
IET Communications

Research Article

Module minimisation based low-complexity
soft decoding of Reed–Solomon codes

ISSN 1751-8628
Received on 18th January 2019
Revised 27th August 2019
Accepted on 16th September 2019
doi: 10.1049/iet-com.2019.0064
www.ietdl.org

Jiongyue Xing1, Li Chen1 , Martin Bossert2
1School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
2Institute of Communications Engineering, Ulm University, Ulm 89073, Germany

 E-mail: chenli55@mail.sysu.edu.cn

Abstract: The interpolation-based algebraic decoding for Reed–Solomon (RS) codes can correct errors beyond half of the
code's minimum Hamming distance. Using soft information, the algebraic soft decoding (ASD) further improves the decoding
performance. This paper presents a unified study of two classical ASD algorithms, the algebraic Chase decoding and the
Koetter-Vardy decoding. Their computationally expensive interpolation is solved by the module minimisation (MM) technique
which consists of basis construction and basis reduction. Compared with Koetter's interpolation, the MM interpolation yields a
smaller computational cost for the two ASD algorithms. Re-encoding transform is further applied to reduce the decoding
complexity by reducing the degree of module generators. Based on assessing the degree of module seeds, a complexity
reducing approach is introduced to further facilitate the two ASD algorithms. Computational cost of the two algorithms as well as
their re-encoding transformed variants will be analysed. Performance of the two ASD algorithms will be compared under
decoding expenditure benchmark, providing more practical insights of their applications.

1 Introduction
Reed–Solomon (RS) codes are widely employed in wireless
communications and storage systems, in which the Berlekamp–
Massey (BM) decoding algorithm [1, 2] is used. It is a syndrome-
based decoding that delivers at most one decoded message. It has
an efficient running time but their error-correction capability is
limited by half of the code's minimum Hamming distance. Assisted
by soft information to perform the error-erasure decoding, the
generalised minimum-distance (GMD) decoding algorithm
improves the decoding performance [3].

In late 90 s, Sudan introduced an interpolation-based algebraic
decoding algorithm to correct errors beyond the above limit [4].
But this improvement only applies to low rate codes. Guruswami
and Sudan later improved it to decode all rate codes up to the
Johnson bound [5]. This is the so-called Guruswami–Sudan (GS)
algorithm. Since this interpolation-based decoding delivers a list of
message candidates, it is also called list decoding. It consists of two
steps, interpolation that constructs a minimum polynomial Q(x, y)
and root-finding that retrieves y-roots of Q(x, y). Interpolation is
often realised by Koetter's iterative polynomial construction
algorithm [6, 7], which dominates the decoding complexity. It
yields a Gröbner basis from which the minimum candidate is
chosen as Q(x, y). Koetter and Vardy later introduced the algebraic
soft decoding (ASD), namely the KV algorithm [8]. It transforms
soft received information into multiplicity information that defines
the interpolation, outperforming the GS algorithm. The other
classical ASD algorithm is the algebraic Chase decoding (ACD)
[9]. It constructs a number of decoding test-vectors, whose
formulation allows the following Koetter's interpolation to be
performed in a binary tree growth fashion, resulting in a low
decoding complexity. By further arranging the test-vectors such
that the adjacent test-vectors only differ one symbol, the
backward–forward (BF) interpolation can be applied to obtain a
hardware friendly BF-ACD decoder [10]. Meanwhile, Wu
proposed the algebraic list decoding that utilises the BM decoding
output to construct Q(x, y), leading to a lower decoding complexity
[11]. Other complexity reducing approaches include the re-
encoding transform [12, 13] and the progressive interpolation [14].

The interpolation problem can also be solved from the
perspective of Gröbner basis of module [15, 16]. A module basis is
first constructed, which contains bivariate polynomials that

interpolate all prescribed points with their multiplicity. Presenting
it as a matrix over univariate polynomials, row operation further
reduces it into the Gröbner basis that is defined under a weighted
monomial order. The minimum candidate of the basis is Q(x, y).
This interpolation technique is called module minimisation (MM)
which consists of basis construction and basis reduction. Lee and
O'Sullivan gave an explicit module basis construction for the GS
and the KV algorithms in [16, 17], respectively. Ma and Vardy
further defined the explicit module generators for the KV algorithm
that applies the re-encoding transform [18]. For practical codes, the
basis reduction can be efficiently realised by the Mulders–
Storjohann (MS) algorithm [19]. Besides, there also exist several
asymptotically faster basis reduction approaches [20–22], among
which the Alekhnovich algorithm [20] can be seen as the divide-
and-conquer variant of the MS algorithm. The MM interpolation
has also been generalised to perform Wu's list decoding [23], the
multi-trial GS decoding [24], the ACD [25] and the power
decoding [26]. It has been shown that the MM interpolation yields
a significantly lower complexity for the ASD algorithms than using
Koetter's interpolation [18, 25].

However, despite its complexity advantage over Koetter's
interpolation, these MM interpolation-based ASD algorithms have
not been fully researched. Many practical aspects of this approach
demand a more comprehensive understanding. On one hand, the
exact complexity reduction yielded by the MM technique and the
re-encoding transform is still unknown. On the other hand, the
ACD and KV performances have not yet been compared under the
decoding expenditure benchmark. Aiming to facilitate the
application of the two MM interpolation-based soft decoding
algorithms, this paper presents a comprehensive and unified study
of them. From this point onwards, they are named the ACD-MM
algorithm and the KV-MM algorithm, respectively. This work
contributes in the following aspects:

• The ACD-MM algorithm and its re-encoding transformed variant
are first introduced. In comparison to the ACD algorithm that
employs Koetter's interpolation [9], the ACD-MM algorithm not
only yields a lower complexity but also leverages the decoding
latency to a single decoding event.
• For the KV-MM algorithm and its re-encoding transformed
variant, their module basis construction is underpinned by the point

IET Commun.
© The Institution of Engineering and Technology 2019

1

enumeration. A simple proof for their module generators will also
be given.
• A complexity reducing approach will be further introduced for
both of the ASD algorithms. This is realised by assessing the
degree of module seeds. It leads to a significant complexity
reduction, especially in the high signal-to-noise ratio (SNR) region.
• Complexity of the ACD-MM and the KV-MM algorithms will be
analysed, showing the MM interpolation and the re-encoding
transform are more effective in yielding a low complexity for high
rate codes. This finding falls into the interest of practice.
• Finally, simulation results on complexity and decoding
performances will be provided, showing the MM interpolation
leads to a lower decoding complexity. The proposed complexity
reducing approach can further result in a lower decoding cost.
More importantly, performance of the two ASD algorithms will be
compared under the decoding expenditure benchmark, providing
more practical insights.

The rest of this paper is organised as follows. Section 2
introduces RS codes and the MM based GS decoding. Section 3
introduces the ACD-MM algorithm and its re-encoding
transformed variant. Section 4 introduces the KV-MM algorithm
and its re-encoding transformed variant. Section 5 introduces a
complexity reducing approach for the ASD algorithms. Section 6
analyses the decoding complexity and Section 7 provides the
simulation results. Finally, Section 8 concludes the paper.

2 RS codes and the MM-based GS decoding
This section introduces the prerequisites of the paper, including the
RS codes and the MM-based GS decoding.

2.1 RS codes

Let Fq = {σ0, σ1, …, σq − 1} denote the finite field of size q, and Fq[x]
and Fq[x, y] denote the univariate and the bivariate polynomial
rings defined over Fq, respectively. For an (n,k) RS code, message
polynomial f (x) ∈ Fq[x] is

f (x) = f 0 + f 1x + ⋅ ⋅ ⋅ + f k − 1xk − 1, (1)

where f 0, f 1, …, f k − 1 are message symbols. Codeword
c = (c0, c1, …, cn − 1) ∈ Fq

n is generated by

c = (f (α0), f (α1), …, f (αn − 1)), (2)

where α0, α1, …, αn − 1 are the n distinct non-zero elements of Fq.
They are called the code locators.

2.2 MM-based GS decoding

Let ω = (ω0, ω1, …, ωn − 1) ∈ Fq
n denote the received word. The

Hamming distance between c and ω is
dH(c, ω) = { j ∣ cj ≠ ωj, ∀ j} . The GS decoding algorithm consists
of two steps, interpolation and root-finding. Interpolation
constructs the minimum polynomial Q(x, y) that interpolates the n
points (α0, ω0), (α1, ω1), …, (αn − 1, ωn − 1) with a prescribed
multiplicity. Given Q(x, y) = ∑a, b Qabxayb ∈ Fq[x, y], its
monomials xayb can be organised under the (μ, ν)-revlex order. The
(μ, ν)-weighted degree of xayb is degμ, νxayb = μa + νb. Given xa1yb1

and xa2yb2, it is claimed xa1yb1 < xa2yb2, if degμ, νxa1yb1 < degμ, νxa2yb2,
or degμ, νxa1yb1 = degμ, νxa2yb2 and b1 < b2. Let xa′yb′ denote the
leading monomial (LM) of Q as LM(Q) = xa′yb′, the (μ, ν)-
weighted degree of Q is degμ, νQ = degμ, νxa′yb′. Furthermore, given
polynomials Q1 and Q2 with leading monomials xa1′ yb1′ and xa2′ yb2′ ,
respectively, Q1 < Q2 if x

a1′ yb1′ < xa2′ yb2′ . The following GS decoding
theorem can be introduced [5].
 

Theorem 1: For an (n,k) RS code, let Q ∈ Fq[x, y] denote a
polynomial that interpolates the n points with a multiplicity of m. If
m(n − dH(c, ω)) > deg1, k − 1Q(x, y), Q(x, f (x)) = 0.

Therefore, interpolation constructs Q with the minimum
(1, k − 1)-weighted degree, and f (x) can be recovered by finding
its y-roots [27]. Hence, the maximum decoding output list size
(OLS) is degyQ. In this paper, let l = degyQ denote the decoding
parameter. Note that m ≤ l in the GS algorithm [5].
 

Definition 1: Let ξ = (ξ0(x), ξ1(x), …, ξl(x)) denote a vector over
Fq[x], the degree of ξ is

degξ = max {degξτ(x), ∀τ} . (3)

The leading position (LP) of ξ is

LP(ξ) = max {τ ∣ degξτ(x) = degξ} . (4)
 

Definition 2: Given a matrix V over Fq[x], its row-t and entry
of row-t column-τ are denoted by V t and V t

(τ), respectively.
Furthermore, the degree of V is

degV = ∑
t

degV
t
. (5)

 
Definition 3: Module ℳl is the space of all polynomials over

Fq[x, y] that interpolate all prescribed points with their multiplicity
and have a maximum y-degree of l.

The GS decoding using MM interpolation can now be
described, which consists of basis construction and basis reduction.
Let us define two module seeds

G(x) = ∏
j = 0

n − 1
(x − αj) (6)

and

R(x) = ∑
j = 0

n − 1
ωjΦ j(x), (7)

where

Φ j(x) = ∏
j′ = 0, j′ ≠ j

n − 1 x − αj′
αj − αj′

(8)

is the Lagrange basis polynomial. It satisfies Φ j(αj) = 1 and
Φ j(αj′) = 0, ∀ j′ ≠ j. As a result, R(αj) = ωj, ∀ j. With a multiplicity
of m and a decoding OLS of l, ℳl can be generated as an Fq[x]-
module by the following l + 1 polynomials [28]

Pt(x, y) = G(x)m − t(y − R(x))t, if 0 ≤ t ≤ m, (9)

Pt(x, y) = yt − m(y − R(x))m, if m < t ≤ l . (10)

Note that Pt(αj, ωj) = 0, ∀(t, j) and the total exponents of G(x) and
y − R(x) is m. Since any element of ℳl can be presented as an
Fq[x]-linear combination of Pt(x, y), (9) and (10) construct a basis
of module ℳl, denoted as ℬl [24]. Moreover, since
Pt(x, y) = ∑τ ≤ t Pt

(τ)(x)yτ where Pt
(τ)(x) ∈ Fq[x], ℬl can be presented

as an (l + 1) × (l + 1) matrix over Fq[x] by letting
ℬl t

(τ) = Pt
(τ)(x), ∀(t, τ). Each row of the matrix corresponds to a

bivariate polynomial of ℬl.
 

Definition 4: Assume that {gt ∈ Fq[x, y], 0 ≤ t ≤ l} generates
module ℳl. Under the (μ, ν)-revlex order, if y-degree of LM(gt) is
different, {gt ∈ Fq[x, y], 0 ≤ t ≤ l} is a Gröbner basis of ℳl [17].

2 IET Commun.
© The Institution of Engineering and Technology 2019

The constructed basis ℬl will then be reduced into the Gröbner
basis. In this paper, the MS algorithm [19] is utilised to perform the
basis reduction. In literature, there exist several asymptotically
faster approaches [20–22]. However, they cannot show their
efficiency for the practical codes. For example, the Alekhnovich
algorithm [20] is only faster than the MS algorithm when
codeword length is longer than 2 000 [24].
 

Definition 5: Given a square matrix V over Fq[x], if any of its
two rows V t and V t′ exhibit LP(V t) ≠ LP(V t′), it is in the weak
Popov form [19].

Let Dβ, l = diag(1, xβ, …, xlβ) denote the diagonal matrix of size
(l + 1) × (l + 1) and β is an integer. In decoding an (n,k) RS code,
performing the mapping of

Al = ℬl ⋅ Dk − 1, l (11)

enables degAl t = deg1, k − 1Pt(x, y). The MS algorithm [19] further
performs the row operation to reduce Al into the weak Popov form
Al′. Afterwards, perform the demapping of

ℬl′ = Al′ ⋅ D−(k − 1), l . (12)
 

Lemma 1: Under the (1, k − 1)-revlex order, ℬl′ is the Gröbner
basis of ℳl.
 

Proof: Based on ℬl′ t, Pt′(x, y) = ∑τ ≤ l Pt
′(τ)(x)yτ can be

constructed by letting Pt
′(τ)(x) = ℬl′ t

(τ). Since deg1, k − 1Pt′(x, y) =
degAl′ t = degAl′ t

(LP(Al′ t)) = degPt
′(LP(Al′ t))(x) + (k − 1) ⋅ LP(Al′ t

),

LM(Pt′(x, y)) = Pt
′(LP(Al′ t))(x)yLP(Al′ t). When Al′ is in the weak Popov

form, y-degree of LM(Pt′(x, y)), i.e. LP(Al′ t), is different. Based on
Definition 4, ℬl′ is the Gröbner basis. □

Let Al′ t∗ denote the row that has the minimum degree, the
interpolated polynomial Q(x, y) = ∑τ ≤ l Q(τ)(x)yτ can be
constructed from ℬl′ t∗ by letting

Q(τ)(x) = ℬl′ t∗
(τ) , ∀τ . (13)

Finally, determine the y-roots of Q using the recursive coefficient
search algorithm [27].

3 ACD-MM algorithm
This section introduces the ACD-MM algorithm. It first constructs
a number of decoding test-vectors based on the reliability matrix.
The GS decoding will be further performed on each test-vector. Its
re-encoding transformed variant will also be introduced.

3.1 From reliability matrix to test-vectors

Assume codeword c is transmitted through a memoryless channel
and r = (r0, r1, …, rn − 1) ∈ ℝn is the received symbol vector, where
ℝ denotes the channel output alphabet. The channel observation is
represented by a reliability matrix Π whose entries are the a
posteriori probability defined as πi j = Pr [cj = σi r j], where
0 ≤ i ≤ q − 1 and 0 ≤ j ≤ n − 1. Note that it is assumed
Pr [cj = σi] = (1/q), ∀(i, j). Let ij

I = arg max i{πi j} and
ij

II = arg max i, i ≠ ij
I{πi j} denote the row indices of the largest and the

second largest entries of column j, respectively. The two most
likely decisions for cj are r j

I = σij
I and r j

II = σij
II. Define the symbol

wise reliability metric as

γ j =
πij

II j

πij
I j

, (14)

where γ j ∈ (0, 1) [9]. With γ j → 0, the decision on cj is more
reliable, and vice versa. By sorting γ j in an ascending order, a
refreshed symbol index sequence j0, j1, …, jn − 1 can be obtained,
which indicates γ j0 < γ j1 < ⋯ < γ jn − 1. Choose η least reliable
symbols that can be realised as either r j

I or r j
II, where η < n. For the

remaining n − η reliable symbols, they will be realised as r j
I.

Therefore, the interpolation test-vectors can be generally written as

ru = (r j0
(u), r j1

(u), …, r jk − 1
(u) , r jk

(u), …, r jn − 1
(u)), (15)

where u = 1, 2, …, 2η, r j
(u) = r j

I for j = j0, j1, …, jn − η − 1, and
r j

(u) = r j
I or r j

II for j = jn − η, jn − η + 1, …, jn − 1.

3.2 Basis construction and reduction

For each test-vector, the MM-based GS decoding that is described
in Section 2.2 will be performed. In particular, given a test-vector
ru, polynomial R(x) of (7) becomes

Ru(x) = ∑
j = 0

n − 1
r j

(u)Φ j(x) . (16)

Consequently, Ru(αj) = r j
(u), ∀ j. Basis ℬl can be constructed using

the l + 1 polynomials of (9) and (10), in which R(x) is replaced by
Ru(x).

Note that the MM interpolation for each test-vector is
independent. They can be performed in parallel, leveraging the
decoding latency to that of a single GS decoding event. This is an
advantage over the ACD algorithm that employs Koetter's
interpolation in a binary tree growth fashion [9].

The ACD-MM algorithm is summarised in Fig. 1, where f
^(x) is

the decoding estimation of the message f (x).

3.3 Re-encoding transformed ACD-MM algorithm

Re-encoding transforms the test-vectors so that they have at least k
zero symbols. This will reduce the x-degree of module generators,
resulting in a simpler MM interpolation. Let Θ = { j0, j1, …, jk − 1}
denote the index set of the k most reliable symbols. Its
complementary set is Θ̄ = { jk, jk + 1, …, jn − 1}. Let η ≤ n − k so that
the test-vectors would share at least k common symbols
r j0

I , r j1
I , …, r jk − 1

I . The k re-encoding points are (αj, r j
I) where j ∈ Θ.

The re-encoding polynomial is

HΘ(x) = ∑
j ∈ Θ

r j
I ∏

j′ ∈ Θ, j′ ≠ j

x − αj′
αj − αj′

. (17)

Hence, HΘ(αj) = r j
I, ∀ j ∈ Θ. All test-vectors ru are transformed by

ru ↦ zu: zj
(u) = r j

(u) − HΘ(αj), ∀ j . (18)

Consequently, the transformed test-vectors can be generally written
as

Fig. 1  Algorithm 1: the ACD-MM algorithm

IET Commun.
© The Institution of Engineering and Technology 2019

3

zu = (0, 0, …, 0, zjk
(u), …, zjn − 1

(u)) . (19)

With a transformed test-vector zu, polynomial Ru(x) of (16) is
redefined as

Ru(x) = ∑
j = 0

n − 1
zj

(u)Φ j(x) . (20)

Since zj
(u) = 0, ∀ j ∈ Θ

V(x) = ∏
j ∈ Θ

(x − αj) (21)

becomes the GCD for both G(x) and the above Ru(x). Therefore,
given zu, two module seeds can be defined as

G
~(x) = G(x)

V(x) = ∏
j ∈ Θ̄

(x − αj) (22)

and

R
~

u(x) = Ru(x)
V(x) = ∑

j ∈ Θ̄

zj
(u)

ϖ j
∏

j′ ∈ Θ̄, j′ ≠ j
(x − αj′), (23)

where ϖ j = ∏ j′ = 0, j′ ≠ j
n − 1 (αj − αj′).

The following Lemma reveals the property of the module
generators.

 
Lemma 2: Given a transformed test-vector zu and a multiplicity

m, V(x)m Pt(x, yV(x)) holds.
 
Proof: With the generators defined by (9) and (10), when

0 ≤ t ≤ m, Pt(x, yV(x)) can be elaborated as

G(x)m − t(− Ru(x))t + t
1 G(x)m − t(− Ru(x))t − 1V(x)y

+⋯ + G(x)m − t(V(x)y)t .

When m < t ≤ l, Pt(x, yV(x)) becomes

(− Ru(x))m(V(x)y)t − m + m
1 (− Ru(x))m − 1(V(x)y)t − m + 1

+⋯ + (V(x)y)t .

Since V(x) G(x) and V(x) Ru(x), it is straightforward to conclude
that V(x)m Pt(x, yV(x)). □

Therefore, the following bijective mapping can be defined:

φ: ℳl → ℳ~
l

Pt(x, y) ↦ V(x)−mPt(x, yV(x)),
(24)

where φ is an isomorphism between ℳl and ℳ~
l, i.e. ℳ~

l = φ(ℳl).
Polynomials of ℳ~

l have lower x-degree than those of ℳl. Since
the MS algorithm performs linear combination between its
polynomials, the mapping of (24) will result in a simpler basis
reduction process. Based on (9) and (10), the generators of ℳ~

l can
be further obtained by

P
~

t(x, y) = G
~(x)m − t(y − R

~
u(x))t, if 0 ≤ t ≤ m, (25)

P
~

t(x, y) = (yV(x))t − m(y − R
~

u(x))m, if m < t ≤ l . (26)

They form a basis ℬ~ l of ℳ~
l. Again, ℬ~ l can be presented as a

square matrix over Fq[x]. Note that polynomials are now arranged
under the (1, − 1)-revlex order [12, 13]. However, performing

Al = ℬ~ l ⋅ D−1, l will cause some of the basis entries leaving Fq[x].
Alternatively, let D~ β, l = diag(xlβ, x(l − 1)β, …, 1) and Al will be
generated by

Al = ℬ~ l ⋅ D~ 1, l, (27)

so that degAl t = deg1, − 1P
~

t(x, y) + l. The MS algorithm will then
reduce Al into the weak Popov form Al′. Demap it by

ℬ~ l′ = Al′ ⋅ D~ −1, l (28)

and polynomial Q
~(x, y) can be retrieved from ℬ~ l′ as in (13). Based

on Lemma 2, the interpolated polynomial Q can be constructed by

Q(x, y) = V(x)mQ
~

x, y
V(x) . (29)

If f ′(x) is a y-root of Q, f
^(x) is estimated by f

^(x) = f ′(x) + HΘ(x).
The re-encoding transformed ACD-MM algorithm is

summarised in Fig. 2.

4 KV-MM algorithm
This section introduces the KV-MM algorithm. It transfers the
reliability matrix into a multiplicity matrix that defines the MM
interpolation. Its re-encoding transformed variant will also be
introduced.

4.1 From reliability matrix to multiplicity matrix

The reliability matrix Π will be proportionally transformed into a
multiplicity matrix M using Algorithm A of [8], where entry mi j
indicates the interpolation multiplicity for point (αj, σi).
Interpolation aims to find the minimum polynomial Q(x, y) that
interpolates all points (αj, σi) with a multiplicity of mi j. Let
ij = index{σi σi = cj}, the codeword score is defined as
SM(c) = ∑ j = 0

n − 1 mij j. What follows is a sufficient condition for a
successful KV decoding [8].
 

Theorem 2: For an (n,k) RS code, let Q ∈ Fq[x, y] denote an
interpolated polynomial constructed based on M. If
SM(c) > deg1, k − 1Q(x, y), Q(x, f (x)) = 0.

The KV decoding is parameterised by the maximum decoding
OLS of l and degyQ = l. Given matrix M, let us define

m j = ∑
i = 0

q − 1
mi j (30)

and m = max {m j, ∀ j}. The Π → M transform terminates when
m = l.

Fig. 2  Algorithm 2: the re-encoding transformed ACD-MM algorithm

4 IET Commun.
© The Institution of Engineering and Technology 2019

4.2 Basis construction and reduction

Based on Definition 3, the KV-MM algorithm generates a module
ℳl whose bivariate polynomials interpolate points (αj, σi) with a
multiplicity of at least mi j and have a maximum y-degree of l. It
can be underpinned by the following point enumeration.

Let Lj denote a list that enumerates interpolation points (αj, σi)
from column j of M as

Lj = [(αj, σi), …, (αj, σi)
mi j

, ∀i and mi j ≠ 0] .
(31)

Note that Lj = m j. Its balanced list Lj′ is further created by
removing one of the most frequent elements in Lj to Lj′. Repeat this
process m j times until Lj is empty. Consequently, Lj′ can be denoted
as

Lj′ = [(αj, yj
(0)), (αj, yj

(1)), …, (αj, yj
(m j − 1))], (32)

where yj
(0), yj

(1), …, yj
(m j − 1) ∈ Fq and they may not be distinct. Lj′ is a

permutation of Lj and Lj′ = m j. Let m j(t) denote the maximum
multiplicity of the last m j − t elements of Lj′ as

m j(t) = max {multi.((αj, yj
(ε))) ε = t, t + 1, …, m j − 1} . (33)

Note that m j(0) = max {mi j, ∀i} and m j(t) = 0 for t ≥ m j.
Now, it is sufficient to construct a basis of ℳl. First, the module

seed is defined as

Fε(x) = ∑
j = 0

n − 1
yj

(ε)Φ j(x), (34)

where ε = 0, 1, …, l − 1. Based on (8), Fε(αj) = yj
(ε), ∀ j. Hence,

y − Fε(x) interpolates points (αj, yj
(ε)), ∀ j. Now, ℳl can be generated

as an Fq[x]-module by

Pt(x, y) = ∏
j = 0

n − 1
(x − αj)m j(t) ∏

ε = 0

t − 1
(y − Fε(x)), (35)

where t = 0, 1, …, l. It can be seen that ∏ε = 0
t − 1 (y − Fε(x))

interpolates the first t points of all balanced lists, while
∏ j = 0

n − 1 (x − αj)m j(t) interpolates the remaining points. Moreover,
degyPt(x, y) = t ≤ l, ∀t. Based on Definition 3, Pt(x, y) ∈ ℳl.

 
Lemma 3: Let Qt(x, y) = ∑τ = 0

t Qt
(τ)(x)yτ ∈ ℳl with degyQt = t,

∏ j = 0
n − 1 (x − αj)m j(t) Qt

(t)(x) holds [20].
Consequently, the following Theorem can be proved.
 
Theorem 3: Any element of ℳl can be written as an Fq[x]-linear

combination of Pt(x, y).
 
Proof: Assume that Q(x, y) ∈ ℳl and let us write (35) as

Pt(x, y) = ∑τ = 0
t Pt

(τ)(x)yτ. Since when t = l, Pl
(l)(x) = 1, there exists

a polynomial pl(x) ∈ Fq[x] that enables
Ql − 1(x, y) = Q(x, y) − pl(x)Pl(x, y) so that degyQl − 1 = l − 1. Note
that if degyQ < l, pl(x) = 0. Since (Q, Pl) ∈ ℳl, Ql − 1 ∈ ℳl.
Continuing with t = l − 1, Pl − 1

(l − 1)(x) = ∏ j = 0
n − 1 (x − αj)m j(l − 1). Based

on Lemma 3, ∏ j = 0
n − 1 (x − αj)m j(l − 1) Ql − 1

(l − 1)(x). Therefore, Ql − 2(x, y)
can be generated by Ql − 2(x, y) = Ql − 1(x, y) − pl − 1(x)Pl − 1(x, y) so
that degyQl − 2 = l − 2. Following the above deduction until t = 0,
P0

(0)(x) = ∏ j = 0
n − 1 (x − αj)m j(0) and ∏ j = 0

n − 1 (x − αj)m j(0) Q0
(0)(x). Hence,

there exists p0(x) that enables Q0(x, y) − p0(x)P0(x, y) = 0.

Therefore, if Q ∈ ℳl, it can be written as an Fq[x]-linear
combination of Pt(x, y), i.e. Q(x, y) = ∑t = 0

l pt(x)Pt(x, y). □
The above theorem reveals that (35) forms a basis ℬl of ℳl.

Presenting ℬl as a matrix over Fq[x], Al can be generated by (11).
The MS algorithm will reduce Al into Al′. Demap it by (12).
Polynomial Q can be further retrieved.

The KV-MM algorithm is summarised in Fig. 3.

4.3 Re-encoding transformed KV-MM algorithm

Similar to the ACD-MM algorithm, re-encoding transform helps
reduce degree of the basis entries, lowering the MM complexity.
First, m0(0), m1(0), …, mn − 1(0) are sorted to obtain an index
sequence j0, j1, …, jn − 1 such that m j0(0) ≥ m j1(0) ≥ ⋯ ≥ m jn − 1(0).
Let Υ = { j0, j1, …, jk − 1} and Ῡ = { jk, jk + 1, …, jn − 1}. The k points
(αj, yj

(0)), ∀ j ∈ Υ are chosen to form the re-encoding polynomial

HΥ(x) = ∑
j ∈ Υ

yj
(0) ∏

j′ ∈ Υ, j′ ≠ j

x − αj′
αj − αj′

. (36)

Therefore, HΥ(αj) = yj
(0), ∀ j ∈ Υ. All balanced lists Lj′ will be

transformed as

L
~

j′ = [(αj, wj
(ε)) ε = 0, 1, …, m j − 1], (37)

where wj
(ε) = yj

(ε) − HΥ(αj). For j ∈ Υ, if yj
(ε) = yj

(0), then wj
(ε) = 0.

Define Λε = { j wj
(ε) = 0, j ∈ Υ} and Λ̄ε = Υ∖Λε. Note that

Λ0 = Υ. Based on the transform, Fε(x) of (34) can be redefined as

Fε(x) = ∑
j = 0

n − 1
wj

(ε)Φ j(x) . (38)

Let us further define

ϕ(x) = ∏
j ∈ Υ

(x − αj)m j(0)
(39)

and

ψ(x) = ∏
j ∈ Υ

(x − αj) . (40)

The following Lemma characterises module generators when re-
encoding transform is applied.
 

Lemma 4: Given the multiplicity matrix M and the transformed
lists of (37), ϕ(x) Pt(x, yψ(x)) holds.
 

Proof: Due to its length, this proof is given in Appendix. □
The following bijective mapping is further defined as

φ: ℳl → ℳ~
l

Pt(x, y) ↦ ϕ(x)−1Pt(x, yψ(x)) .
(41)

Consequently, polynomials of ℳ~
l have the lower x-degree, leading

to a simpler basis reduction. Let

Fig. 3  Algorithm 3: the KV-MM algorithm

IET Commun.
© The Institution of Engineering and Technology 2019

5

Tε(x) = ∑
j ∈ Ῡ ∪ Λ̄ε

w~ j
(ε) ∏

j′ ∈ Ῡ ∪ Λ̄ε, j′ ≠ j
(x − αj′), (42)

where

w~ j
(ε) = wj

(ε)

∏ j′ = 0, j′ ≠ j
n − 1 (αj − αj′)

,

the proof of Lemma 7 reveals that

Pt(x, yψ(x)) = ϕ(x) ⋅ ∏
j ∈ Ῡ

(x − αj)m j(t) ⋅ ∏
j ∈ Λ̄t

(x − αj)

× ∏
ε = 0

t − 1
y ∏

j ∈ Λ̄ε

(x − αj) − Tε(x) .
(43)

Based on (41), ℳ~
l can be generated by

P
~

t(x, y) = ∏
j ∈ Ῡ

(x − αj)m j(t) ⋅ ∏
j ∈ Λ̄t

(x − αj)

× ∏
ε = 0

t − 1
y ∏

j ∈ Λ̄ε

(x − αj) − Tε(x) ,
(44)

where t = 0, 1, …, l. Note that Λ̄l = ∅. The above polynomials
P
~

t(x, y) form a basis ℬ~ l of ℳ~
l. Present ℬ~ l as a matrix over Fq[x]

and perform the mapping of Al = ℬ~ l ⋅ D~ 1, l. The MS algorithm will
reduce Al into Al′. Demap it by ℬ~ l′ = Al′ ⋅ D~ −1, l and polynomial Q

~

can be further retrieved. Based on Lemma 4, the interpolated
polynomial Q can be constructed by

Q(x, y) = ϕ(x)Q~ x, y
ψ(x) . (45)

If f ′(x) is a y-root of Q, f
^(x) is estimated by f

^(x) = f ′(x) + HΥ(x).
The re-encoding transformed KV-MM algorithm is summarised

in Fig. 4

5 Complexity reducing approach
This section introduces a complexity reducing approach for the
above mentioned algorithms. It is realised by assessing the degree
of the module seeds.

The paradigm of the ACD-MM algorithm and its re-encoding
transformed variant are first described.

 
Lemma 5: Given R(x) that is defined as in (7), if

ω = (ω0, ω1, …, ωn − 1) is a codeword, then degR(x) < k.
 
Proof: Based on (7), degR(x) ≤ n − 1 and R(αj) = ωj, ∀ j. If ω is

a codeword, there exists a message polynomial λ(x) ∈ Fq[x] with
degλ(x) < k such that λ(αj) = ωj, ∀ j. Let

λ′(x) = R(x) − λ(x),

then degλ′(x) ≤ n − 1. Since

λ′(αj) = R(αj) − λ(αj) = 0,

λ′(x) has n roots. It can be written as

λ′(x) = γ(x) ⋅ ∏
j = 0

n − 1
(x − αj),

where γ(x) ∈ Fq[x]. This leads to degλ′(x) ≥ n, which contradicts
to degλ′(x) ≤ n − 1. Therefore, γ(x) = 0 and λ′(x) = 0. Hence,
R(x) = λ(x) and degR(x) < k. □

The above conclusion leads to the following Lemma.
 
Lemma 6: If degR(x) < k, Al is in the weak Popov form.
 
Proof: When 0 ≤ t ≤ m, based on (9) and (11)

degAl t
(τ) = n(m − t) + (t − τ)degR(x) + (k − 1)τ

= nm − (n − degR(x))t + (k − 1 − degR(x))τ .

When m < t ≤ l

degAl t
(τ) = (t − τ)degR(x) + (k − 1)τ

= tdegR(x) + (k − 1 − degR(x))τ .

Note that when τ > t, Al t
(τ) = 0. If degR(x) < k, then

max {degAl t
(τ) , ∀τ} = degAl t

(t) = nm − (n − k + 1)t when
0 ≤ t ≤ m, and max {degAl t

(τ) , ∀τ} = degAl t
(t) = (k − 1)t when

m < t ≤ l. Therefore, LP(Al t) = t. Based on Definition 5, Al is in
the weak Popov form. □

The above two Lemmas reveal that if degR(x) < k, the
constructed ℬl is the desired Gröbner basis and R(x) would be a
message candidate. That says in the ACD-MM algorithm, if
degRu(x) < k, the test-vector ru is already a codeword. The
maximum likelihood (ML) criterion [29] can be further applied to
assess whether it is an ML codeword. If so, the decoding can be
terminated and outputs Ru(x) as a message candidate. The
following basis construction and reduction can be skipped.

For an (n,k) RS code, given two distinct codewords c and c′,
dH(c, c′) ≥ n − k + 1. If η ≤ n − k, for two distinct test-vectors ru
and ru′, dH(ru, ru′) ≤ η < dH(c, c′). Hence, if ru is a codeword, then
ru′ will not be a codeword, ∀u′ ≠ u. Therefore, if Ru(x) is output as
the message, the other decoding trials can also be skipped. This
would further reduce the complexity of the ACD-MM algorithm.

Similarly, for the re-encoding transformed ACD-MM
algorithm, if degRu(x) < k, zu would be a codeword. The original
test-vector ru should be further recovered by
r j

(u) = zj
(u) + HΘ(αj), ∀ j, and seen if it is an ML codeword.

Therefore, in the ACD-MM algorithms (Algorithms 1 and 2 (see
Figs. 1 and 2), once degRu(x) < k, the decoding outputs Ru(x) as a
message candidate. If ru is an ML codeword, the decoding can be
terminated.

This complexity reducing approach can also be applied to the
KV-MM algorithms. Similar to the ACD-MM algorithm, if
yε = (y0

(ε), y1
(ε), …, yn − 1

(ε)) is a codeword, degFε(x) < k. Subsequently,
the following Lemma for the KV-MM algorithm can be obtained.

 
Lemma 7: If degFε(x) < k, ∀ε, Al is in the weak Popov form.
 
Proof: Based on (35) and (11)

degAl t
(τ)

= ∑
j = 0

n − 1
m j(t) + ∑

ε = 0

t − τ − 1
degFε(x) + (k − 1)τ

= ∑
j = 0

n − 1
m j(t) + ∑

ε = 0

t − 1
degFε(x) + ∑

ε = t − τ

t − 1
(k − 1 − degFε(x)) .Fig. 4  Algorithm 4: the re-encoding transformed KV-MM algorithm

6 IET Commun.

© The Institution of Engineering and Technology 2019

If degFε(x) < k, ∀ε, then max {degAl t
(τ) , ∀τ} = degAl t

(t)

= ∑ j = 0
n − 1 m j(t) + (k − 1)t, where 0 ≤ t ≤ l. Therefore, LP(Al t) = t

and Al is in the weak Popov form. □
Consequently, in the KV-MM algorithm, if degFε(x) < k, ∀ε, ℬl

is the desired Gröbner basis and all Fε(x) are message candidates.
The decoding can further apply the ML criterion to validate an ML
codeword and output the corresponding Fε(x) as the message. For
the re-encoding transformed variant, if degFε(x) < k, ∀ε, all
transformed vectors wε = (w0

(ε), w1
(ε), …, wn − 1

(ε)) are codewords. After
recovering yε by yj

(ε) = wj
(ε) + HΥ(αj), ∀ j, an ML codeword can

again be validated. Once an ML codeword has been identified, the
decoding will output the corresponding polynomial Fε(x) as the
message and terminate afterwards.

Summarising the descriptions of Sections 3–5, Fig. 5 shows an
overview of the proposed algorithms.

6 Complexity analysis
This section analyses complexity of the MM interpolation that
consists of basis construction and reduction. It dominates
complexity of the two ASD algorithms and their re-encoding
transformed variants. In this paper, the complexity refers to the
number of finite field operations in decoding a codeword.

6.1 Without the re-encoding transform

Complexity of the basis construction is first analysed. For the
ACD-MM algorithm, G(x) and Φ j(x) can be computed offline.
Computing R(x) requires n2 operations. Complexity of constructing
ℬl is ∑t = 0

m ∑ j = 0
t (t − j)(n − 1) ⋅ (m − t)n ≃ 1

24 n2(m + 1)4 by using
the naive polynomial multiplication. Therefore, in the ACD-MM
algorithm, with η unreliable symbols, complexity of the basis
construction is 2η(1

24 n2((m + 1)4 + 24)). For the KV-MM algorithm,

the construction of Fε(x) and ℬl require n2 l and 1
24 n2(l + 1)4

operations, respectively. Hence, the basis construction complexity
is 1

24 n2((l + 1)4 + 24l).
Complexity of the basis reduction will be determined by the

degree of Al t
(τ) and the number of row operations for reducing Al

into Al′.
 
Lemma 8: Given a matrix Al over Fq[x], there are less than

l(degAl − deg det Al + l) row operations to reduce it into the weak
Popov form Al′ [28].

The following two Lemmas further characterise degAl t
(τ) and

degAl − deg det Al, respectively.
 
Lemma 9: Without the re-encoding transform, degAl t

(τ) ≤ nl.
 

Proof: For the ACD-MM algorithm, degAl t
(τ) is determined

based on the generators (9) and (10) and mapping (11). When
0 ≤ t ≤ m

degAl t
(τ) = n(m − t) + (n − 1)(t − τ) + (k − 1)τ

= nm − t − (n − k)τ .

Therefore, max {degAl t
(τ) , 0 ≤ t ≤ m} = degAl 0

(0) = nm. When
m < t ≤ l

degAl t
(τ) = (n − 1)(t − τ) + (k − 1)τ

= (n − 1)t − (n − k)τ,

and max {degAl t
(τ) , m < t ≤ l} = degAl l

(0) = (n − 1)l. Therefore,
for the ACD-MM algorithm, max {degAl t

(τ) , ∀(t, τ)}
= max {nm, (n − 1)l} ≤ nl.

For the KV-MM algorithm, the generators (35) and mapping
(11) lead to

degAl t
(τ) ≤ n(l − t) + (n − 1)(t − τ) + (k − 1)τ

= nl − t − (n − k)τ .

Hence, max {degAl t
(τ) , ∀(t, τ)} = degAl 0

(0) = nl. □
 
Lemma 10: Without the re-encoding transform,

degAl − deg det Al ≤ 1
2 (n − k)(l2 + l).

 
Proof: For the ACD-MM algorithm, when 0 ≤ t ≤ m,

degAl t = nm − t. When m < t ≤ l, degAl t = (n − 1)t. Therefore

degAl = ∑
t = 0

m
(nm − t) + ∑

t = m + 1

l
(n − 1)t

and

deg det Al = ∑
t = 0

m
n(m − t) + ∑

t = 0

l
(k − 1)t .

Hence, degAl − deg det Al = ∑t = 0
l (n − k)t = 1

2 (n − k)(l2 + l).
For the KV-MM algorithm, let τt = LP(Al t), then

degAl = ∑
t = 0

l

∑
j = 0

n − 1
m j(t) + (n − 1)(t − τt) + (k − 1)τt .

Since Al is a lower-triangle matrix and Pt
(t)(x) = 1

deg det Al = ∑
t = 0

l

∑
j = 0

n − 1
m j(t) + (k − 1)t .

Therefore, degAl − deg det Al ≤ ∑t = 0
l ((n − 1)(t − τt)

+(k − 1)τt − (k − 1)t). When τt = 0,
max {degAl − deg det Al} = 1

2 (n − k)(l2 + l). □
Based on the above lemmas, it can be concluded that the basis

reduction process requires at most 1
2 n(n − k)l3(l + 1)2 finite field

operations.
Therefore, when l is sufficiently large, with η unreliable

symbols, the MM complexity is O(2ηn(n − k)l5) in the ACD
algorithm. Meanwhile, the MM complexity is O(n(n − k)l5) in the
KV algorithm. These conclusions imply the MM complexity
favours high rate codes, which is of practical interest. Table 1
shows the numerical results of the MM complexity in decoding
various RS codes defined over F 64. On one hand, they verify the
above complexity characterisations. On the other hand, they show a

Fig. 5  Block diagram of the proposed algorithms

IET Commun.
© The Institution of Engineering and Technology 2019

7

high rate code yields a lower MM complexity. Table 1 also shows
that with the same decoding output cardinality, e.g. the ACD-MM
(m = 1, l = 1, η = 3) and the KV-MM (l = 8), the ACD-MM
algorithm is less complex by at least two orders of magnitude.

6.2 With the re-encoding transform

Re-encoding transform reduces the degree of module generators,
leading to a simpler basis reduction. Complexity of formulating the
re-encoding polynomial and the module basis ℬ~ l are first
characterised. To compute HΘ(x) (or HΥ(x)), 3(n − k)2 finite field
operations are required [9]. The following interpolation point
transform requires (n − k)k operations. In the ACD-MM algorithm,
computing G

~(x) and R
~

u(x) require 1
2 (n − k)2 and

1
2 (n − k)2(n − k − 1) + (n − k)(n − k − 1) + n(n − k) ≃ 1

2 (n − k)3

operations, respectively. Further constructing ℬ~ l requires
∑t = 0

m ∑ j = 0
t (t − j)(n − k − 1) ⋅ (m − t)(n − k) ≃ 1

24 (n − k)2(m + 1)4

operations. Therefore, the basis construction complexity for each
test-vector is 1

24 (n − k)2((m + 1)4 + 12(n − k)). For the KV-MM

algorithm, computing Tε(x) and ℬ~ l require 1
2 (n − k)3 and

1
24 (n − k)2(l + 1)4 finite field operations, respectively. Note that it is
assumed Λ̄ε = ∅, ∀ε. Therefore, complexity of the basis
construction is 1

24 (n − k)2((l + 1)4 + 12(n − k)).
To characterise complexity of the basis reduction, the following

two Lemmas are needed.
 
Lemma 11: With the re-encoding transform,

degAl t
(τ) ≤ (n − k + 1)l.

 
Proof: For the ACD-MM algorithm, when 0 ≤ t ≤ m

degAl t
(τ) = (n − k)(m − t) + (n − k − 1)(t − τ) + (l − τ) .

Since m ≤ l,
max {degAl t

(τ) , 0 ≤ t ≤ m} = degAl 0
(0) ≤ (n − k + 1)l. When

m < t ≤ l

degAl t
(τ) = k(t − m) + (n − k − 1)(t − τ) + (l − τ),

and max {degAl t
(τ) , m < t ≤ l} = degAl l

(0) = (n − k)l.
With the re-encoding transform, entry size of Al in the KV-MM

algorithm is

degAl t
(τ) ≤ (n − k)(l − t) + (n − k − 1)(t − τ) + (l − τ) .

Hence, max {degAl t
(τ) , ∀(t, τ)} = degAl 0

(0) = (n − k + 1)l. □
 
Lemma 12: With the re-encoding transform,

degAl − deg det Al ≤ 1
2 (n − k)(l2 + l).

 
Proof: For the ACD-MM algorithm

degAl = ∑
t = 0

m
((n − k)m − t + l) + ∑

t = m + 1

l
((n − 1)t + (l − km))

and

deg det Al

= ∑
t = 0

m
((n − k)(m − t) + (l − t)) + ∑

t = m + 1

l
(k(t − m) + (l − t)) .

Hence, degAl − deg det Al = ∑t = 0
l (n − k)t = 1

2 (n − k)(l2 + l).
For the KV-MM algorithm, let τt = LP(Al t), then

degAl − deg det Al

≤ ∑
t = 0

l
((n − k + 1)(t − τt) + (l − τt) − (l − t)) .

When τt = 0, max {degAl − deg det Al} = 1
2 (n − k)(l2 + l). □

Therefore, echoing Lemma 10, the re-encoding transform does
not attribute to reducing the number of row operations during the
basis reduction process. Further applying Lemma 8, with the re-
encoding transform, the basis reduction requires at most
1
2 (n − k)2l3(l + 1)2 finite field operations. Therefore, for the re-
encoding transformed variants, the MM complexity would be
O(2η(n − k)2l5) and O((n − k)2l5) in the ACD and the KV
algorithms, respectively.

Compared with the analysis of Section 6.1, re-encoding
transform can help reduce the MM complexity by a factor of k /n.
Therefore, re-encoding transform is more effective in reducing
complexity for high rate codes. Table 2 shows the numerical results
of the MM complexity when applying the re-encoding transform,
verifying the above analysis. It again shows with the same
decoding output cardinality, the ACD-MM algorithm yields a much
lower complexity. By comparing Tables 1 and 2, the re-encoding
transform can also reduce the MM complexity by a factor of k /n.

7 Simulation results
This section presents simulation results of the ACD and the KV
algorithms. They are obtained over the additive white Gaussian
noise channel using BPSK modulation. Their competency in terms
of decoding performance and complexity will be shown, giving
more practical insights. Again, the decoding complexity is
measured as the number of finite field operations that is required to
decode a codeword, including the re-encoding transform and the
root-finding. The ACD and the KV algorithms that employ
Koetter's interpolation are denoted as the ACD-Koetter and the
KV-Koetter algorithms, respectively.

7.1 Performance comparison

Figs. 6 and 7 show the ACD and the KV performance in decoding
the (63, 31) RS code, respectively, where the decoding
performance is measured by frame error rate. Both of the ASD
algorithms outperform the BM algorithm thanks to their soft
decoding feature. Fig. 6 shows when m = 1, the ACD algorithm
cannot outperform the GMD algorithm. But when m = 5, each
Chase decoding trial can correct at most 18 symbol errors. As a
result, the ACD performance is better than the GMD. Meanwhile,
Fig. 7 shows the KV algorithm outperforms the GMD algorithm
when l ≥ 2. By comparing Figs. 6 and 7, when m = 1, the ACD
algorithm with η = 2, 3, 4 yields the same decoding output

Table 1 Interpolation complexity of the ACD-MM and KV-
MM algorithms

(63, 31) RS (63, 47) RS (63, 55) RS
ACD-MM (m, l, η) = (1, 1, 3) 1.16 × 105 9.96 × 104 9.22 × 104

(m, l, η) = (5, 7, 3) 5.56 × 107 — —
KV-MM l = 4 1.68 × 106 1.22 × 106 1.01 × 106

l = 8 2.84 × 107 1.95 × 107 1.45 × 107

Table 2 Interpolation complexity of the re-encoding
transformed ACD-MM and KV-MM algorithms

(63, 31) RS (63, 47) RS (63, 55) RS
ACD-MM (m, l, η) = (1, 1, 3) 7.72 × 104 3.01 × 104 1.41 × 104

(m, l, η) = (5, 7, 3) 3.50 × 107 — —
KV-MM l = 4 1.13 × 106 3.05 × 105 1.52 × 105

l = 8 8.62 × 106 1.91 × 106 8.47 × 105

8 IET Commun.
© The Institution of Engineering and Technology 2019

cardinality as the KV algorithm with l = 4, 8, 16, respectively.
Under such a benchmark, the KV algorithm yields a better
decoding performance.

Fig. 8 compares the two ASD algorithms in decoding the
popular (255, 239) RS code. Note that the ACD algorithm

performs with m = 1. For this high rate code, both of the ASD
algorithms outperform the BM and the GMD algorithms. With the
same decoding output cardinality, e.g. the ACD (η = 3) and the KV
(l = 8), and the ACD (η = 4) and the KV (l = 16), the KV
algorithm still outperforms the ACD algorithm.

7.2 Complexity comparison

Tables 3 and 4 show the ACD and the KV complexity in decoding
the (63, 31) RS code, respectively. Complexity of the ACD-MM
and the ACD-Koetter algorithms are compared first. When m = 1,
the two interpolation complexity are similar. However, the ACD-
MM algorithm can decode the test-vectors in parallel, leveraging
the decoding latency to that of a single decoding event. This is an
advantage over the ACD-Koetter algorithm [9] whose low
complexity is forged in a binary tree growth fashion. When m = 5,
the MM interpolation yields a much lower complexity than
Koetter's interpolation despite whether the re-encoding transform is
applied. For the KV algorithm, the MM interpolation also exhibits
a lower complexity than Koetter's interpolation. Note that Fig. 7
shows performance of the ACD (m = 1, η = 10) is similar to that of
the KV (l = 4). Tables 3 and 4 show that the KV-MM algorithm is
less complex, despite whether the re-encoding transform is applied.
On the other hand, with a similar decoding complexity, e.g. the
ACD-MM (m = 1, η = 10) and the KV-MM (l = 8), the KV
decoding outperforms.

Table 5 further shows complexity of the re-encoding
transformed ACD and KV algorithms in decoding the (255, 239)
RS code. It shows that MM interpolation yields a lower complexity
for both of the ASD algorithms. Recalling Fig. 8, the ACD with
η = 3, 4 performs similarly as the KV with l = 4, 8, respectively.
Table 5 shows the ACD algorithm is less complex using both of the
interpolation techniques. Hence, for high rate codes, the ACD
algorithm becomes a better option in practice. Moreover,
complexity of the BF-ACD algorithm [10] is shown in Table 5.
Note that it also applies Koetter's interpolation. With the same η
value, the BF-ACD algorithm is slightly more complex than the
other two ACD algorithms. This extra computational cost is due to
the backward interpolation of the BF-ACD algorithm, in which the
polynomial size is always greater than that of the others.

7.3 Effectiveness of complexity reduction

Table 6 shows the reduced complexity of the ACD-MM algorithms
yielded by the proposed approach of Section 5. It can be seen that
as the SNR increases, the complexity reducing approach becomes
more effective. This is because more decoding events would yield
degRu(x) < k and ru also satisfies the ML criterion. In decoding the
(63, 31) RS code, the research shows when SNR = 8 dB, 26% of
the decoding events are terminated by the above criterion. When
SNR = 9 dB, this portion raises to 74%. Consequently, the
complexity can be reduced by at most an order of magnitude. A
similar phenomenon can also be observed for the case of using the
re-encoding transform.

Table 7 further shows the reduced complexity of the re-
encoding transformed KV-MM algorithm with l = 4. It again
shows a significant complexity reduction at high SNR. Moreover,
Tables 6 and 7 also show for the original ACD-MM and the KV-
MM algorithms, their complexity also decreases with the SNR.
This is due to the fact that in the high SNR region, many of the
constructed basis would already be the desired Gröbner basis (they
are already in the weak Popov form). The following basis reduction
can be skipped.

Fig. 6  Performance of the ACD algorithm in decoding the (63, 31) RS
code

Fig. 7  Performance of the KV algorithm in decoding the (63, 31) RS code

Fig. 8  Performance of the (255, 239) RS code

Table 3 Complexity of the ACD algorithm in decoding the
(63, 31) RS code
(m, l, η) W/o re-encoding With re-encoding

ACD-MM ACD-Koetter ACD-MM ACD-Koetter
(1, 1, 3) 2.77 × 105 3.30 × 105 2.11 × 105 1.71 × 105

(5, 7, 3) 6.22 × 107 1.97 × 108 3.83 × 107 7.43 × 107

(1, 1, 10) 3.01 × 107 2.63 × 107 1.37 × 107 1.16 × 107

Table 4 Complexity of the KV algorithm in decoding the
(63, 31) RS code
l W/o re-encoding With re-encoding

KV-MM KV-Koetter KV-MM KV-Koetter
4 1.82 × 106 1.59 × 107 1.25 × 106 6.16 × 106

8 3.01 × 107 3.50 × 108 9.84 × 106 1.10 × 108

Table 5 Complexity of the re-encoding transformed ACD
and KV algorithms in decoding the (255, 239) RS code
(m, l, η) ACD-MM ACD-

Koetter
BF-ACD

[10]
l KV-MM KV-

Koetter
(1, 1, 3) 1.92 × 106 2.58 × 106 2.82 × 106 4 6.54 × 106 1.06 × 108

(1, 1, 4) 3.77 × 106 4.65 × 106 5.49 × 106 8 4.27 × 107 3.24 × 108

IET Commun.
© The Institution of Engineering and Technology 2019

9

8 Conclusions
This paper has presented the low-complexity ACD-MM and KV-
MM algorithms for RS codes. Their interpolation are realised by
the MM technique which constructs a module basis and further
reduces it into the Gröbner basis. Re-encoding transformed variants
of the two ASD algorithms have also been presented. They yield a
smaller MM complexity by reducing the degree of module
generators. Moreover, a complexity reducing approach has been
proposed for the ASD algorithms based on assessing the degree of
module seeds. Complexity analysis has shown that both the MM
interpolation and the re-encoding transform are more effective in
yielding a low complexity for high rate codes. These results fall
into the interest of practice where high rate codes are favoured.
Simulation results have verified that the MM interpolation enables
a significant complexity reduction for the two ASD algorithms,
despite whether the re-encoding transform is applied. A
comprehensive decoding performance and complexity comparison
between the two ASD algorithms has also been conducted. For
medium rate codes, the KV algorithm outperforms the ACD
algorithm under a similar decoding expenditure. While for high
rate codes, the ACD algorithm prevails. Finally, numerical results
have demonstrated the effectiveness of the proposed complexity
reducing approach.

9 Acknowledgments
This work is sponsored by the National Natural Science
Foundation of China (NSFC) with project ID 61671486 and
International Program for PhD candidates, Sun Yat-sen University.

10 References
[1] Berlekamp, E.: ‘Algebraic coding theory’ (McGraw-Hill, New York, 1968)
[2] Massey, J.: ‘Shift register synthesis and BCH decoding’, IEEE Trans. Inf.

Theory, 1969, 15, (1), pp. 122–127
[3] Kotter, R.: ‘Fast generalized minimum-distance decoding of algebraic-

geometry and Reed-Solomon codes’, IEEE Trans. Inf. Theory, 1996, 42, (3),
pp. 721–737

[4] Sudan, M.: ‘Decoding of Reed-Solomon codes beyond the error-correction
bound’, J. Complexity, 1997, 13, (1), pp. 180–193

[5] Guruswami, V., Sudan, M.: ‘Improved decoding of Reed-Solomon and
algebraic-geometric codes’, IEEE Trans. Inf. Theory, 1999, 45, (6), pp. 1757–
1767

[6] Koetter, R: ‘On algebraic decoding of algebraic-geometric and cyclic codes’
(Linköping University, Linköping, Sweden, 1996)

[7] Nielsen, R., Høholdt, T.: ‘Decoding Reed-Solomon codes beyond half the
minimum distance’, Coding Theory, Cryptography Related Areas, 2000, pp.
221–236

[8] Koetter, R., Vardy, A.: ‘Algebraic soft-decision decoding of Reed-Solomon
codes’, IEEE Trans. Inf. Theory, 2003, 49, (11), pp. 2809–2825

[9] Bellorado, J., Kavčić, A.: ‘Low-complexity soft-decoding algorithms for
Reed-Solomon codes – part I: an algebraic soft-in hard-out chase decoder’,
IEEE Trans. Inf. Theory, 2010, 56, (3), pp. 945–959

[10] Zhang, X., Zheng, Y.: ‘Generalized backward interpolation for algebraic soft-
decision decoding of Reed-Solomon codes’, IEEE Trans. Commun., 2013, 61,
(1), pp. 13–23

[11] Wu, Y.: ‘New list decoding algorithms for Reed-Solomon and BCH codes’,
IEEE Trans. Inf. Theory, 2008, 54, (8), pp. 3611–3630

[12] Koetter, R., Vardy, A: ‘A complexity reducing transformation in algebraic list
decoding of Reed-Solomon codes’. Proc. IEEE Information Theory Workshop
(ITW), Paris, France, 2003, pp. 10–13

[13] Koetter, R., Ma, J., Vardy, A.: ‘The re-encoding transformation in algebraic
list-decoding of Reed-Solomon codes’, IEEE Trans. Inf. Theory, 2011, 57,
(2), pp. 633–647

[14] Chen, L., Tang, S., Ma, X.: ‘Progressive algebraic soft-decision decoding of
Reed-Solomon codes’, IEEE Trans. Commun., 2013, 61, (2), pp. 433–442

[15] O'Keeffe, H., Fitzpatrick, P.: ‘Gröbner basis solutions of constrained
interpolation problems’, Linear Algebr. Appl., 2002, 351, pp. 533–551

[16] Lee, K., O'Sullivan, M.: ‘List decoding of Reed-Solomon codes from a
Gröbner basis perspective’, J. Symb. Comput., 2008, 43, (9), pp. 645–658

[17] Lee, K., O'Sullivan, M: ‘An interpolation algorithm using Gröbner bases for
soft-decision decoding of Reed-Solomon codes’. Proc. IEEE Int. Symp.
Inform. Theory (ISIT), Seattle, USA, 2006, pp. 2032–2036

[18] Ma, J., Vardy, A.: ‘A complexity reducing transformation for the Lee-
O'Sullivan interpolation algorithm’. Proc. IEEE Int. Symp. Information
Theory (ISIT), Nice, France, 2007, pp. 1986–1990

[19] Mulders, T., Storjohann, A.: ‘On lattice reduction for polynomial matrices’, J
Symb. Comput, 2003, 35, (4), pp. 377–401

[20] Alekhnovich, M.: ‘Linear Diophantine equations over polynomials and soft
decoding of Reed-Solomon codes’, IEEE Trans. Inf. Theory, 2005, 51, (7),
pp. 2257–2265

[21] Cohn, H., Heninger, N.: ‘Ideal forms of Coppersmith's theorem and
Guruswami-Sudan list decoding’, Adv. Math. Commun., 2015, 9, (3), pp. 311–
339

[22] Jeannerod, C.P., Neiger, V., Schost, É., et al.: ‘Computing minimal
interpolation bases’, J. Symb. Comput., 2017, 83, pp. 272–314

[23] Beelen, P., Høholdt, T., Nielsen, J., et al.: ‘On rational interpolation-based list-
decoding and list-decoding binary Goppa codes’, IEEE Trans. Inf. Theory,
2013, 59, (6), pp. 3269–3281

[24] Nielsen, J.S.R., Zeh, A.: ‘Multi-trial Guruswami-Sudan decoding for
generalised Reed-Solomon codes’, Des. Codes Cryptogr., 2014, 73, (2), pp.
507–527

[25] Chen, L., Bossert, M.: ‘Algebraic Chase decoding of Reed-Solomon codes
using module minimisation’. Proc. Int. Symp. Information Theory
Applications (ISITA), Monterey, USA, 2016, pp. 310–314

[26] Nielsen, J.: ‘Power decoding Reed-Solomon codes up to the Johnson radius’,
Adv. Math. Commun., 2018, 12, (1), pp. 81–106

[27] Roth, R., Ruckenstein, G.: ‘Efficient decoding of Reed-Solomon codes
beyond half the minimum distance’, IEEE Trans. Inf. Theory, 2000, 46, (1),
pp. 246–257

[28] Nielsen, J.: ‘List decoding of algebraic codes’. Technical University of
Denmark, Denmark,, 2013

[29] Kaneko, T., Nishijima, T., Inazumi, H., et al.: ‘An efficient maximum-
likelihood-decoding algorithm for linear block codes with algebraic decoder’,
IEEE Trans. Inf. Theory, 1994, 40, (2), pp. 320–327

11 Appendix: Proof of Lemma 7
 
 

Proof: With the module generators defined by (35), it holds

Table 6 Reduced complexity of the ACD-MM algorithms in decoding the (63, 31) RS code
η = 3 SNR, dB 4 5 6 7 8 9 10
m = 1, l = 1 original 2.77 × 105 2.73 × 105 2.65 × 105 2.57 × 105 2.52 × 105 2.50 × 105 2.49 × 105

w/o re-enc. reduced 2.77 × 105 2.73 × 105 2.64 × 105 2.50 × 105 1.94 × 105 7.92 × 104 1.98 × 104

m = 5, l = 7 original 6.22 × 107 5.68 × 107 4.59 × 107 4.13 × 107 3.63 × 107 3.18 × 107 3.01 × 107

w/o re-enc. reduced 6.20 × 107 5.66 × 107 4.57 × 107 4.04 × 107 2.88 × 107 9.87 × 106 1.33 × 106

m = 5, l = 7 original 3.83 × 107 3.19 × 107 2.07 × 107 1.43 × 107 1.12 × 107 9.44 × 106 8.82 × 106

with re-enc. reduced 3.83 × 107 3.18 × 107 2.05 × 107 1.41 × 107 9.07 × 106 3.08 × 106 4.54 × 105

Table 7 Reduced complexity of the re-encoding transformed KV-MM algorithm
l = 4 SNR, dB 4 5 6 7 8 9 10
(63, 55) original 7.51 × 105 6.26 × 105 2.81 × 105 1.88 × 105 1.81 × 105 1.79 × 105 1.79 × 105

reduced 7.50 × 105 5.77 × 105 1.84 × 105 4.99 × 104 1.72 × 104 5.54 × 103 2.73 × 103

(255, 239) original 6.54 × 106 5.99 × 106 5.61 × 106 2.61 × 106 2.32 × 106 2.29 × 106 2.29 × 106

reduced 6.54 × 106 5.99 × 106 5.54 × 106 1.90 × 106 6.08 × 105 1.58 × 105 4.27 × 104

10 IET Commun.
© The Institution of Engineering and Technology 2019

Pt(x, yψ(x))

= ∏
j = 0

n − 1
(x − αj)m j(t) ∏

ε = 0

t − 1
(yψ(x) − Fε(x))

= ∏
j ∈ Ῡ

(x − αj)m j(t) ∏
j ∈ Υ

(x − αj)m j(t) ∏
ε = 0

t − 1
(yψ(x) − Fε(x)) .

(46)

Based on Fε(x) of (38) and the fact that wj
(ε) = 0, ∀ j ∈ Λε (see

(47)) , where

Tε(x) = ∑
j ∈ Ῡ ∪ Λ̄ε

w~ j
(ε) ∏

j′ ∈ Ῡ ∪ Λ̄ε, j′ ≠ j
(x − αj′)

and

w~ j
(ε) = wj

(ε)

∏ j′ = 0, j′ ≠ j
n − 1 (αj − αj′)

.

An equivalent expression of ∏ε = 0
t − 1 ∏ j ∈ Λε (x − αj) can now be

derived. When ε = 0, Λ0 = Υ and
∏ j ∈ Λ0 (x − αj) = ∏ j ∈ Υ (x − αj). Armed with the transformed lists
of (37), when ε ≥ 1, if j ∈ Λε, m j(ε − 1) − m j(ε) = 1. Otherwise,
m j(ε − 1) = m j(ε). Therefore

∏
ε = 0

t − 1
∏
j ∈ Λε

(x − αj)

= ∏
j ∈ Υ

(x − αj) ⋅ ∏
ε = 1

t − 1
∏
j ∈ Υ

(x − αj)m j(ε − 1) − m j(ε)

= ϕ(x) ⋅ ∏
j ∈ Υ

(x − αj)1 − m j(t − 1) .

(48)

where ϕ(x) = ∏ j ∈ Υ (x − αj)m j(0). Based on (46)–(48)

Pt(x, yψ(x)) = ϕ(x) ⋅ ∏
j ∈ Ῡ

(x − αj)m j(t) ⋅ Ut(x)

× ∏
ε = 0

t − 1
y ∏

j ∈ Λ̄ε

(x − αj) − Tε(x) ,

where Ut(x) = ∏ j ∈ Υ (x − αj)1 − (m j(t − 1) − m j(t)) = ∏ j ∈ Λ̄t (x − αj). As
a result

Pt(x, yψ(x)) = ϕ(x) ⋅ ∏
j ∈ Ῡ

(x − αj)m j(t) ⋅ ∏
j ∈ Λ̄t

(x − αj)

× ∏
ε = 0

t − 1
y ∏

j ∈ Λ̄ε

(x − αj) − Tε(x) .

□

∏
ε = 0

t − 1
(yψ(x) − Fε(x))

= ∏
ε = 0

t − 1
yψ(x) − ∑

j = 0

n − 1
wj

(ε) ∏
j′ = 0, j′ ≠ j

n − 1 x − αj′
αj − αj′

= ∏
ε = 0

t − 1
y ∏

j ∈ Λε

(x − αj) ∏
j ∈ Λ̄ε

(x − αj) − ∏
j ∈ Λε

(x − αj) ⋅ Tε(x)

= ∏
ε = 0

t − 1
∏
j ∈ Λε

(x − αj) ⋅ ∏
ε = 0

t − 1
y ∏

j ∈ Λ̄ε

(x − αj) − Tε(x) ,

(47)

IET Commun.
© The Institution of Engineering and Technology 2019

11

