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Iterative Soft Decoding of Reed-Solomon
Convolutional Concatenated Codes

Li Chen, Member, IEEE

Abstract—Reed-Solomon convolutional concatenated (RSCC)
code is a popular coding scheme whose application can be
found in wireless and space communications. However, iterative
soft decoding of the concatenated code is yet to be developed.
This paper proposes a novel iterative soft decoding algorithm
for the concatenated code, aiming to better exploit its error-
correction potential. The maximum a posteriori (MAP) algorithm
is used to decode the inner convolutional code. Its soft output
will be deinterleaved and then given to the soft-in-soft-out
(SISO) decoder of the outer Reed-Solomon (RS) code. The RS
SISO decoder integrates the adaptive belief propagation (ABP)
algorithm and the Koetter-Vardy (KV) list decoding algorithm,
attempting to find out the transmitted message. It feeds back both
the deterministic and the extrinsic probabilities of RS coded bits,
enabling the soft information to be exchanged between the inner
and outer decoders. An extrinsic information transfer (EXIT)
analysis of the proposed algorithm is presented, analyzing its
iterative decoding behavior for RSCC codes. The EXIT analysis
also leads to the design insight of inner code in the concatenation.
Computational complexity of the proposed algorithm is also
analyzed. Finally, the iterative decoding performance is shown
and its advantage over the existing decoding algorithms is
demonstrated.

Index Terms—Concatenated codes, convolutional codes, itera-
tive soft decoding, Reed-Solomon codes.

I. INTRODUCTION

CONCATENATED codes were first introduced by Forney
in [1]. It has been shown that concatenating a nonbinary

outer code and a binary inner code could constitute a capacity
approaching error-correction code with a polynomial-time
decoding complexity. The legacy Reed-Solomon convolutional
concatenated (RSCC) code is a popular example, in which the
Reed-Solomon (RS) code and the convolutional code are the
outer code and inner code, respectively. The inner code is good
at correcting spread bit errors, while the outer code is good
at correcting burst errors, enabling the RSCC codes’ strong
error-correction capability and their application can be widely
found in wireless and space communications [2] - [4].

The classical decoding scheme for RSCC codes employs
the Viterbi algorithm [5] and the Berlekamp-Massey (BM)
algorithm [6] to decode the inner and outer codes, respectively.
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A block interleaver (deinterleaver) is employed between the
inner and outer encoders (decoders) in order to spread the
burst errors that are resulted from the Viterbi decoding. An
improved decoding algorithm that performs repeated decoding
trials for RSCC codes was proposed in [7]. It is a prim-
itive attempt to decode the concatenated codes iteratively.
However, since the BM algorithm is used to decode the
outer code, preventing the soft information being given as
the feedback. Another attempt to improve the error-correction
performance is to utilize a stronger RS decoding algorithm,
e.g., the Guruswami-Sudan (GS) algorithm [8] [9] and Koetter-
Vardy (KV) algorithm [10]. Utilizing the KV algorithm in the
repeated decoding mechanism of [7] was considered in [11].
Meanwhile, utilizing the RS decoding output statistics to
form the soft feedback information for iterative decoding the
concatenated codes was proposed in [12]. Finally, collabora-
tive decoding of RS codes has also been considered for the
concatenated codes [13]. It enables different RS codewords
to be decoded jointly, allowing the BM algorithm to correct
symbol errors beyond the half distance bound for each RS
code.

The development of turbo codes [14] showed that allowing
two decoders to exchange soft information iteratively may
yield a capacity approaching performance. However, a truly
iterative soft decoding algorithm for RSCC codes is yet to
be developed. This is due to the challenge in designing a
soft-in-soft-out (SISO) decoder for RS codes. The earlier RS
SISO decoding attempt was the maximum likelihood (ML)
decoding that utilizes the code’s binary image [15] [16]. But
its complexity grows exponentially with the length of the code.
Recently, SISO decoding of RS codes utilizing the adaptive
belief propagation (ABP) algorithm was proposed in [17] [18].
The ABP algorithm enhances the reliability of the soft received
information and passes it to the following algebraic decoding,
i.e., the BM or KV algorithm. Such an approach was later
extended to decode the general algebraic-geometric codes
in [19].

The profound consequence of the ABP algorithm is the
extrinsic probabilities of RS coded bits can be calculated
based on the adapted Tanner graph of the code with a
moderate complexity. As a result, the soft information of RS
coded bits can be iterated in a turbo decoding mechanism
for RSCC codes. This paper proposes a novel iterative soft
decoding algorithm for RSCC codes. The maximum a pos-
teriori (MAP) [20] algorithm is used to decode the inner
code, delivering the extrinsic probabilities for the interleaved
RS coded bits. They are deinterleaved and mapped to the
a priori probabilities of the RS coded bits. The RS SISO
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Fig. 1. Block diagram of the RSCC encoder.

decoding has two successive stages. The first stage is the bit
reliability oriented ABP algorithm that improves the reliability
of the received information. It delivers both the extrinsic
probabilities and the a posteriori probabilities for the RS
coded bits. The a posteriori probabilities will be utilized by
the second RS decoding stage, i.e., KV algorithm. If the KV
decoding is successful, deterministic probabilities of each RS
coded bit will be given as the feedback. Otherwise, extrinsic
probabilities that are yielded by the ABP algorithm will be
fed back. They are then interleaved and mapped to the a
priori probabilities of the interleaved RS coded bits for the
next round MAP decoding. The proposed algorithm allows the
extrinsic information of RS coded bits to be iterated between
the inner and outer SISO decoders efficiently. Hence, it can
well exploit the error-correction potential of RSCC codes.
An extrinsic information transfer (EXIT) characteristics of the
proposed algorithm is analyzed, leading to the insights of its
iterative decoding behavior and design criteria of the inner
and outer codes. The decoding complexity of the algorithm
is also analyzed. Our simulation results show that it can
outperform the classical Viterbi-BM algorithm with up to 2dB
gain. Since RSCC codes are widely employed in different
communication systems, it is important to design a decoding
algorithm that can exploit their error-correction potential. It
has been aware that upgrading a communication system can be
expensive, e.g., to replace the RSCC codes by another coding
scheme in space communications would involve launching a
new satellite. It will be of economic interest to achieve a more
reliable communication through upgrading the existing code’s
decoding system. The proposed work meets this end.

The rest of the paper is organized as the follows: Sec-
tion II presents the background knowledge of RSCC codes.
Section III presents the iterative soft decoding algorithm.
Section IV presents the EXIT analysis of the proposed al-
gorithm. Sections V and VI analyze its decoding complexity
and performance, respectively. Finally, Section VII concludes
the paper.

II. THE RSCC CODES

Let Fq = {ρ1, ρ2, . . . , ρq} denote the finite field of size
q. In this paper, it is assumed that Fq is an extension field
of F2 as q = 2ω, where ω is a positive integer. Let Fq[x]
and Fq[x, y] denote the rings of univariate and bivariate
polynomials defined over Fq , respectively. The encoder block
diagram of RSCC codes is shown by Fig. 1. There is a block
interleaver between the inner and outer encoders, which has
a vertical read-in and horizontal read-out interleaving pattern.
Let D denote the depth of the block interleaver indicating
there are D RS codewords being interleaved, and γ denote
the index of the RS codeword where 1 ≤ γ ≤ D. Without
specifically mentioning, D is set as 10 in the paper.

The message vector of an (n, k) RS code can be written as

U
(γ)

= [U
(γ)
1 U

(γ)
2 . . . U

(γ)
k ] ∈ F

k
q , (1)

where n and k are the length and dimension of the code,
respectively, and n = q − 1. The superscript (γ) denotes the
variable belongs to the γth RS codeword. The generator matrix
G of the RS code is

G =

⎛
⎜⎜⎜⎝

1 1 · · · 1
1 α . . . αn−1

...
...

. . .
...

1 αk−1 . . . α(k−1)(n−1)

⎞
⎟⎟⎟⎠ , (2)

where α is a primitive element of Fq and Fq =
{0, 1, α, . . . , αq−2}. The γth RS codeword is generated by

C
(γ)

= U
(γ) · G = [C

(γ)
1 C

(γ)
2 . . . C(γ)

n ] ∈ F
n
q . (3)

In order to perform SISO decoding for an RS code, its parity-
check matrix H needs to be known. For an (n, k) RS code, it
is defined as

H =

⎛
⎜⎜⎜⎝

1 α · · · αn−1

1 α2 . . . α2(n−1)

...
...

. . .
...

1 αn−k . . . α(n−k)(n−1)

⎞
⎟⎟⎟⎠ . (4)

Let σ(x) ∈ F2[x] denote a primitive polynomial of Fq , its
companion matrix A is an ω × ω binary matrix [21]. The
binary image of H can be generated by mapping its entries
αi �→ Ai and i = 0, 1, . . . , q−2, resulting in the binary parity-
check matrix Hb with size (n− k)ω × nω.

After the D RS codewords have been generated, they will
be interleaved by the block interleaver. The γth interleaved
RS codeword is

C′(γ) = [C
′(γ)
1 C

′(γ)
2 . . . C′(γ)

n ] ∈ F
n
q . (5)

Note that C′(γ) may not be a valid RS codeword. All the
D interleaved RS codewords C′(1), C′(2), . . . , C′(D)

are then
converted into a binary interleaved coded bit sequence to form
the input to the inner encoder

c′1, c
′
2, . . . , c

′
nω, c

′
nω+1, c

′
nω+2, . . . , c

′
2nω, . . . ,

c′(D−1)nω+1, c
′
(D−1)nω+2, . . . , c

′
Dnω. (6)

The transfer functions [22] G(x) ∈ F2[x] of the convolutional
code can be written as

G(x) =

�∑
j=0

gjx
j , (7)

where � denotes the number of shift registers in the convo-
lutional encoder and the code has Ω = 2� states. Note that
� zero padding bits c′Dnω+1, . . . , c

′
Dnω+� will be appended

to the end of sequence (6). In this paper, the rate 1/2 convo-
lutional code will be considered. For simplicity, we will now
denote the transfer functions of the inner code in octal form.
For example, a rate 1/2 4-state nonsystematic inner code with
transfer functions (G1(x) = 1 + x2, G2(x) = 1 + x + x2) is
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Fig. 2. Block diagram of the iterative soft decoding algorithm.

denoted as (5, 7)8. Similarly, its systematic feedback counter-
part with transfer functions (1, G1(x)/G2(x) = (1+x2)/(1+
x + x2)) is denoted as (1, 5/7)8. With the above mentioned
input, the convolutional codeword is

b = [b1 b2 · · · bN ] ∈ F
N
2 , (8)

where N = 2(Dnω +�) and the rate of the RSCC code is
k/2n 1. Note that variable rates of the concatenated codes can
be realized by puncturing the output of the inner code.

III. ITERATIVE SOFT DECODING

The block diagram of the proposed iterative soft decoding
algorithm is shown by Fig. 2. We use Pa, Pe and Pp to denote
the a priori probability, the extrinsic probability and the a
posteriori probability, respectively, and

Pp = Pa · Pe. (9)

For the probabilities, superscripts (1) and (2) are used to
indicate they are associated with the MAP algorithm and
the ABP algorithm, respectively. Moreover, Pch denotes the
channel observations which will be left unchanged during
the iterations. P̃ denotes the deterministic probability that
is estimated by KV decoding and P̃ ∈ {0, 1}. With the
channel observations Pch and the a priori probabilities P (1)

a

of the interleaved RS coded bits, the MAP algorithm is
performed to determine the extrinsic probabilities P

(1)
e of

the interleaved RS coded bits. They are then deinterleaved
and mapped to the a priori probabilities P (2)

a of RS coded
bits. For each RS codeword, the ABP algorithm is performed,
delivering the extrinsic probabilities P (2)

e and the a posteriori
probabilities P (2)

p of RS coded bits. With P (2)
p , KV algorithm

is performed to retrieve the transmitted message. Once it is
found, the deterministic probabilities P̃ of the corresponding
RS coded bits are fed back. Otherwise, the system feeds back
the extrinsic probabilities P (2)

e . Both P̃ and P
(2)
e are then

interleaved and mapped back to the a priori probabilities P (1)
a

for the next round MAP decoding. The decoding terminates
once all the RS codewords have been decoded or the maximal
iteration number NITER is reached.

A. SISO Decoding of the Inner Code

SISO decoding of the inner code is realized by the MAP
algorithm [20]. Let S = {1, 2, . . . ,Ω} denote the set of states
of the code’s trellis and θ ∈ {0, 1}. Given Y ∈ R as the
received vector, the channel observations can be obtained as

1Since � � Dnω, rate loss caused by the zero padding bits is ignorable.

Pch,j(θ) = Pr[bj = θ | Y], (10)

where j = 1, 2, . . . , N . The a priori probabilities of the
interleaved RS coded bits c′j are

P
(1)
a,j (θ) = Pr[c′j = θ], (11)

where j = 1, 2, . . . , Dnω+�. At the beginning, the a priori
probabilities are initialized as P (1)

a,j (0) = P
(1)
a,j (1) = 0.5 for

j = 1, 2, . . . , Dnω, and P
(1)
a,j (0) = 1 and P

(1)
a,j (1) = 0 for

j = Dnω + 1, . . . , Dnω +�. Let us assume that at the time
instant j, an input of c′j = θ corresponds to two coded bits of
b2j−1b2j = θ1θ2, where (θ1, θ2) ∈ {0, 1}. It triggers a trellis
state transition from state Xj to Xj+1, where (Xj ,Xj+1) ∈ S.
With the knowledge of Pch,j and P

(1)
a,j , the state transition

probability can be determined by

Γj(Xj ,Xj+1) = P
(1)
a,j (θ) · Pch,2j−1(θ1) · Pch,2j(θ2). (12)

The MAP algorithm will then perform the forward and back-
ward traces to determine the a posteriori probabilities of
interleaved RS coded bits c′j , which are defined as

P
(1)
p,j (θ) = Pr[c′j = θ | Y ]. (13)

Based on (9), the extrinsic probabilities of interleaved RS
coded bits c′j can be determined by

P
(1)
e,j (θ) = NE

P
(1)
p,j (θ)

P
(1)
a,j (θ)

(14)

for j = 1, 2, . . . , Dnω, and NE = (P
(1)
e,j (0) + P

(1)
e,j (1))

−1 is
a normalization factor.

Probabilities P
(1)
e,j (θ) are then deinterleaved. Since each

RS codeword symbol can be decomposed into ω bits, every
ω consecutive pairs of probability values (P

(1)
e,j (0), P

(1)
e,j (1))

are grouped to represent an RS codeword symbol during
the deinterleaving. Note that the inner SISO decoding can
also be executed using the log-MAP algorithm. But since we
would later show the outer SISO decoding is feeding back the
deterministic probabilities of 0 and 1, it is more convenient to
describe the inner SISO decoding as the MAP algorithm.

B. SISO Decoding of the Outer Code

SISO decoding of the outer code is realized by the ABP-
KV algorithm [17] [18]. By reading out each row of the
deinterleaver and mapping

P (1)
e �→ P (2)

a , (15)

we can obtain the a priori probability for each RS coded bit
cj . For simplicity, we will now describe the SISO decoding of
an RS codeword and hence drop the codeword index γ. Let

P
(2)
a,j (θ) = Pr[cj = θ] (16)

denote the a priori probabilities of the RS coded bits cj , where
j = 1, 2, . . . , nω. The a priori log-likelihood ratio (LLR)
value of cj can be determined by

La,j = ln
(P (2)

a,j (0)

P
(2)
a,j (1)

)
. (17)
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Consequently, the a priori LLR vector of an RS codeword can
be formed as

La = [La,1 La,2 . . . La,(n−k)ω . . . La,nω]. (18)

The ABP algorithm will first sort the a priori LLR values
based on their magnitudes |La,j|, yielding a refreshed bit
index sequence δ1, δ2, . . . , δ(n−k)ω , . . . , δnω which implies
|La,δ1 | < |La,δ2 | < · · · < |La,δ(n−k)ω

| < · · · < |La,δnω |. Since
a higher magnitude implies the bit is more reliable, we know
cδ1 , cδ2 , . . . , cδ(n−k)ω

are the (n − k)ω least reliable bits. Let
UR = {δ1, δ2, . . . , δ(n−k)ω} denote the set of the unreliable
bit indices and |UR| = (n − k)ω. Its complementary set is
URc = {δ(n−k)ω+1, δ(n−k)ω+2, . . . , δnω}. Based on the set
UR, the sorted a priori LLR vector is

L
UR

a = [La,δ1 La,δ2 · · · La,δ(n−k)ω
· · · La,δnω ]. (19)

The ABP algorithm will then perform Gaussian elimination
on matrix Hb, reducing the columns that correspond to the
unreliable bits to weight-1 columns. Let Υδ denote the weight-
1 column vector with 1 at its δth entry. For matrix Hb,
Gaussian elimination reduces column δ1 to Υ1, then reduces
column δ2 to Υ2, and etc. Gaussian elimination reduces the
first (n−k)ω independent columns implied by UR to weight-1
columns, resulting in an adapted parity-check matrix H′

b. This
is to prevent the propagation of the unreliable information
during the following BP process [17] [19].

Let huj ∈ {0, 1} denote the entry of matrix H′
b and let

U(j) = {u | huj = 1, ∀ 1 ≤ u ≤ (n− k)ω}, (20)

J(u) = {j | huj = 1, ∀ 1 ≤ j ≤ nω}. (21)

The iterative BP process is performed based on the Tanner
graph that is associated with matrix H′

b, yielding the extrinsic
LLR value for each RS coded bit by

Le,j =
∑

u∈U(j)

2 tanh−1
( ∏

τ∈J(u)\j
tanh

(La,τ

2

))
. (22)

After a number of BP iterations, the a posteriori LLR of each
RS coded bit is determined by

Lp,j = La,j + ηLe,j , (23)

where η ∈ (0, 1] is the damping factor [18]. Therefore, the a
posteriori LLR vector of an RS codeword can be formed as

Lp = [Lp,1 Lp,2 . . . Lp,(n−k)ω . . . Lp,nω]. (24)

The extrinsic LLR calculation of (22) can be simplified to

Le,j =
∑

u∈U(j)

( ∏
τ∈J(u)\j

sign(La,τ ) · min
τ∈J(u)\j

{|La,τ |}
)
. (25)

Given a random variable ψ, sign(ψ) = 0 if ψ ≥ 0, or
sign(ψ) = 1 otherwise. It is useful for decoding the long
RS codes, e.g., those with n = 255. For long RS codes, their
parity-check matrices still have a large number of short cycles
which will affect the credit of the extrinsic LLR calculation
(22).

The ABP algorithm itself is an iterative process. If there are

multiple Gaussian eliminations, the a posteriori LLR vector
will be mapped back to the a priori LLR vector by

Lp �→ La. (26)

Based on the updated La vector, the next round bit reliability
sorting and Gaussian elimination will be performed. Based on
each adapted matrix H′

b, a number of BP iterations will be
carried out, delivering both the extrinsic and a posteriori LLR
values. Hence, the extrinsic probabilities and the a posteriori
probabilities of RS coded bits can be determined by

P
(2)
e,j (0) =

1

1 + e−Le,j
, P

(2)
e,j (1) =

1

1 + eLe,j
, (27)

P
(2)
p,j (0) =

1

1 + e−Lp,j
, P

(2)
p,j (1) =

1

1 + eLp,j
. (28)

With the knowledge of the a posteriori probabilities, the
reliability matrix Π ∈ R

q×n w.r.t. an RS codeword C can
be formed. Its entry πμν is the a posteriori probability of an
RS codeword symbol Cν being the field symbol ρμ where
μ = 1, 2, . . . , q and ν = 1, 2, . . . , n. Let Ξμ denote the binary
representation of the field symbol ρμ and

Ξμ = [θ1θ2 · · · θω | ρμ =
ω∑

κ=1

θκα
ω−κ and θκ ∈ {0, 1}]. (29)

The symbol wise a posteriori probability πμν can be deter-
mined by

πμν = Pr[Cν = ρμ | Y ] =
∏

θκ∈Ξμ

P
(2)
p,(ν−1)ω+κ(θκ). (30)

Matrix Π will then be transformed into a multiplicity matrix
M ∈ N

q×n [10] with entries mμν . The cost of M is

Λ(M) =
1

2

∑
μ,ν

mμν(mμν + 1), (31)

which indicates the number of interpolation
constraints [9] [10]. It is also an important parameter
for defining the KV decoding complexity. Interpolation will
then be carried out, yielding an interpolated polynomial
Q ∈ Fq[x, y] [8] [9]. Finally, factorization will be performed
to find the y-roots of Q [23] [24]. Those y-roots are
polynomials of Fq[x] and their coefficients form the decoded
message candidates. Let L denote the factorization output list
and max{|L|} = l, meaning that there are at most l decoding
output candidates. By increasing the designed output list size
l, i.e., the y-degree of Q, KV algorithm will have a better
error-correction capability.

The KV decoding is considered to be successful if the
transmitted message is found. The decoding output validation
can either be realized by the ML criterion [25] or the cyclic
redundant check (CRC) code while the latter one will result
in a slight rate loss. The ML validation is performed with the
knowledge of the hard-decision received word, the decoded RS
codeword and matrix Π. It is presented as Lemma 1 in [26].
Having an accurate output validation is important for the
iterative soft decoding system, since the decoded RS bits will
become the known a priori information in the next round MAP
decoding. With a successful KV decoding, we can obtain the
deterministic probabilities of the decoded bits. Let ĉj ∈ {0, 1}
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denote the decoded RS bit, where j = 1, 2, . . . , nω. The
deterministic probability of ĉj is{

P̃j(0) = 1, P̃j(1) = 0, if ĉj = 0;

P̃j(0) = 0, P̃j(1) = 1, if ĉj = 1.
(32)

The deterministic probabilities will be left unchanged in the
rest of the iterations and those decoded RS codewords will
not be processed again.

If the KV decoding is not successful, the system will give
the extrinsic probabilities of (27) as feedback. Hence, after
SISO decodings of all the D RS codewords, the extrinsic
probabilities P (2)

e,j of the undecoded bits and the deterministic
probabilities P̃j of the decoded bits will be fed back. They
are then interleaved and mapped to the a priori probabilities
of the interleaved RS coded bits c′j as

P (2)
e , P̃ �→ P (1)

a . (33)

With the deterministic probabilities, the next round MAP
decoding is functioning with a portion of known a priori
information. It is important to mention that the identities of the
decoded bits need to be recognized by the iterative system. In
the next round MAP decoding, only the extrinsic probabilities
of the undecoded bits will be determined. This can be done
by using a binary indicator of size Dnω memorizing each
RS coded bit’s decoding status. The binary information will
also be interleaved alongside their corresponding probabilities
P

(2)
e or P̃ , so that the MAP algorithm knows identities of

the undecoded bits. Alternatively, the system can also identify
each bit’s decoding status by assessing its a priori probability
P

(1)
a . If P (1)

a = {0, 1}, it implies the bit has been decoded.
Otherwise, it implies the bit’s extrinsic probability needs to
be calculated. The decoding terminates when either all the D
RS codewords have been decoded or the maximal iteration
number NITER is reached.

Summarizing this section, the iterative soft decoding algo-
rithm is presented as in Algorithm 1.

Notice that iterations w.r.t. different parity-check matrix
adaptations will be terminated once the intended RS codeword
has been found. Then, the iterative algorithm will start to
decode the next undecoded RS codeword.

C. Performance Improving Approaches

Since the ABP-KV decoding of the outer code is not
optimal, the iterative decoding performance can be improved
by strengthening this outer SISO decoding. With achieving
more successful RS decoding events during each iteration,
more deterministic probabilities can be supplied to the next
round MAP decoding. To improve the decoding performance
of the outer code, we can improve the KV decoding by
increasing its factorization output list size l [10] [28], or
improve the ABP decoding by restructuring the original sorted
LLR vector L

UR

a [17] [18]. The latter approach is to spin
out a number of independent ABP-KV decoding processes
to find the transmitted message. By restructuring L

UR

a , more
coded bits’ corresponding columns can be reduced to weight-
1, warranting them the possibility to be corrected by the BP
process. Let NGR denote the designed number of unreliable

bit index groups and z = �nω/NGR	. The original sorted LLR
vector L

UR

a can be expressed as:

L
UR

a = [La,δ1 . . . La,δz La,δz+1 . . . La,δ2z . . .

La,δ(t−1)z+1
. . . La,δtz . . . La,δnω ], (34)

where t is the group index and 1 ≤ t ≤ NGR. If z < (n −
k)ω, UR(t) = {δ(t−1)z+1, . . . , δtz , δ1, . . . , δ(n−k)ω−z} and
the restructured sorted LLR vector becomes

L
UR(t)

a = [La,δ(t−1)z+1
. . . La,δ(n−k)ω−z︸ ︷︷ ︸
UR(t)

La,δ(n−k)ω−z+1

. . . La,δ(t−1)z
La,δtz+1 . . . La,δnω ]. (35)

Gaussian elimination will be performed on the first (n− k)ω
independent columns that are implied by UR(t). As a result,
the wrongly estimated bits in the original set URc will also
have the opportunity to be corrected by the BP decoding.

IV. THE EXIT ANALYSIS

This section utilizes the EXIT chart [27] to analyze the
iterative decoding behavior of the proposed algorithm, reveal-
ing the EXIT characteristics of the ABP-KV algorithm and
the interplay between the two SISO decoders. The analysis
will also lead to the design insight of inner code. In the
following analysis, we use I(1)

a (I(2)
a ) and I(1)

e (I(2)
e ) to denote

the mutual information of the a priori probabilities and the
extrinsic probabilities of the MAP algorithm (the ABP-KV
algorithm), respectively.

In analyzing the EXIT characteristics of the ABP-KV
algorithm, we take the decoding output of the D RS code-
words as an entity to measure the mutual information of the
feedback probabilities, including P (2)

e and P̃ . That says I(2)
e

is determined by

I(2)
e = 1− 1

Dnω

Dnw∑
j=1

Hb(P
(2)
j ), (36)

where P
(2)
j = P̃j if bit cj is decoded, or P (2)

j = P
(2)
e,j

otherwise, and Hb(P
(2)
j ) is the binary entropy function that is

defined as

Hb(P
(2)
j ) = −P (2)

j (0) log2 P
(2)
j (0)− P

(2)
j (1) log2 P

(2)
j (1).

(37)
Note that the ABP algorithm has a dynamic decoding structure
since its adapted matrix H′

b varies according to the sorted LLR
vector L

UR

a . In order to show a more statistical insight of the
ABP-KV algorithm’s EXIT characteristics, the EXIT curve of
the ABP-KV algorithm is obtained by running 1000 decoding
trails and calculating the average of I(2)

e . The input of the
ABP-KV algorithm is constituted by D a priori LLR vectors,
each of which is generated randomly according to the same
I(2)
a value.
Fig. 3 shows the EXIT characteristics of the ABP-KV

algorithm in decoding the (63, 50) RS code with different ABP
parameters (NADP, NBP), where NADP denotes the number
of matrix adaptations and NBP denotes the number of BP
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Algorithm 1 Iterative Soft Decoding of RSCC Codes

Initializations: Determine the channel observations Pch of (10), initialize the a priori probabilities P (1)
a of (11) and the

iteration index v = 1;
1: Perform the MAP algorithm to determine the a posteriori probabilities P (1)

p ;
2: For the undecoded bits, determine their extrinsic probabilities P (1)

e as in (14);
3: Perform deinterleaving and map the extrinsic probabilities P (1)

e to the a priori probabilities P (2)
a as in (15);

4: For each undecoded RS codeword {
5: For each parity-check matrix adaptation {
6: Form the a priori LLR vector La of (18);
7: Sort vector La, yielding a sorted a priori LLR vector L

UR

a of (19);
8: Perform Gaussian elimination on matrix Hb, yielding an adapted matrix H′

b;
9: Determine the extrinsic LLR values as in (22) (or (25)) by a number of BP iterations;

10: Determine the a posteriori LLR values as in (23) and form vector Lp of (24);
11: Update the a priori LLR vector La as in (26);
12: Determine the a posteriori probabilities of RS coded bits as in (28);
13: Determine the reliability matrix Π of an RS codeword as in (30);
14: Perform KV decoding to find out the transmitted RS codeword; }}
15: If all the D RS codewords have been found, terminate the decoding; Otherwise, determine the extrinsic probabilities of
the undecoded bits as in (27);
16: Perform interleaving and map both the extrinsic probabilities P (2)

e and the deterministic probabilities P̃ to the a priori
probabilities P (1)

a as in (33);
17: Update the iteration index as v = v + 1;
18: If v > NITER, terminate decoding; Otherwise, go to 1.
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Fig. 3. EXIT characteristics of the ABP-KV algorithm.

iterations w.r.t. each adapted matrix H′
b. The algorithm will

perform at most NADP Gaussian eliminations and NADPNBP

BP iterations. The KV algorithm is functioning with l = 10.
The shown decoding parameters are chosen to ensure both the
numbers of Gaussian eliminations and BP iterations are not
greater than 4, so that they have a similar complexity. It can be
seen that the ABP-KV algorithm is only competent in yielding
an improved extrinsic information with I(2)

e > I(2)
a when it

has a sufficiently good a priori input, e.g., with I(2)
a > 0.88.

This would inevitable push the pinch-off signal-to-noise ratio
(SNR) limit 2 (denoted as SNRoff) of the iterative decoder to
a higher value. On the other hand, it also shows that with the

2The SNR value at which the algorithm’s BER cliff starts to happen.

same a priori input, the ABP-KV decoding that runs multiple
Gaussian eliminations yields a better output. However, the
EXIT characteristics does not predict the performance com-
parison among those parameters. Table I shows the codeword
error rate (CER) of iterative decoding of the RS (63, 50) -
conv. (15, 17)8 code with different (NADP, NBP) permutations
in the additive white Gaussian noise (AWGN) channel. It can
be seen that with 2 iterations, the (4, 1) permutation performs
the best. But with 10 iterations, it is the (2, 1) permutation that
prevails. Overall, the (2, 2) permutation yields a compromised
performance and therefore it is chosen as the ABP decoding
parameter in this paper.

Fig. 4 shows the EXIT chart of the proposed algorithm in
decoding the RS (63, 50) - conv. (15, 17)8 code. Puncturing
with rates of 3/4 and 3/5 3 are utilized to adjust the code rate
to 0.529 and 0.661, respectively. It shows without puncturing,
at 1.7dB, an exit tunnel starts to exist between the MAP
and the ABP-KV algorithms’ EXIT curves. Therefore, the
decoder’s bit error rate (BER) cliff is predicted to start at
1.7dB. While for puncture rates of 3/4 and 3/5, the exit
tunnel starts to exist at 2.5dB and 3.3dB, respectively. The
BER performance of the concatenated code will be further
validated in Section VI.

Based on the above analysis, the EXIT chart can be further
utilized to design the inner code. With a chosen outer code,
the ABP-KV algorithm’s EXIT characteristics is determined.
The inner code should be chosen such that it can result in a
smaller SNRoff value. Table II shows with the (63, 50) RS code
as the outer code, the SNRoff values that are associated with

3If the first 4 consecutive convolutional coded bits are b1 b2 b3 b4, the rate
3/4 punctured output are b1 b2 b4. If the first 10 consecutive convolutional
coded bits are b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 , the rate 3/5 punctured output
are b1 b2 b4 b5 b8 b9.
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TABLE I
CER PERFORMANCE COMPARISON OF ITERATIVE DECODING OF THE RS (63, 50) - CONV. (15, 17)8 CODE, SNR = 3DB.

����������NITER

(NADP, NBP) (2, 2) (2, 1) (3, 1) (4, 1)

2 5.67× 10−4 6.70 × 10−4 2.86 × 10−4 2.10× 10−4

10 3.10× 10−5 3.00 × 10−5 7.33 × 10−5 1.90× 10−4
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Fig. 4. EXIT chart of iterative soft decoding of the RS (63, 50) - conv.
(15, 17)8 code with different puncturing rates.

TABLE II
PINCH-OFF SNR LIMITS FOR DIFFERENT RS (63, 50) - CONV. CODES.

Inner codes (15, 17)8 (1, 37/23)8 (1, 5/7)8 (1, 21/37)8
SNRoff 1.7dB 1.4dB 1.5dB 1.3dB

different choice of inner codes. It can be seen that utilizing a
systematic feedback inner code allows a lower SNRoff value
for the iterative decoder. However, more than solely looking
at the SNRoff value, the concatenated code’s performance is
also determined by its distance. An inner code with less states
will affect the concatenated code’s distance. Hence, although
the (1, 5/7)8 inner code yields a lower SNRoff value than the
(15, 17)8 inner code, the RS (63, 50) - conv. (1, 5/7)8 code
may not prevail in performance. However, if the inner codes
have the same number of states, the one that yields a lower
SNRoff value should enable the concatenated code to achieve
a better performance. Again, this inner code design analysis
will be further validated in Section VI.

V. COMPLEXITY ANALYSIS

The iterative soft decoding algorithm requires three types
of computations. They are the floating point operations that
are required by the MAP and BP decodings, the binary
operations that are required by Gaussian elimination and the
finite field arithmetic operations that are required by KV
decoding. We will first analyze the computational cost for each
of the decoding processes, then analyze the overall decoding
complexity.

With a chosen inner code that has Ω states and an input
message length of Dnω bits, SISO decoding of the inner

code requires O(12ΩDnω) floating point operations. For
SISO decoding of RS codes, Gaussian elimination requires
O(nω(nω − kω)2) binary operations. Let Θ denote the av-
erage row weight of matrix H′

b, each BP iteration requires
O((n− k)ωΘ2) floating point operations. Finally, performing
KV decoding with a factorization output list size of l requires
O(Λ2(M)(l + 1)) finite filed arithmetic operations.

With the above mentioned knowledge, we can now analyze
the worst case decoding complexity of the proposed algorithm
by considering all the predefined decoding parameters are
reached. To decode an RS codeword, there are at most
NADPNBP BP iterations. Therefore, together with the MAP
decoding, the proposed algorithm requires at most

O(NITER(12ΩDnω +NADPNBPD(n− k)ωΘ2)) (38)

floating point operations. During each iteration in decoding
the concatenated code, there are at most NADP Gaussian
eliminations and KV decodings in decoding an RS codeword.
Therefore, the proposed algorithm requires at most

O(NITERNADPDnω(nω − kω)2) (39)

binary operations, and at most

O(NITERNADPDΛ2(M)(l + 1)) (40)

finite field arithmetic operations. If we improve the outer SISO
decoding by increasing the NGR value, the algorithm will
then require at most O(NITER(12ΩDnω +NGRNADPNBPD
(n−k)ωΘ2)) floating point operations. Meanwhile, the binary
operations (39) and finite field arithmetic operations (40) will
also be scaled up by a factor of NGR. However, notice that the
actual decoding complexity is less than the above mentioned
computational scales. First, not all the outer SISO decodings
would require NADP matrix adaptations. The iterative ABP-
KV decoding terminates once the transmitted RS codeword
has been found. Second, since the decoded RS codeword will
not be processed again, the number of RS decoding events
decreases as the iteration progresses and it is quite often that
all the D RS codewords would have been decoded before the
maximal iteration number NITER is reached.

It can be realized that the proposed algorithm’s complexity
is far greater than the existing decoding algorithms. For
example, the classical one-shot Viterbi-BM algorithm requires
only O(2ΩDnω) floating point operations and O(Dn2) finite
filed arithmetic operations. While the iterative MAP-KV algo-
rithm [11] requires at most O(12NITERΩDnω) floating point
operations and O(NITER DΛ2(M)(l+1)) finite field arithmetic
operations. Addressing the complexity issue to facilitate the
iterative decoding will be the author’s future work.
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Fig. 5. Iterative soft decoding performance of the RS (15, 11) - conv. (5, 7)8
code.
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Fig. 6. Improved iterative soft decoding performance of the RS (15, 11) -
conv. (5, 7)8 code.

VI. PERFORMANCE ANALYSIS

This section analyzes the proposed algorithm’s error-
correction performance in the AWGN channel with using
the binary phase shift keying (BPSK) modulation. As men-
tioned in Section V, the ABP decoding parameters are set
as (NADP, NBP) = (2, 2). Without specifically mentioning, the
KV decoding parameter is set as l = 10 and the ABP decoding
is running with NGR = 1.

Fig. 5 shows the CER performance of iterative soft decoding
of the RS (15, 11) - conv. (5, 7)8 code. The RS decoding
output is validated by the ML criterion [25]. The performance
comparison benchmarks include the classical one-shot Viterbi-
BM algorithm, the iterative Viterbi-BM algorithm of [7] and
the iterative MAP-KV algorithm of [11]. It can be observed
that significant performance improvements can be made over
the benchmark schemes. For the existing iterative decoding
approaches, due to the lack of extrinsic information being
given as the RS decoding feedback, the performance improve-
ments made by iterations is limited. In contrast, the proposed
algorithm’s performance can be improved significantly by
increasing the number of iterations. Asymptotically, iterative
soft decoding with 30 iterations achieves almost 2dB gain
over the one-shot Viterbi-BM algorithm. However, as the
number of iterations increases, the achievable performance
improvement becomes marginal. Since increasing the iteration
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Fig. 7. Iterative soft decoding performance of the RS (63, 50) - conv.
(15, 17)8 code.
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Fig. 8. Iterative soft decoding performance of the punctured RS (63, 50) -
conv. (15, 17)8 code.

number results in a more complex decoding, our result shows
10 is a compromised iteration number by considering the
performance-complexity tradeoff. It is important to point out
that this RSCC code has a particularly short length. Its
powerful error-correction performance makes it attractive to
some communication scenarios in which the short packet
length is common, e.g., the wireless sensor networks. As
mentioned in Section III.C, the decoding performance can be
improved by strengthening the RS decoding. Fig. 6 shows
the performance improvement made by having stronger ABP
and KV decodings. For example, with 2 iterations, increasing
NGR from 1 to 20 and l from 10 to 30 allows a 0.25dB
decoding gain at CER of 10−4. However, it is also noticed
that the limited performance improvements are achieved by
an expensive computational cost. Hence, for RSCC codes,
performing the iterative soft decoding with NGR = 1 and a
moderate l value would be recommended.

Fig. 7 shows the CER performance of the RS (63, 50)
- conv. (15, 17)8 code. The CRC-4 code is utilized for the
RS decoding output validation. The comparison benchmarks
include the Viterbi-BM, MAP-KV and MAP-ABP-KV algo-
rithms, all of which are one-shot decodings. Note that the
MAP-ABP-KV algorithm corresponds to the proposed algo-
rithm with NITER = 1. Again, it shows significant performance
improvements over the existing schemes. Since utilizing the
CRC-4 code causes a rate loss for the concatenated code from
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Fig. 10. Iterative soft decoding performance of the RS (255, 223) - conv.
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0.397 to 0.392, Fig. 7 also shows the performance difference
between using an aided gene and the CRC code. The rate
loss further causes a 0.05dB performance loss which can be
tolerated in practice. Fig. 8 shows the BER performance of the
punctured RS (63, 50) - conv. (15, 17)8 code with puncturing
rates of 3/4 and 3/5. It validates the pinch-off SNR limits
that were predicted by the EXIT analysis of Fig. 4. Fig. 9
further shows the BER performance of the concatenated code
with different choice of inner codes. Similarly, it validates the
analysis of Table II by showing the BER cliff starts at the
predicted SNRoff values. It can be seen that with the same
number states, the inner code that exhibits a lower SNRoff

value yields a better BER performance. While comparing
the RS (63, 50) - conv. (1, 5/7)8 code and the RS (63, 50)
- conv. (15, 17)8 code, the former one outperforms in the
low to medium SNR region as it has a lower SNRoff value.
However, with SNR > 2.2dB, the latter one outperforms. This
is due to the fact that with SNR being increased, most of the
decodings do not need iterations. Consequently, the code’s
distance becomes a more dominant factor in decoding.

The RS (255, 223) - conv. (133, 171)8 code has been
widely used in the space communications [3] [4]. Fig. 10
shows the CER performance of this concatenated code. In
iterative soft decoding, the RS decoding output is validated
by the CRC-16 code. Following the standard, the depth of

the block interleaver is 8. The BP process for decoding the
outer code utilizes the extrinsic LLR calculation of (25). It
can be seen that error-correction performance improvements
can be made over the currently used Viterbi-BM algorithm.
Iterative soft decoding with NITER = 5 achieves a 0.3dB gain
over the Viterbi-BM algorithm at CER of 10−4. However,
marginal performance improvement can be further made with
an iteration number greater than 5. Overall, our results show
that the proposed iterative soft decoding algorithm can also be
applied to improve the existing space communication systems.

VII. CONCLUSIONS

This paper has proposed an iterative soft decoding algorithm
for the popular RSCC codes. SISO decodings of the inner
and outer codes are accomplished by the MAP algorithm
and the ABP-KV algorithm, respectively. The ABP algorithm
enhances the reliability of the soft information from the inner
decoder. At the meantime, it delivers the extrinsic probabilities
of RS coded bits in an efficient manner. With the improved soft
information, the algebraic KV algorithm will be performed to
retrieve the transmitted message. After the ABP-KV decoding
of multiple RS codewords, the deterministic probabilities of
the decoded bits and the extrinsic probabilities of the unde-
coded bits are fed back for the next round MAP decoding. The
proposed algorithm enables the extrinsic probabilities of RS
coded bits to be iterated in a soft information exchange decod-
ing mechanism, well exploiting the error-correction potential
of RSCC codes. The EXIT analysis of the proposed algorithm
is presented, analyzing its iterative decoding behavior. The
analysis has shown the EXIT characteristics of the ABP-KV
algorithm and predicted the error-correction performance of
the concatenated codes. Moreover, it leads to the insight of
choosing the inner codes. Our complexity analysis has further
revealed the implementation cost of the proposed algorithm.
Finally, our simulation results have demonstrated that signif-
icant performance improvements can be achieved over the
existing decoding algorithms, and validated the EXIT analysis.
Therefore, the proposed decoding algorithm can be considered
for implementation towards improving the performance of
RSCC codes.

REFERENCES

[1] G. D. Forney, Concatenated Codes. MIT Press, 1966.
[2] R. D. Cideciyan, E. Eleftheriou, and M. Rupf, “Concatenated Reed-

Solomon/convolutional coding for data transmission in CDMA-based
cellular systems,” IEEE Trans. Commun., vol. 45, no. 10, pp. 1291–
1303, Oct. 1997.

[3] Consultative Committee for Space Data Systems, “Recommendation for
space data systems standard, telemetry channel coding,” CCSDS 101.0-
B-2, Blue Book, issue 2, Jan. 1987.

[4] Consultative Committee for Space Data Systems, “Recommendation for
space data systems standard, telemetry channel coding,” CCSDS 101.0-
B-6, Blue Book, issue 6, Oct. 2002.

[5] A. Viterbi, “Error bounds for convolutional codes and assymptotically
optimum decoding algorithm,” IEEE Trans. Inf. Theory, vol. 13, pp.
260–269, 1967.

[6] J. L. Massey, “Shift register synthesis and BCH decoding,” IEEE Trans.
Inf. Theory, vol. 15, pp. 122–127, 1969.

[7] E. Paaske, “Improved decoding for a concatenated coding system
recommended by CCSDS,” IEEE Trans. Commun., vol. 38, no. 8, pp.
1138–1144, Aug. 1990.

[8] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon
and algebraic-geometric codes,” IEEE Trans. Inf. Theory, vol. 45, pp.
1757–1767, Sep. 1999.



CHEN: ITERATIVE SOFT DECODING OF REED-SOLOMON CONVOLUTIONAL CONCATENATED CODES 4085

[9] L. Chen, R. A. Carrasco, and E. G. Chester, “Performance of Reed-
Solomon codes using the Guruswami-Sudan algorithm with improving
interpolation efficiency,” IET Commun., vol. 1, no. 2, pp. 241–250, 2007.

[10] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-
Solomon codes,” IEEE Trans. Inf. Theory, vol. 49, no. 11, pp. 2809–
2825, Nov. 2003.

[11] J. Zhang, J. You, L. Lu, and X. Ma, “An iterative soft-decision decoding
algorithm for conventional concatenated codes,” in Proc. 2009 Int. Conf.
Commun. Netw. China.

[12] M. Lamarca, J. Sala, and A. Martinez, “Iterative decoding algorithms for
RS-convolutional concatenated codes,” in Proc. 2005 IEEE Int. Symp.
Turbo Codes.

[13] G. Schmidt, V. Sidorenko, and M. Bossert, “Collaborative decoding of
intereleaved Reed-Solomon codes and concatenated code designs,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 2991–3012, July 2009.

[14] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: turbo-codes (1),” in Proc. 1993
IEEE Int. Conf. Commun.

[15] A. Vardy and Y. Be’ery, “Bit-level soft-decision decoding of Reed-
Solomon codes,” IEEE Trans. Commun., vol. 39, no. 3, pp. 440–444,
Mar. 1991.

[16] V. Ponnampalam and B. Vucetic, “Soft decision decoding for Reed-
Solomon codes,” IEEE Trans. Commun., vol. 50, no. 11, pp. 1758–1768,
Nov. 2002.

[17] J. Jiang and K. Narayanan, “Iterative soft-input-soft-output decoding of
Reed-Solomon codes by adapting the parity check matrix,” IEEE Trans.
Inf. Theory, vol. 52, no. 8, pp. 3746–3756, Aug. 2006.

[18] M. El-Khamy and R. McEliece, “Iterative algebraic soft-decision list
decoding of Reed-Solomon codes,” IEEE J. Sel. Areas Commun., vol.
24, no. 3, pp. 481–490, Mar. 2006.

[19] L. Chen, “Iterative soft-decision decoding of Hermitian codes,” IEEE
Trans. Commun., vol. 61, no. 1, pp. 33–42, Jan. 2013.

[20] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of
linear codes for minimizing symbol error rate,” IEEE Trans. Inf. Theory,
vol. 20, no. 2, pp. 284–287, Mar. 1974.

[21] R. Horn and C. Johnson, Matrix Analysis. Cambridge University Press,
1985.

[22] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and
Applications. Pearson Prentice Hall, 2004.

[23] R. Roth and G. Ruckenstein, “Efficient decoding of Reed-Solomon

codes beyond half the minimum distance,” IEEE Trans. Inf. Theory,
vol. 46, no. 1, pp. 246–257, Jan. 2000.

[24] L. Chen, R. A. Carrasco, M. Johnston, and E. G. Chester, “Efficient
factorisation algorithm for list decoding algebraic-geometric and Reed-
Solomon codes,” Proc. 2007 IEEE Int. Conf. Commun., pp. 851–856.

[25] T. Kaneko, T. Nishijima, H. Inazumi, and S. Hirasawa, “An efficient
maximum-likelihood-decoding algorithm for linear block codes with
algebraic decoder,” IEEE Trans. Inf. Theory, vol. 40, no. 2, pp. 320–327,
Mar. 1994.

[26] S. Tang, L. Chen, and X. Ma, “Progressive list-enlarged algebraic soft
decoding of Reed-Solomon codes,” IEEE Commun. Lett., vol. 16, no.
6, pp. 901–904, June 2012.

[27] S. ten Brink, “Convergence behavior of iteratively decoded parallel
concatenated codes,” IEEE Trans. Commun., vol. 49, no. 10, pp. 1727–
1737, Oct. 2001.

[28] L. Chen, R. A. Carrasco, and M. Johnston, “Soft-decision list decoding
of Hermitian codes,” IEEE Trans. Commun., vol. 57, no. 8, pp. 2169–
2176, Aug. 2009.

Li Chen (S’07-M’08) received his B.Sc. degree in
applied physics from Jinan University, China, in
2003, M.Sc. degree in communications and signal
processing, and Ph.D. degree in mobile communi-
cations in 2004 and 2008, respectively, both from
Newcastle University of the United Kingdom. In
2010, he joined the School of Information Science
and Technology, Sun Yat-sen University of China,
where he is now an Associate Professor and As-
sociate Head of the Department of Electronic and
Communication Engineering. From 2007 to 2010,

he was a Research Associate with Newcastle University. During 2011–
2012, he was a Visiting Scholar with the Institute of Network Coding, the
Chinese University of Hong Kong. He was a recipient of the British Overseas
Research Scholarship (ORS). He is a principle investigator of two National
Natural Science Foundation of China (NSFC) projects and a co-investigator
of the National Basic Research Program (973 program) project. His primary
research interests include: information theory, channel coding, and wireless
communications.


