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Iterative Soft-Decision Decoding of
Hermitian Codes

Li Chen, Member, IEEE

Abstract—This paper proposes an iterative soft-decision decod-
ing algorithm for one of the most popular algebraic-geometric
(AG) codes – Hermitian codes. The algorithm is designed by
integrating the two most powerful soft-decision decoding algo-
rithms, the adaptive belief propagation (ABP) algorithm and the
Koetter-Vardy (KV) list decoding algorithm. The ABP algorithm
performs iterative decoding based on an adapted parity-check
matrix of a Hermitian code to enhance the reliability of the
soft received information. With the enhanced reliability, the
KV algorithm performs soft-decision list decoding to obtain
the original message. Since the matrix adaptation relies on
bit reliabilities, regrouping of the unreliable bits is introduced
to assist the ABP decoding. A complexity reducing ABP-KV
decoding approach is proposed based on assessing the soft
information provided by the ABP algorithm and determining
whether the following KV decoding steps should be carried out.
Geometric interpretation of the ABP algorithm is presented,
demonstrating the necessity of performing matrix adaptation.
Our performance analysis shows the proposed iterative decoding
algorithm outperforms both the existing decoding approaches for
Hermitian codes and the ABP-KV decoding of Reed-Solomon
(RS) codes.

Index Terms—Adaptive belief propagation, algebraic-
geometric codes, complexity reduction, Hermitian codes,
iterative decoding, Koetter-Vardy algorithm, list decoding,
Reed-Solomon Codes.

I. INTRODUCTION

REED-Solomon (RS) codes are widely used for error-
correction in modern communication and data storage

systems. However, the length of a RS code cannot exceed
the size of the finite field over which it is defined, limiting
the number of codes and its error-correction capability. Being
able to design a larger code from a moderate size finite field
is of great interest to both academia and industry. Algebraic-
geometric (AG) codes [1] are the obvious candidates to fulfill
such a demand, among which Hermitian codes are the most
celebrated AG codes. Recent work [2] - [8] showed that
thanks to their longer code length, the Hermitian codes can
outperform the RS codes that are defined over the same finite
field.
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The theoretical framework on the efficient decoding of
Hermitian codes was proposed by Sakata et al. [9]. Combined
with the majority voting [10], the Sakata algorithm can correct
symbol errors up to half of the code’s designed minimum
distance. Guruswami and Sudan [11] [12] later proposed a
polynomial-time list decoding algorithm (or the so called GS
algorithm) for both the RS and AG codes, correcting errors
beyond the half distance bound. By defining the interpolation
property of a trivariate polynomial that is defined over the
pole basis of a Hermitian curve, Hoholdt and Nielsen [13]
[14] presented a list decoding algorithm for Hermitian codes.
Their performance was first evaluated by Chen et al. [4], who
later presented a more efficient list decoding algorithm for
Hermitian codes [5]. Recently, soft-decision list decoding of
Hermitian codes was introduced by Chen et al. [6] [7] and
Lee et al. [8] independently.

At the same time, soft-decision decoding of RS codes is a
very active area of research. Earlier attempts to soft decode
RS codes include the generalized minimum distance (GMD)
algorithm [15] and the Chase algorithm [16]. The maximal
likelihood (ML) decoding of RS codes was proposed by Vardy
and Be’ery [17] which utilizes the binary image expansion of
the RS code. A reduced complexity variant was later proposed
by Ponnampalam and Vucetic [18]. However, the complexity
of such a decoding approach grows exponentially with the
length of the code, preventing its practical application to large
RS codes. Using the code’s binary image, another type of
soft decoding approach called the ordered statistics decoding
was proposed by Fossorier and Lin [19]. It later evolved to
include the reliability based hybrid decoding algorithm [20]
and the box and match algorithm [21]. The well known
Koetter and Vardy’s soft-decision list decoding algorithm [22]
has a polynomial-time complexity and offers a significant
performance gain over the hard-decision decoding. Iterative
soft decoding of RS codes using the popular belief propaga-
tion (BP) algorithm was proposed by Jiang and Narayanan
[23] [24]. The BP algorithm [25] is performed based on an
adapted parity-check matrix, known as the adaptive BP (ABP)
algorithm. Its output will be utilized by the hard-decision
decoding. Further improvement was proposed by El-Khamy
and McEliece [26], in which the ABP soft output is utilized
by the Koetter-Vardy (KV) list decoding algorithm. Results of
[24] [26] showed the ML performance bound of RS codes is
approached with a moderate decoding complexity.

As a possible candidate to replace RS codes, iterative decod-
ing of Hermitian codes is still unknown in the literature. So far,
their best error-correction performance was achieved by using
the KV algorithm [6] [8]. Therefore, a more sophisticated
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decoding approach that can fully utilize the soft information
would be desirable. This paper proposes the first iterative soft-
decision decoding algorithm for Hermitian codes. Similar to
the iterative soft decoding of RS codes [26], it is designed by
combining the ABP and KV algorithms. The ABP algorithm
performs the first stage decoding to enhance the reliability
of the received information. It will then be passed to the
second stage decoding that is the KV decoding algorithm.
The parity-check matrix of the Hermitian code is defined and
Gaussian-Jordan (GJ) elimination is employed according to
the bit reliability to reduce its density and eliminate part of its
short cycles. To improve the performance, regrouping of the
unreliable bits is also introduced. Since the KV algorithm is
computationally expensive, this paper introduces a complexity
reducing ABP-KV algorithm that uses a couple of successive
criteria to assess the quality of the soft information provided
by the ABP algorithm. It excludes the deployment of the
unnecessary KV decoding steps. Geometric interpretation of
the ABP algorithm is presented, demonstrating the necessity
of performing matrix adaptation. The performance analysis of
the proposed algorithm will be provided, comparing it with
the existing decoding approaches for Hermitian codes and the
ABP-KV decoding of RS codes.

The rest of the paper is organized as follows. Section II
presents some background knowledge on this work. Section
III presents the iterative soft-decision decoding algorithm for
Hermitian codes. A complexity reducing ABP-KV algorithm
will be presented in Section IV. Section V presents the
geometric interpretation of the ABP algorithm. Section VI
provides the performance analysis and Section VII concludes
the paper.

II. BACKGROUND KNOWLEDGE

This section presents some background knowledge on the
Hermitian codes and an overview of the KV algorithm.

A. Hermitian Codes

Let Fq denote the finite field of size q and Fq =
{0, 1, α, α2, . . . , αq−2}, where α is a primitive element. In
this paper, it is assumed Fq is an extension field of F2

such that q = 2� where � is an even number. Let Fq[x],
Fq[x, y] and Fq[x, y, z] denote the rings of univariate, bivariate
and trivariate polynomials defined over Fq, respectively. The
Hermitian curve that is defined in Fq can be written as [1]:

Hw(x, y, z) = xw+1 + ywz + yzw, (1)

where w =
√
q. The construction of a Hermitian code can

be elaborated from one of its affine components Hw(x, y, 1).
There are n = w3 affine points pj = (xj , yj , 1) (1 ≤ j ≤ n)
and a point at infinity p∞ = (0, 1, 0) [1] [14] [27]. Pole basis
Φw consists of bivariate monomials φa = xδyλ (0 ≤ δ ≤
w, λ ≥ 0) with an increasing pole order that is defined as
υp∞(φ−1

a ) = υp∞((xδyλ)−1) = wδ+(w+1)λ. Consequently,
pole basis Φw can be defined as [5] [27]:

Φw = {φa | υp∞(φ−1
a ) < υp∞(φ−1

a+1), a ∈ N}, (2)

where N denotes the set of nonnegative integers. E.g., Φ2 =
{1, x, y, x2, xy, y2, x2y, xy2, y3, . . .}.

Since all the affine points can be distinguished by their x
and y components, they can be simplified as pj = (xj , yj).
With knowledge of the affine points pj and the pole basis Φw,
the generator matrix G ∈ F

k×n
q of an (n, k) Hermitian code

can be defined as:

G =

⎛
⎜⎜⎜⎝

φ0(p1) φ0(p2) · · · φ0(pn)
φ1(p1) φ1(p2) . . . φ1(pn)

...
...

. . .
...

φk−1(p1) φk−1(p2) . . . φk−1(pn)

⎞
⎟⎟⎟⎠ , (3)

where n and k are the length and dimension of the code,
respectively. Given a message vector F = [F1, F2, . . . , Fk] ∈
F
k
q , the codeword C can be generated by:

C = [C1, C2, . . . , Cn] = F ·G, (4)

where C ∈ F
n
q . Note that vector F can be represented by a

polynomial F (x, y) =
∑k

j=1 Fjφj−1. The encoding process
can be interpreted as evaluating the n affine points over the
message polynomial. Note that the length of the Hermitian
code is n = q3/2 which is larger than that of the RS code
defined over the same finite field. Its parity-check matrix H ∈
F
(n−k)×n
q is defined as:

H =

⎛
⎜⎜⎜⎝

φ0(p1) φ0(p2) · · · φ0(pn)
φ1(p1) φ1(p2) . . . φ1(pn)

...
...

. . .
...

φn−k−1(p1) φn−k−1(p2) . . . φn−k−1(pn)

⎞
⎟⎟⎟⎠ .

(5)
With a valid codeword C, we have C · HT = 0 where 0
represents the all-zero matrix.

In order to perform ABP decoding of Hermitian codes,
the binary image of its parity-check matrix is required. Let
σ(x) ∈ F2[x] be a primitive polynomial of Fq and A ∈ F

�×�
2

be its companion matrix [28], for a field element αt (t =
0, 1, 2, . . . , q − 2), mapping αt �→ At is applied to obtain
its binary image. Consequently, the binary image of a parity-
check matrix can be generated by replacing its entries αt by
their corresponding matrices At. We use Hb to denote such
a binary parity-check matrix. Let N = n� and K = k�,
Hb ∈ F

(N−K)×N
2 . Let c̄ denote the binary representation

of codeword C as c̄ = [c1, c2, . . . , cN ], where we also have
c̄ ·HT

b = 0.

B. The Koetter-Vardy Algorithm

The KV algorithm utilizes the soft information provided by
the channel for decoding. The channel observations form a
reliability matrix Π ∈ R

q×n whose entries πij represent the
a posteriori probabilities (APP) of the transmitted codeword
symbol Cj being ρi ∈ Fq , where R denotes real numbers.
Matrix Π is then transformed into a multiplicity matrix
M ∈ N

q×n whose entries mij represent the interpolation
multiplicity w.r.t. a unit (pj , ρi). Interpolation is then carried
out based on M, delivering the interpolated polynomial Q ∈
Fq[x, y, z]. Factorization will then be performed to determine
the z-roots of Q, which are the decoded output candidates.

Definition I: Let ij = index{ρi | ρi = Cj} such that
C = [ρi1 , ρi2 , . . . , ρin ]. The reliability-based codeword score
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is defined as [6]:

SΠ(C) =

n∑
j=1

πijj . (6)

Similarly, the multiplicity-based codeword score is defined as:

SM(C) =

n∑
j=1

mijj. (7)

For list decoding of an (n, k) Hermitian code, the weight
of variable z is defined as wz = υp∞(φ−1

k−1). Consequently,
the (1, wz)-weighted degree of monomial φazb is: deg1,wz

(φa
zb) = υp∞(φ−1

a )+b ·wz . With the (1, wz)-lexicographic order
[6], if φa′zb

′
is the maximal monomial of polynomial Q with

coefficient Qa′b′ �= 0, the (1, wz)-weighted degree of Q is
deg1,wz

(Q) = deg1,wz
(φa′zb

′
). The following two theorems

define the successful KV decoding conditions.
Theorem 1: If the multiplicity-based codeword score is

large enough such that:

SM(C) > deg1,wz
(Q), (8)

the message polynomial F (x, y) can be found by determining
the z-roots of Q [6].

By increasing the interpolation multiplicity, the KV
decoding performance can be enhanced. Let C(M) =
1
2

∑
i,j mij(mij + 1) denote the number of interpolation

constraints, the asymptotically optimal performance of the KV
algorithm can be achieved as C(M) → ∞.

Theorem 2: If the reliability-based codeword score is large
enough such that:

SΠ(C) >

√
wz

∑
i,j

π2
ij , (9)

the message polynomial can be found with a sufficiently large
interpolation cost C(M) [6].

The above theorems show that the optimal soft-decision list
decoding performance is dictated by the reliability matrix Π.
Its performance can be improved by enhancing Π.

III. ITERATIVE SOFT-DECISION DECODING

This section presents the iterative soft-decision decoding
algorithm for Hermitian codes, including the proposed ABP-
KV decoding algorithm and the regrouping of unreliable bits
that assists the ABP-KV decoding. The proposed iterative
decoding approach consists of two decoding stages. The first
stage is the ABP decoding, supplying a number of updated
reliability matrices Π′ for the following KV decoding process.
The updated matrix Π′ will also be given as feedback for the
next round of ABP decoding. With each updated matrix Π′,
the KV algorithm is performed to determine a list of output
candidates P (x, y) that are in the form of F (x, y). They are
stored in the global output list L. After the predefined decod-
ing parameters are reached, the decoding will be terminated.
The ML selection criterion is applied to L and picks out the
output candidate whose codeword has the minimal Euclidean
distance to the received vector.

A. The ABP-KV Decoding

It is assumed the binary phase shift keying (BPSK) scheme
is used to map the coded bits cj to the modulated symbols
sj ∈ {+1,−1} for j = 1, 2, . . . , N . After the channel, a
received vector [y1, y2, . . . , yN ] ∈ R

N is obtained. The log-
likelihood ratio (LLR) value of cj is determined by:

L(cj) = ln
Pr[cj = 0|yj]
Pr[cj = 1|yj] , (10)

where Pr[cj = 0|yj] and Pr[cj = 1|yj ] are the APP values.
The LLR vector L that collects all the LLR values of the
coded bits is:

L = [L(c1), L(c2), . . . , L(cN−K), . . . , L(cN )]. (11)

The magnitude |L(cj)| represents the reliability of bit cj ,
where a higher magnitude implies the bit is more reli-
able. Hence, all the magnitudes |L(cj)| will be sorted in
an ascending order. This yields a new bit index sequence
j1, j2, . . . , jN−K , . . . , jN with

|L(cj1)| < |L(cj2)| < . . . < |L(cjN−K )| < · · · < |L(cjN )|.
(12)

Let B ⊆ {1, 2, . . . , N} be a set of the bit indices and |B| =
N−K . With B = {j1, j2, . . . , jN−K} that collects the indices
of the N−K least reliable bits, the sorted LLR vector becomes

LB = [L(cj1), L(cj2 ), . . . , L(cjN−K )
︸ ︷︷ ︸

B

, L(cjN−K+1), · · · , L(cjN )
︸ ︷︷ ︸

Bc

].

(13)
Note that the complementary set Bc = {1, 2, . . . , N}\B. For

matrix Hb, GJ elimination will be performed on the columns
that correspond to the bits of B. Let Υj denote the weight-
1 column vector with 1 at its jth entry and 0 elsewhere. GJ
elimination reduces column j1 to Υ1, then reduces column j2
to Υ2 and etc. It attempts to reduce the first N−K independent
columns implied by B to the weight-1 columns. But it is not
guaranteed all the columns w.r.t. B can be reduced. In that
case, the columns w.r.t. the border bits between sets B and
Bc will be reduced. This process is called matrix adaptation,
resulting in an updated binary parity-check matrix H′

b.
Let hij denote the entry of matrix H′

b. The conventional
BP algorithm will now be applied to H′

b. Let us define I(j)
and J(i) as:

I(j) � {i | hij = 1, ∀ hij ∈ H′
b}, (14)

J(i) � {j | hij = 1, ∀ hij ∈ H′
b}. (15)

Let matrices V, U ∈ R
(N−K)×N with entries vij and uij ,

respectively. At the beginning of the BP decoding, matrix V
is initialized as:

vij = L(cj) · hij , ∀ 1 ≤ i ≤ N −K, 1 ≤ j ≤ N. (16)

First, the horizontal step will be performed to update matrix
U as:

uij = 2 tanh−1
( ∏

τ∈J(i)\j
tanh

(viτ
2

))
. (17)

Afterwards, the vertical step will be performed to update
matrix V as:
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vij = L(cj) + η
∑

τ∈I(j)\i
uτj, (18)

where 0 < η ≤ 1 is the damping factor [26]. The extrinsic
information of bit cj is given by:

Lext(cj) =
∑

τ∈I(j)

uτj. (19)

Calculations of (17)-(18) define one iteration of BP decoding.
Let NBP denote the pre-determined number of BP iterations.
Once NBP is reached, the LLR value of bit cj is updated by:

L′(cj) = L(cj) + ηLext(cj). (20)

As a result, the updated LLR vector L′ can be formed as
follows:

L′ = [L′(c1), L′(c2), . . . , L′(cN−K), . . . , L′(cN )]. (21)

A hard-decision for bit cj can be made based on ĉj =
sign(L′(cj)). Note that given any random variable ψ,
sign(ψ) = 0 if ψ ≥ 0, or sign(ψ) = 1 otherwise.

Multiple matrix adaptations can be performed and each of
them is followed by a number of BP iterations. If the next
round of matrix adaptation is to be carried out, the LLR sorting
process will be performed based on the updated LLR vector
L′. Given NADP as the number of matrix adaptations, the total
number of BP iterations becomes NADPNBP. The motivation
of performing matrix adaptation is two-fold. On one hand,
the density1 of the original parity-check matrix Hb is reduced
and part of its short cycles are eliminated. For example, the
density of Hb is about 50%, while the density of H′

b is about
37%. On the other hand, it prevents the propagation of the
unreliable information during the BP decoding process. For
example, the horizontal update of the reliable bits will only
involve few unreliable bits. At the same time, the LLR update
for the unreliable bits will take the LLR values of most of the
reliable bits into account and their reliabilities are more likely
to be enhanced.

One can make a hard-decision on each coded bit cj . If
[ĉ1, ĉ2, . . . , ĉN ] · H′T

b = 0, the decoding will be terminated.
However, this decoding approach does not provide a good
error-correction performance [24]. In order to fully utilize the
soft outputs of the ABP algorithm, they will be passed to
another soft decoding algorithm, i.e., the KV algorithm. Each
updated LLR value L′(cj) will now be converted back to a
pair of APP values using:

Pr[cj = 0|yj] = 1

1 + e−L′(cj)
, Pr[cj = 1|yj] = 1

1 + eL
′(cj)

.

(22)
Based on the binary decomposition of each field element ρi,
every � consecutive pairs of APP values will be multiplied
in q different permutations, generating a column of reliability
values π′

ij of matrix Π′. Matrix Π′ will be transformed into
a multiplicity matrix M [6]. Interpolation will be carried out,
yielding the interpolated polynomial Q ∈ Fq[x, y, z] [5] [14]:

1The density is measured as the percentage of 1 in the binary parity-check
matrix.

Q(x, y, z) =
∑
a,b∈N

Qabφa(x, y)z
b. (23)

Factorization will then be carried out [29] [30] [31]. By
increasing the factorization output list size l, i.e., the z-degree
of Q, the KV algorithm will have a better error-correction
capability.

The KV algorithm will be performed after every NBP

BP iterations. With NADP matrix adaptations, the ABP-KV
algorithm produces at most lNADP output candidates in the
global list L.

B. Regrouping of Unreliable Bits

The above description shows that those bits whose corre-
sponding columns fall into the identity submatrix of H′

b are
more likely to be corrected by the BP decoding. The ABP
algorithm enables bits of B to have the priority to be corrected.
However, it is possible that bits of Bc are wrongly estimated
by their LLR values. If their corresponding columns can be
reduced to weight-1, they are also likely to be corrected.
Therefore, after the initial sorting process, we can restructure
the sorted LLR vector and enable bits of Bc to fall into its first
N − K positions. So that, their corresponding columns will
be reduced by the following GJ elimination. Such a process
creates different groups of bits whose corresponding columns
will be reduced. They are indicated by set B and the ABP-KV
algorithm will be performed based on different patterns of LB

[24] [26].
Let NGR denote the designed number of unreliable groups

after restructuring vector LB and r = �N/NGR. The original
sorted LLR vector LB can be expressed as:

LB = [L(cj1), . . . , L(cjr ), L(cjr+1), . . . , L(cj2r ), . . . ,

L(cj(g−1)r+1
), . . . , L(cjgr ), . . . , L(cjN )], (24)

where g (1 ≤ g ≤ NGR) is the group index. Let LB(g)

denote the restructured LLR vector of group g. For group
1, LB(1) = LB since no restructuring is needed. For group
g (g > 1), we will restructure LB . If r < N − K ,
B(g) = {j(g−1)r+1, . . . , jgr , j1, . . . , jN−K−r} and

LB(g) = [L(cj(g−1)r+1
), . . . , L(cjN−K−r)︸ ︷︷ ︸
B(g)

, L(cjN−K−r+1),

. . . , L(cj(g−1)r
), L(cjgr+1), . . . , L(cjN )]. (25)

If r ≥ N − K , B(g) = {j(g−1)r+1, j(g−1)r+2, . . . ,
j(g−1)r+N−K} and

LB(g) = [L(cj(g−1)r+1
), . . . , L(cj(g−1)r+N−K

)︸ ︷︷ ︸
B(g)

, . . . , L(cjgr ),

L(cj1), . . . , L(cj(g−1)r
), L(cjgr+1 ), . . . , L(cjN )].

(26)

With the knowledge of B(g), GJ elimination will be performed
on the first N−K independent columns implied by B(g), i.e.,
column j(g−1)r+1, column j(g−1)r+2 and so on.

Generalizing this section, Fig.1 illustrates the decoding
parameters exchange between different steps of the ABP-
KV algorithm. Notice that with NGR unreliable groups, the
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Fig. 1. Decoding parameters exchange of the ABP-KV algorithm.

decoding process will be deployed NGR times, each of which
inherits a specific pattern of LB(g) . For each group, the sorted
LLR vector restructuring process should only be performed
prior to the first matrix adaptation of the ABP algorithm.
Hence, the first adaptation is performed based on LB(g) . After
NBP iterations, the updated LLR vector L′ is formed and the
following matrix adaptation will be performed based on L′.
Running the ABP-KV decoding based on NGR different unre-
liable groups produces at most lNGRNADP output candidates
in the global list L.

IV. REDUCED COMPLEXITY ABP-KV DECODING

The above section shows that given the decoding parameters
(NGR, NADP, NBP), the decoder would deploy NGRNADP

matrix adaptations and KV decodings, and NGRNADPNBP

BP iterations. Hence, the ABP-KV algorithm has a high
decoding complexity. Ref [24] and [26] proposed a number
of complexity reduction approaches for iterative decoding of
RS codes.

This section proposes another complexity reduction ap-
proach based on reducing the deployment of the KV decoding
steps. We introduce a couple of successive criteria to assess the
quality of the processed reliability matrix Π′ and the multi-
plicity matrix M. Such assessments further determine whether
the following KV decoding steps should be performed.

Definition II: In matrix Π′, let i∗j denote the row index
of the maximal entry of column j as i∗j = {i′ | π′

i′j >
π′
ij , ∀ (i, i′) ∈ [1, q] and i′ �= i}. The hard-decision received

word is R = [ρi∗1 , ρi∗2 , . . . , ρi∗n ] ∈ F
n
q . The reliability-based

received word score is defined as:

SΠ′(R) =
n∑

j=1

π′
i∗j j
, (27)

and the multiplicity-based received word score is defined as:

SM(R) =

n∑
j=1

mi∗j j . (28)

Hence, the following lemma is introduced to assess the quality
of matrix Π′.

Lemma 3: Given the processed reliability matrix Π′, if

SΠ′(R) ≤
√
wz

∑
i,j

π′2
ij , (29)

the intended message polynomial cannot be found by the KV
algorithm.

Proof: Given a matrix Π′, SΠ′(C) is determined by
SΠ′(C) =

∑n
j=1 π

′
ijj

. Based on Theorem 2, the message

polynomial can be found if SΠ′(C) >
√
wz

∑
i,j π

′2
ij . Since

π′
ijj ≤ π′

i∗j j
for 1 ≤ j ≤ n, we have SΠ′(C) ≤ SΠ′(R).

Therefore, if SΠ′(R) ≤
√
wz

∑
i,j π

′2
ij , then SΠ′(C) ≤√

wz

∑
i,j π

′2
ij and the message polynomial cannot be found

by the KV algorithm.

Lemma 3 provides a criterion to assess the quality of Π′.
If the inequality of (29) is held, it implies the provided matrix
Π′ cannot be used to achieve a successful KV decoding. The
KV decoding steps do not need to be applied. Otherwise, it
is possible to find the message polynomial F (x, y). The reli-
ability transform should be performed to generate matrix M.
Then, we can determine whether the following interpolation
and factorization should be performed.

Lemma 4: Given the multiplicity matrix M, if

SM(R) ≤ deg1,wz
(Q), (30)

the intended message polynomial cannot be found by the KV
algorithm.

Proof: The reliability values are proportionally trans-
formed into the multiplicity values [22]. With π′

ijj
≤ π′

i∗j j
,

we have mijj ≤ mi∗j j and hence SM(C) ≤ SM(R). If
SM(R) ≤ deg1,wz

(Q), then SM(C) ≤ deg1,wz
(Q). Recall

Theorem 1, we know the intended message polynomial cannot
be found by the KV algorithm.

Lemma 4 provides another criterion to assess the quality of
matrix M. With (30) being held, the successful decoding con-
dition of (8) cannot be achieved. The following interpolation
and factorization processes do not need to be applied. Note
that without performing the interpolation, the (1, wz)-weighted
degree of Q can be predicted by knowing the interpolation cost
C(M) [6].

Summarizing the above two sections, the reduced com-
plexity ABP-KV decoding algorithm for Hermitian codes is
presented in Algorithm 1.

In order to facilitate the decoding process, the outer most
loop regarding the creation of different unreliable groups can
be implemented in parallel. To validate the proposed complex-
ity reduction approach, the average number2 of KV decoding
steps are measured against the channel signal-to-noise ratio
(SNR). Tables I and II show the complexity reductions for
ABP-KV decoding of the (64, 39) and the (64, 52) Hermitian
codes, respectively. The ABP-KV decoding parameters are
set as (l = 5) and (NGR,NADP,NBP) = (10, 5, 2). The
damping factor η = 0.1. Without the two successive criteria,
the KV decoding steps will be performed 50 times for each
codeword frame. But with the criteria, the average number
of KV decoding steps are reduced. The reduction is more
significant for the high rate code, implying equations (29) and
(30) are more effective to assess the quality of Π′ and M for
high rate codes. However, by increasing the SNR value, the
complexity reduction becomes less significant.

2The average numbers are obtained by running the ABP-KV algorithm for
10000 codeword frames at each SNR. The average values are quantized to
the their closest integers.
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TABLE I
COMPLEXITY REDUCTION FOR ABP-KV DECODING OF THE (64, 39) HERMITIAN CODE

���������������Measurements
SNR (dB)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Π′ → M transform 49 49 50 50 50 50 50 50 50 50 50
Interpolation/factorization 11 31 45 49 50 50 50 50 50 50 50

TABLE II
COMPLEXITY REDUCTION FOR ABP-KV DECODING OF THE (64, 52) HERMITIAN CODE

���������������Measurements
SNR (dB)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Π′ → M transform 0 0 1 12 32 46 50 50 50 50 50
Interpolation/factorization 0 0 0 0 1 9 27 42 48 50 50

Algorithm 1 Reduced Complexity ABP-KV Decoding of
Hermitian Codes

1: for each group g do
2: Let L′ = L;
3: for each parity-check matrix adaptation do
4: Generate a sorted LLR vector LB based on L′;
5: if it is the first matrix adaptation then
6: Restructure the sorted LLR vector to LB(g) ;
7: Perform GJ elimination for H′

b based on LB(g) .
8: else
9: Perform GJ elimination for H′

b based on LB;
10: end if
11: Initialize matrix V as in (16);
12: for each BP iteration do
13: Perform the horizontal step as in (17);
14: Perform the vertical step as in (18);
15: end for
16: Determine the extrinsic information as in (19) and

update its LLR value as in (20);
17: Form the updated LLR vector L′ as in (21);
18: Generate N pairs of bit APP values as in (22);
19: Determine the processed reliability matrix Π′;
20: while SΠ′(R) >

√
wz

∑
i,j π

′2
ij do

21: Transform matrix Π′ into matrix M;
22: while SM(R) > deg1,wz

(Q) do
23: Perform interpolation to determine Q of (23);
24: Perform factorization to find out P (x, y);
25: end while
26: end while
27: end for
28: end for

V. GEOMETRIC INTERPRETATION OF ABP DECODING

This section presents the geometric interpretation for the
ABP algorithm and demonstrates the necessity of performing
matrix adaptation prior to the BP decoding.

The conventional BP decoding can be seen as a gradient
descent decoding problem [32]. The coded bit LLR values
L(cj) with L(cj) ∈ [−∞,+∞] can be normalized to the
region of [−1,+1] by the following mapping function:

ξ(L(cj)) = tanh
(L(cj)

2

)
=
eL(cj) − 1

eL(cj) + 1
. (31)

The reliability of bit cj can again be reflected by its magnitude
|ξ(L(cj))|. Given two distinct bits cj1 and cj2 , bit cj1 is more
reliable if |ξ(L(cj1))| > |ξ(L(cj2))|. By normalizing all the
LLR values of a codeword using the above mapping function,
we can form vector T as:

T = [T1, T2, . . . , TN ] = [ξ(L(c1)), ξ(L(c2)), . . . , ξ(L(cN ))].
(32)

With the knowledge of Tj , the estimated coded bit ĉj can be
determined by:

ĉj = sign
(
ln

1 + Tj
1− Tj

)
. (33)

Vector T corresponds to an estimated codeword that satisfies
all the checks. With matrix H′

b and vector T , the potential
function P(H′

b, T ) of a Hermitian code is defined as [24]
[32]:

P(H′
b, T ) = −

N−K∑
i=1

∏
j∈J(i)

Tj . (34)

The quantization of P(H′
b, T ) describes the reliability of

vector T . Consequently, the LLR updates of (20) can be seen
as the gradient descent update as follows:

T ′
j = Tj − η

∂P(H′
b, T )

∂Tj
= Tj + η(

N−K∑
i=1

∏
τ∈J(i)\j

Tτ ). (35)

In order to confine T ′
j in the region of [−1,+1], the above

update should be modified as:

T ′
j = ξ

[
ξ−1(Tj) + η

(N−K∑
i=1

ξ−1
( ∏

τ∈J(i)\j
Tτ

))]
, (36)

where ξ−1(ψ) = 2 tanh−1(ψ). With all the checks from
matrix H′

b being satisfied, a valid codeword is reached if
|Tj | = 1 for j = 1, 2, . . . , N . Function P(H′

b, T ) is minimized
as min{P(H′

b, T )} = −(N − K). Therefore, finding an
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Fig. 2. Convergence of the potential function of the (64, 39) Hermitian code.

Fig. 3. Convergence of the potential functions of the (64, 47) Hermitian
code and the (15, 11) RS code.

estimated codeword using the BP algorithm can be interpreted
as identifying the vertex at which the potential function is
minimized.

Without performing matrix adaptation, the density of the
parity-check matrix of a Hermitian code remains high. The
gradient descent decoding is easily hindered at some pseudo-
equilibrium points which prevent the potential function from
reaching its minimum. Fig.2 shows the convergence behavior
of the potential function of the (64, 39) Hermitian code. It
is measured on the additive white Gaussian noise (AWGN)
channel. It shows without the matrix adaptation, the potential
function cannot converge to its minimum. By increasing the
SNR, a valid codeword is reached with fewer iterations. Fig.3
compares the convergence behavior of the potential functions
of the (64, 47) Hermitian code and the (15, 11) RS code. They
are defined over the same finite field and have a similar code
rate. It shows under the same channel condition, the potential
function of the RS code converges to its minimum faster than
the Hermitian code. It implies the ABP algorithm provides
a better treatment for enhancing the reliability matrix of the
RS code. The ABP-KV decoding performance comparison of
these two codes will be discussed in Section VI.

VI. PERFORMANCE ANALYSIS

This section presents the error-correction performance for
the ABP-KV decoding algorithm. Comparisons with the ex-
isting decoding algorithms for Hermitian codes and with the
ABP-KV decoding of RS codes are made. In the simulations,
BPSK modulation is used. The ABP-KV decoding parameters
are represented by the ternary tuple (NGR,NADP,NBP). Error-
correction performances of the Sakata algorithm, the optimal
GS algorithm and the optimal KV algorithm3 are presented
as the comparison benchmarks. Please note that in order to
facilitate the decoding process, the simulation results were
obtained by assuming the use of an aided gene. It can notify
the ABP-KV decoder to terminate once the intended message
polynomial has been found. Such an assumption yields a
mildly improved error-correction performance compared to
the more practical scenario where the ML selection criterion
is used. This is because the ML criterion cannot always
guarantee an accurate selection from the output list. In the
following discussions, coding gains are measured at the bit
error rate (BER) of 10−5.

A. Over the AWGN Channel

Figs.4, 5 and 6 show the BER performance of the (64, 32),
(64, 39) and (64, 47) Hermitian codes over the AWGN chan-
nel, respectively. The ABP-Sakata algorithm is also shown
as a comparison benchmark. It can be noticed that with
an improved second stage decoding, the ABP-KV algorithm
outperforms the ABP-Sakata algorithm. Its performance can
be improved by increasing the KV algorithm’s error-correction
capability, i.e., the factorization output list size l. Comparing
the three codes, we can notice that with the code rate being
increased, more significant performance improvement can be
made by the ABP-KV algorithm over the conventional decod-
ing approaches. For example, with the decoding parameters
(2, 5, 2), ABP-KV (l = 20) decoding of the (64, 47) Hermitian
code has 1.1dB coding gain over the optimal KV decoding.
While for the (64, 32) Hermitian code, only 0.1dB coding gain
is observed.

Fig.5 shows with the same number of matrix adaptations
and BP iterations, increasing the number of unreliable groups
can enhance the error-correction performance significantly.
But it is at the cost of decoding complexity. The decoding
complexity of the ABP-KV algorithm is mainly caused by
the GJ elimination, the BP iteration and the KV decoding
process. They require at most O(N(N −K)2) binary opera-
tions, O(N2) floating point operations and O(23C3(M)) finite
field arithmetic operations, respectively. Given the decoding
parameters (NGR,NADP,NBP), the ABP-KV decoding process
consists of NGRNADP GJ eliminations and KV decoding
processes, and NGRNADPNBP BP iterations. In order to give
a better insight of the complexity difference by having dif-
ferent decoding parameters, Table III shows the amount of
different operations w.r.t. the three sets of ABP-KV decoding

3The optimal GS decoding performance is obtained by measuring the
Hamming distance between the hard-decision received word R and the
codeword C. If it is greater than n−�√n(n− d)�−1, where d is the code’s
designed minimum distance, a decoding failure is declared. Similarly, with
the knowledge of matrix Π (or Π′), the optimal KV decoding performance
can be obtained by assessing the inequality of (9).
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Fig. 4. BER performance of the (64, 32) Hermitian code over the AWGN
channel.

Fig. 5. BER performance of the (64, 39) Hermitian code over the AWGN
channel.

parameters shown in Fig.5. The KV algorithm is operating
with l = 20, which yields an average interpolation cost of
9130. It demonstrates the computational cost that is required
to achieve the respective performance improvement.

From Figs.4, 5 and 6, we can notice that by having a
better first stage decoding, performance difference generated
by having a different second stage decoding is less significant.
For example in Fig.5, with decoding parameters (2, 5, 2), the
ABP-KV (l = 20) decoding has 0.3dB coding gain over the
ABP-Sakata decoding. However, with (10, 5, 2), the coding
gain becomes 0.1dB. Therefore, if the system can afford a
large number of matrix adaptations and BP iterations, it can
simply use the Sakata algorithm for the second stage decoding.
In Fig.6, it is interesting to compare the ABP-KV decodings
with parameters (1, 10, 2) and (2, 5, 2). They imply a similar
decoding complexity, while ABP-KV decoding with (2, 5, 2)
prevails in performance. Such a comparison shows that given
a budget on the number of matrix adaptations, they should be
spread into a number of unreliable groups to achieve a better
error-correction performance.

It is worthwhile to point out that the theoretical ML de-
coding performance bound for Hermitian codes is yet to be
developed. This is due to the lack of knowledge of the codes’

Fig. 6. BER performance of the (64, 47) Hermitian code over the AWGN
channel.

TABLE III
COMPLEXITY COMPARISON OF ABP-KV DECODING OF THE (64, 39)

HERMITIAN CODE

��������Oper.
Para.

(2, 5, 2) (10, 5, 2) (50, 5, 2)

Binary 2.56× 107 1.28× 108 6.40× 108

Floating point 1.31× 106 6.55× 106 3.28× 107

Finite field 5.07× 1012 2.54× 1013 1.27× 1014

binary weight distribution. Therefore, the author cannot claim
the optimality of the proposed ABP-KV algorithm. Develop-
ing the ML decoding performance bound for Hermitian codes
is an open problem and the presented results offer a reference
for future endeavors in this direction.

B. Over the Rayleigh Fading Channel

In order to evaluate the proposed algorithm in a more
realistic scenario, Fig.7 shows the BER performance of the
proposed algorithm over the fast Rayleigh fading channel in
which each transmitted symbol experiences an independent
fading. The channel state information (CSI) is assumed to be
known at the decoder. The second stage decoding is carried
out by the KV algorithm with l = 20. It can be seen that
over the fast fading channel, more significant performance
improvements can be achieved. Note that the optimal KV
decoding performance is prohibitive in practice due to its
high decoding complexity. While the decoding complexities
required by the ABP-KV (l = 20) algorithm with parameters
(1, 1, 1), (1, 2, 2) and (1, 5, 2) are acceptable in practice.
Hence, the ABP-KV decoding approach is suitable to be ap-
plied in practical wireless communications where the running
time of the decoding algorithm is an important issue.

C. Comparison With RS Codes

Fig.8 compares the (64, 47) Hermitian code with the (15,
11) RS code. To ensure a fair comparison, ABP-KV decoding
of the RS code is also functioning with an aided gene. It
can be observed that with the same decoding parameters,
the Hermitian code outperforms the RS code. This mainly
thanks to its longer codeword length allowing more symbol
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Fig. 7. BER performance of the (64, 47) Hermitian code over the Rayleigh
fading channel.

Fig. 8. Comparison of the (64, 47) Hermitian code and the (15, 11) RS code
over the AWGN channel.

errors to be corrected. Since the length of the code defines
the scale of the decoding complexity, ABP-KV decoding of
the Hermitian code is more complex. On the other hand, it is
observed that ABP-KV decoding achieves larger coding gains
over the optimal KV decoding for the RS code. Recall our
earlier analysis shown in Fig.3 that the ABP algorithm offers
a better treatment to enhance the reliability of soft received
information for the RS code. It should result in a larger
coding gain over the optimal KV decoding. It is interesting
to compare ABP-KV decoding of the Hermitian code with
l = 5 and (1, 3, 3) with ABP-KV decoding of the RS code
wth l = 5 and (10, 10, 3). Table IV shows the decoding
complexity of these two scenarios. It can be seen that they
are comparable. ABP-KV decoding of the Hermitian code
requires more binary operations and finite field operations,
but less floating point operations. Fig.8 shows the Hermitian
code will prevail asymptotically. Therefore, by considering the
performance-complexity tradeoff, Hermitian codes still have
the potential to replace RS codes for better error-correction.

VII. CONCLUSION

This paper has proposed an iterative soft-decision decoding
algorithm for the most popular AG codes – Hermitian codes.

TABLE IV
COMPLEXITY COMPARISON OF ABP-KV DECODING OF THE (64, 47)

HERMITIAN CODE WITH (l = 5) AND (1, 3, 3) AND THE (15, 11) RS CODE
WITH (l = 5) AND (10, 10, 3)

��������Oper.
Codes

Herm (64, 47) RS (15, 11)

Binary 3.55× 106 1.54× 106

Floating point 5.90× 105 1.08× 106

Finite field 8.44× 108 2.25× 108

The iterative approach consists of two successive decoding
stages: the ABP algorithm for enhancing the reliability of the
received information and the KV algorithm for determining
the decoding outputs. Parity-check matrix adaptation that is
performed based on the bit reliabilities has been introduced
as an a priori process for the BP decoding algorithm. Re-
grouping of unreliable bits has also been introduced as an
important decoding strategy to enhance the error-correction
performance. In order to reduce the decoding complexity,
a couple of successive criteria are proposed to assess the
quality of the reliability matrix Π′ and the multiplicity matrix
M. It eliminates any redundant KV decoding steps for the
unqualified matrices. Geometric interpretation of the ABP
algorithm was presented. It analyzed the convergence behavior
of the potential function of Hermitian codes, through which
the necessity of performing matrix adaptation was demon-
strated. Our performance analysis shows the proposed ABP-
KV decoding algorithm outperforms the existing decoding
algorithms for Hermitian codes. Specifically, the ABP-KV
decoding performance advantage is more significant over the
fast Rayleigh fading channel. A performance comparison with
RS codes has also been made, showing ABP-KV decoding of
Hermitian codes still outperforms its counterpart. Therefore,
the proposed iterative soft decoding approach for Hermitian
codes can be considered for a wide range of applications.
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