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An efficient list decoder for algebraic geometric (AG) codes has been

developed based on the mathematical framework of the Guruswami-

Sudan algorithm. New simulation results presented show that coding

gains of up to 1.5 dB over unique AG decoding algorithms are

possible on the AWGN and Rayleigh fading channels.

Introduction: Algebraic geometric (AG) codes were introduced by

Goppa [1] in 1981. Compared with Reed Solomon (RS) codes defined

over the same Galois field (GF), they have longer code lengths, larger

Hamming distances and hence better error correction capability. There

are also more AG codes available. This suggests that AG codes could

replace RS codes, especially in recording systems and mobile

communications. Therefore, the authors have investigated practical

decoding algorithms for AG codes. Johnston and Carrasco [2]

constructed new AG codes from Hermitian curves, called Hermitian

codes, and presented the first simulation results evaluating their

performance. They employed the Sakata algorithm with majority

voting [3] to determine the error locations, and inverse discrete

Fourier transform (IDFT) to calculate the error magnitudes. This

algorithm results in one uniquely decoded code word that cannot

correct errors beyond the half distance boundary (d=2), which limits

its performance over deeply corruptive channels.

However, there is an alternative decoding algorithm which can

correct errors beyond d=2, called list decoding. In 1997, Sudan [4]

introduced this algorithm to decode low rate RS codes beyond d=2.

Later, Guruswami and Sudan [5] improved the algorithm to decode

most RS codes beyond d=2 and extended the algorithm to decode the

family of AG codes, called the GS algorithm. Hoholdt and Nielsen [6]

presented a mathematical framework of this algorithm to decode

Hermitian codes. To improve the GS algorithm’s efficiency, Chen et

al. [7] presented a reduced complexity GS algorithm for RS codes.

Recently, the authors have investigated the list decoding of Hermitian

codes based on the GS algorithm and found this complexity reduced

scheme can also be applied. This Letter presents the list decoding of

Hermitian codes and new simulation results to evaluate their perfor-

mance over the AWGN and Rayleigh fading channels. After an

extensive literature survey, we believe that these are the first simulation

results showing the list decoding performance of AG codes.

Construction of Hermitian codes: The Hermitian curves are defined

over GF(w2) as:

Hwðx; yÞ ¼ xwþ1 þ yw þ y ¼ 0 ð1Þ

where w� 2, with genus [8]:

g ¼
wðw� 1Þ

2
ð2Þ

There are n¼w3 affine points [8] P¼ (p1, p2, . . . , pn) that satisfy the

curve Hw(x, y) giving a block length of n. A Hermitian code C(n, k)

with length n and dimension k can be generated by evaluating the n

affine points over the transmitted message polynomial f(x, y) as:

Cðn; kÞ ¼ fðf ðp1Þ; f ðp2Þ; . . . ; f ðpnÞÞ; pi 2 Pg ð3Þ

where the transmitted message polynomial f(x, y) can be written as:

f ðx; yÞ ¼ f0f0ðx; yÞ þ f1f1ðx; yÞ þ � � � þ fk�1fk�1ðx; yÞ ð4Þ

where f0, f1, . . . , fk�12GF(w2) are the message symbols and f0(x, y),

f1(x, y), . . . , fk�1(x, y) are the first k functions of the basis B contain-

ing rational functions with increasing pole order vp1
at the point of

infinity p1 of the curve [8]:

B ¼ ffiðx; yÞjvp1
ðfiðx; yÞ�1

Þ < vp1
ðfiþ1ðx; yÞ�1

Þ; i 2 Ng ð5Þ

List decoding: The system model of the list decoder is shown in Fig. 1.

R¼ (r1, r2, . . . , rn)2GF(w2) is the received word after corruption by the

channel. To obtain the correct transmitted message, there are two key

steps: interpolation and factorisation. Combining the received word with

the respective affine point used in code construction, there are n

interpolated units: {(p1, r1), (p2, r2), . . . , (pn, rn)}. The aim of

interpolation is to construct a trivariate polynomial [5]:

Qðx; y; zÞ ¼
P

i;j2N

qi;jfiðx; yÞzj; qi;j 2 GFðw2Þ ð6Þ

which has a zero of multiplicity m over the n units. Based on the

interpolated polynomial Q(x, y, z), the factorisation process finds the list

L of polynomials h(x, y) in the form of (4) that satisfy:

L ¼ fhðx; yÞjz� hðx; yÞjQðx; y; zÞ or Qðx; y; hðx; yÞÞ ¼ 0g ð7Þ

Every candidate polynomial h(x, y) is the z-root of Q(x, y, z) and it has

the possibility of being the transmitted message polynomial f(x, y). The

one that has the minimal distance to the received word R after re-

encoding using (3) is chosen to be the decoded message polynomial. The

GS algorithm’s error correction capability t grows with multiplicity m:

tm1
� tm2

; if m1 < m2 ð8Þ

According to [5], the GS algorithm has an error correction upper bound

for decoding a (n, k) AG code given by:

tmax ¼ n� b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðk þ g � 1Þ

p
c � 1 ð9Þ

It is obvious that tmax is always greater or equal to d=2, with designed

distance d¼ n� k� gþ 1. Therefore, the list decoder can outperform

the unique decoder, especially for low rate codes.

LQR interpolation
(iterative zero 

condition test and
bilinear modification)

factorisation
(recursive coefficient 

search)

Fig. 1 System model of list decoder

When implementing interpolation, a list of polynomials is initialised.

They are tested at every interpolated unit with every possible zero

condition [6] and updated using bilinear modification iteratively. For

those polynomials that do not satisfy a certain zero condition the

minimal one under the trivariate lexicographic order [6] is chosen

and updates itself with an increase in the leading order [7]. Other

polynomials are updated without an increase in the leading order. After

n
mþ 1

2

� �
iterative interpolations, the minimal polynomial is chosen

to be the interpolated polynomial (6) and is factorised. During the

iterative interpolation, those polynomials with leading order over

n
mþ 1

2

� �
will not be chosen or contribute to the interpolated

polynomial (6) and they can be eliminated in order to improve the

algorithm’s efficiency [7]. From (7) we can see that the candidate

polynomials h(x, y) are the z-roots of Q(x, y, z) and they can be found by

factorising Q(x, y, z). Since h(x, y) can be written in the form of (4) and

the rational functions f0(x, y), f1(x, y), . . . , fk�1(x, y) are predeter-

mined in the list decoder, finding h(x, y) is equivalent to finding out its

coefficients h0, h1, . . . , hk�12GF(w2), respectively. Therefore, we have

developed a recursive coefficient search algorithm to implement factor-

isation. The polynomial Q(x, y, h(x, y))’s leading monomial is equivalent

to Q(x, y, hk�1fk�1(x, y))’s leading monomial and so for Q(x, y, h(x,

y))¼ 0 we need its leading monomial’s coefficient to equal zero.

Therefore, hk�1 can be determined by solving Q(x, y, hk�1fk�1(x,

y))’s leading monomial’s coefficient with unknown hk�1. Based on

each hk�1, Q(x, y, z)¼Q(x, y, zþ hk�1fk�1(x, y)) is updated and hk�2 is

determined by solving Q(x, y, hk�2fk�2(x, y))’s leading monomial’s

coefficient. This coefficient search algorithm deduces the coefficients

recursively until the last possible value of f0 has been determined and

finally outputs a list of candidate message polynomials.

Performance analysis: A software platform of the list decoder has

been developed using the C programming language evaluating the

performance of the (64, 29, 30) Hermitian code using the reduced

complexity GS algorithm with different values of multiplicity m on

the AWGN and Rayleigh fading channels, as shown by Figs. 2 and 3,

respectively. In the simulations, QPSK modulation is used and

channel estimation is assumed to be perfect. The Rayleigh fading
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channel is fast fading with independent fading coefficients represent-

ing the effect of an ideal channel interleaver. The mean value and

variance of the fading coefficients are 1.25 and 0.44, respectively. As

mentioned previously, the transmitted message is chosen by compar-

ing its corresponding code word’s distance to the received word.

However, in some situations there is more than one candidate message

polynomial with the same minimal distance. In those situations we

assume that the decoder always makes a correct decision, which

means the one that matches f(x, y) is to be chosen. The performance is

compared with the unique decoding algorithm (the Sakata algorithm)

used in [2]. From Figs. 2 and 3 we can see that when m¼ 1 the GS

algorithm performs as well as the Sakata algorithm. However, when

we increase the multiplicity to m¼ 2 the GS algorithm outperforms

the Sakata algorithm with about 0.2 and 0.6 dB coding gains at

BER¼ 10�5 over AWGN and Rayleigh fading channels, respectively.

By assuming the GS algorithm is able to correct errors up to its upper

bound given in (9), we have presented the algorithm’s theoretical

performance with the optimal multiplicity showing that the coding

gain in AWGN and Rayleigh fading channels can be increased to 0.5

and 1.5 dB, respectively. Based on the complexity analysis in [7], the

complexity reduced scheme can reduce the interpolation computation

by up to 40%. However, the overall complexity of the GS algorithm is

still high compared with the unique decoding algorithm, e.g. the GS

algorithm with m¼ 1 has an average of 1.4� 105 computations

compared with 5� 104 for the unique decoding algorithm [2]. There-

fore, further research is required to address this problem.
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Fig. 2 Performance of GS decode (64, 29, 30) Hermitian code over AWGN
channels
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Fig. 3 Performance of GS decode (64, 29, 30) Hermitian code over
Rayleigh fading channels

Conclusion: An efficient list decoder for AG codes has been devel-

oped with new simulation results presented. Compared with the

conventional unique decoder, it can improve AG codes’ performance

by allowing it to correct errors beyond the half distance boundary. We

believe the AG list decoder could be suitable for use in data storage

and communication applications providing its complexity can be

reduced.
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