithms need slightly more message copies com-
pared with the delegation routing algorithm (which uses a one-
hop delivery quality), they significantly improve the message
delivery rate, and the delivery rate increase even more as the
mobility of nodes becomes more regular. Third, compared with
the OOF algorithm that also employs the multihop delivery
quality, DIF and PIF algorithms have two major advantages.
First, they significantly reduce the number of message copies
(the maximum reduction is over 40%), whereas they are quite
close to the OOF algorithm in terms of the delivery rate and
the average delay. Second, the time complexity of DIF and
PIF algorithms is only O(HN), having a substantial reduction
compared with the O(HN logN) of the OOF algorithm.
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