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ABSTRACT Low-density parity-check (LDPC) codes with very long block lengths are well known for their
powerful error correction, but it is not always desirable to employ long codes in communication systems,
where latency is a serious issue, such as voice and video communication betweenmultiple users. Finite length
analyses of LDPC codes have already been presented in the literature for the additive white Gaussian noise
channel, but in this paper, we consider the finite length analysis of LDPC codes for channels that exhibit
impulsive noise. First, an exact uncoded bit error probability (BEP) of an impulsive noise channel, modeled
as a symmetric α-stable (SαS) distribution, is derived. Then, to obtain the LDPC-coded performance, density
evolution is applied to evaluate the asymptotic performance of LDPC codes on SαS channels and determine
the threshold signal-to-noise ratio. Finally, we derive closed-form expressions for the BEP and block error
probability of short LDPC codes on these channels, which are shown to match closely with simulated results
on channels with different levels of impulsiveness, even for block lengths as low as 1000 b.

INDEX TERMS LDPC codes, impulsive noise, density evolution, finite length analysis.

I. INTRODUCTION
Short error-correcting codes can be necessary for commu-
nication systems where low latency is very important, such
as real-time voice and video communications, but their per-
formance is limited. It is well known that very long low-
density parity-check (LDPC) codes approach the Shannon
limit, but the performance degrades as block length decreases.
An asymptotic analysis of LDPC codes is therefore not useful
in this scenario since it assumes the code length is infinite
and also cycle free. Hence, finite length analyses have been
presented in the literature to evaluate the performance of
short LDPC codes. A finite length analysis of LDPC code
ensembles on the binary erasure channel (BEC) was pre-
sented in [1] using a recursive approach. In [2], the waterfall
region of LDPC codes was proved to follow a scaling law
over the BEC and performance was predicted accurately.
However, the procedure of finding the scaling parameters on
the BEC cannot be easily transferred to other channels and
decoding algorithms. Recently, a waterfall region analysis
based only on the threshold signal-to-noise ratio (SNR) was
proposed [3]. This method estimates the block error proba-
bility (BLEP) by considering that a decoding failure is due

to the actual channel quality being worse than the decoding
threshold. An Extrinsic Information Transfer (EXIT) chart
and Gaussian approximation (GA) combined with the BLEP
were then used to obtain the BEP. This method has a low com-
plexity and provides a good estimation of the waterfall region
of finite length LDPC codes without any scaling parameters
or curve fitting. In [4] and [5], Noor-A-Rahim et al present
a similar approach, which observes the real-time channel
quality and provides an improved analysis with slightly better
estimation, but this requires multiple applications of density
evolution (DE) during the process.

LDPC codes with short block lengths of 120 and 540 bytes
have been chosen as the error-correcting codes in the
G.hn/G.9960 standard for powerline channels, which are
impulsive in nature. However, a comprehensive literature sur-
vey reveals that the finite length analysis of LDPC codes has
only been considered on the BEC, binary symmetric chan-
nel (BSC) and binary input additive white Gaussian noise
(BI-AWGN) channel. Motivated by this and the lack of pub-
lished work on the finite length analysis of LDPC codes on
more general memoryless channels, we present a finite length
analysis of LDPC codes on impulsive noise channels.
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The occurrence of impulsive noise leads to a non-Gaussian
probability density function (pdf) and so the assumption that
the noise has a Gaussian distribution is no longer valid.
Instead, the distribution is heavy-tailed and several models
have been proposed to model impulsive noise, such as the
Gaussian mixture model, Middleton Class A and B noise
and symmetric α-stable (SαS) distributions [6], [7].
In particular, we focus on the SαS family of distributions
since they can accurately model impulsive noise present in
underwater acoustic noise and atmospheric noise, as well
as realistically model the statistics of radio frequency
interference generated by clocks and buses in laptop and
desktop computers [8] and impulsive noise in powerline
communications [9]. The pdf of SαS distributions is not given
in closed-form, hence sub-optimal detectors are required
to reduce the complexity [10], [11]. Recently, several sub-
optimal receivers combined with LDPC codes were proposed
and their performance was examined [12], [13]. Moreover,
good LDPC codes were designed for an OFDM-based power-
line system by utilizing differential evolution [14]. However,
there is still a gap between the simulated and theoretical
results, especially for short length codes. Therefore, it is
important to study the theoretical performance of finite length
LDPC codes on impulsive noise channels.

The contributions of this paper are as follows: First we
derive the exact BEP of BPSK on SαS channels for all
values of α. Second, the channel capacity of SαS chan-
nels is given and the threshold of LDPC codes on such
channels is determined using DE. Finally, we expand on
the work of [3] to derive expressions for the BEP of short
LDPC codes on several SαS impulsive noise channels for
the first time. To achieve this, the obtained uncoded BEP
is combined with the threshold obtained from DE to derive
the BLEP and BEP for short LDPC codes on different
SαS channels. The theoretical performance of short LDPC
codes for several different block lengths obtained from our
BLEP and BEP expressions are then compared with simu-
lation results on different SαS channels to validate our finite
length
analysis.

This paper is organized as follows: Section II introduces
SαS noise and defines a new expression of SNR. Section III
derives the exact BEP of BPSK for SαS channels. Section IV
gives the capacity of SαS channels and an asymptotic anal-
ysis of LDPC codes on these channels. The estimation of
BLEP and BEP of finite length LDPC codes are presented
in Section V. In Section VI, theoretical and simulation results
are presented and we conclude the paper in Section VII.

II. SαS CHANNEL MODEL FOR IMPULSIVE NOISE
We consider a LDPC-coded system that generates a codeword
of length N bits and is mapped to a binary phase-shift key-
ing (BPSK) constellation to obtain the transmitted signal. The
received signal is contaminated by additive impulsive noise
with a SαS distribution and is defined as

yj = xj + ηj, (1)

FIGURE 1. Pdfs of standard SαS distributions (γ = 1).

where yj is the j-th symbol of the received signal,
xj ∈ {−1,+1} is the BPSK signal, ηj is an additive
SαS distributed noise sample and j = 1, 2, . . . , n. The gen-
eration of random SαS distributed samples can be found in
[10] and the pdf of a SαS random variable x ∼ S(α, γ ) is
defined as

fα(x; γ ) =
1
2π

∫
∞

−∞

exp(−γ α|t|α)e−jtxdt. (2)

There are two important parameters in (2): 1) the character-
istic exponent α, which has a range (0, 2] and determines the
heaviness of the tails and 2) the dispersion γ α , which is sim-
ilar to the variance of a Gaussian distribution and determines
the spread of the pdf. When α = 2, the noise is Gaussian and
the variance σ 2 is only defined in this case where σ 2

= 2γ 2.
As α decreases, the tail becomes heavier which increases
the likelihood of the impulses having large amplitudes. The
pdf can be efficiently generated by Zolotarevs (M) param-
eterization [15] and the pdfs with different α’s are shown
in Fig. 1.

The traditional SNR cannot be defined for SαS channels
since the second order moment of SαS process is infinite.
Hence, we use the geometric SNR (SNRG) [16], which is
based on zero-order statistics. First, geometric power S0 is
defined as

S0 =
(Cg)1/αγ

Cg
, (3)

where Cg is the exponential of the Euler constant and has a
value of ≈ 1.78 . We can then define SNRG as

SNRG =
1

2Cg

(
A
S0

)2

, (4)

where A2 is the transmitted energy of the modulated signal
and the constant 1

2Cg
ensures SNRG remains valid when the

noise is Gaussian (α = 2). In this paper we assume A2 = 1
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and the Eb
N0

is given as

Eb
N0
=

SNRG

2Rc
=

1

4RcC
( 2
α
−1)

g γ 2
, (5)

where Rc is the code rate.

III. UNCODED BIT-ERROR PROBABILITY
ON SαS CHANNELS
In this section, we derive the probability of a bit error,
Pαb , for an uncoded system employing BPSK modulation on
SαS channels, which will later be used to estimate the proba-
bility of a block error when a LDPC code is employed. When
α = 2, the pdf is known but the cdf is unknown in closed-
form. The right tail probability functionQ-function is defined
as

Q(x) =
1
√
2π

∫
∞

x
exp

(
−
t2

2

)
dt. (6)

Similar to [17], we can define a tail probability for
SαS distributions Qα(x) as

Qα(x) =
∫
∞

x
fα(t; 1)dt, (7)

where fα(t; 1) is the standard SαS distribution which is
obtained by setting γ = 1 in (2). Hence, Pαb for SαS channels
is derived as

Pαb = P(x = +1)P(e|x = +1)+ P(x = −1)P(e|x = −1)

=
1
2

∫ 0

−∞

fα(t − 1; γ )dt +
1
2

∫
∞

0
fα(t + 1; γ )dt

=

∫
∞

1
fα(u; γ )du, (8)

where e is a symbol error and P(x = +1) = P(x = −1) = 1
2 .

According to the standardization of SαS random variables,
if x ∼ S(α, γ ), then x/γ ∼ S(α, 1) and the pdf should
be scaled by 1/γ [15]. By using this parametrization of the
SαS process, (8) can be rewritten as

Pαb =
∫
∞

1

1
γ
fα

(
u
γ
; 1
)
du

=

∫
∞

1
γ

fα(v; 1)dv

= Qα

(
1
γ

)
. (9)

Since the geometric SNR is defined for the whole range
of α, (9) is a general expression for all SαS channels. From
(5) and (9), we can obtain Pαb in terms of Eb/N0 as

Pαb = Qα

(
1
γ

)
= Qα

(√
4RcC

( 2
α
−1)

g
Eb
N0

)
. (10)

When Rc = 1, (10) represents the BEP of an uncoded BPSK
system on SαS channels.
There are two special cases of SαS random variables which

have a closed-form expression for the pdf: α = 1 and

FIGURE 2. Uncoded performance of BPSK on SαS channels at
α = 2,1.99,1.5,1 and 0.5, respectively.

α = 2. Hence their BEP can be derived to further verify
the correctness of our analysis. First we consider the case of
Cauchy noise (α = 1), where PCauchyb is given as

PCauchyb =

∫
∞

0

γ

π

1

(t + 1)2 + γ 2
dt

=

∫
∞

1
γ

1
π

1
x2 + 1

dx. (11)

The Cauchy distribution of (11) has been converted to a stan-
dard pdf and PCauchyb can be expressed in terms of Qα(x) as

PCauchyb = Qα

(
1
γ

)
. (12)

Now we examine the case for AWGN (α = 2). Notice
that according to the definition of the standard SαS pdf, the
variance of the normal distribution is equal to two, since
σ 2
= 2γ 2. Hence the standard SαS distribution when

α = 2 is

fα=2(t; 1) =
1

2
√
π
exp(−

t2

4
). (13)

Then the uncoded BEP of BPSK on the AWGN channel can
be expressed in terms of the Qα-function as

PGaussb = Q

(√
2Eb
N0

)
= Qα=2

(
2

√
Eb
N0

)
. (14)

When α = 2, (10) reduces to (14), hence (10) is universal
for all values of α. This is confirmed in Fig. 2, where Pαb
in (10) for different values of α are plotted with simulated
bit-error rates, which match very closely.

IV. ASYMPTOTIC PERFORMANCE OF LDPC CODES
ON SαS CHANNELS
A. THE CAPACITY OF SαS CHANNELS
Channel capacity is a fundamental upper bound on the rate
at which information can be reliably transmitted. For the
AWGN channel, the channel capacity has been well stud-
ied in the literature [18]. For binary memoryless symmetric
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channels (BMSC), the capacity can be evaluated as a function
of the pdf of log-likelihood ratios (LLRs) [18]. As a type of
BMSC, the capacity of SαS channels can be expressed as

Cα = 1− E
{
log2

(
1+ e−L

)}
, (15)

where L = ln P(x=+1|y)
P(x=−1|y) is the channel LLR. The expectation

operator in (15) can be replaced by a time average. Hence the
capacity of SαS channels can be obtained as

Cα = 1− lim
N→∞

{
1
N

N∑
n=1

log2
(
1+ e−xnLn

)}
, (16)

where xn is the modulated signal. This capacity limit can be
measured by a large number, N , of LLR values and it will be
used as a benchmark for the coded performance in SectionVI.

B. DENSITY EVOLUTION OF LDPC CODES
ON SαS CHANNELS
The asymptotic performance of an ensemble of LDPC
codes can be accurately predicted from several methods,
namely, DE, EXIT charts and GA. However, only DE can
be employed to analyze the iterative behavior of the decoder
when the channel is impulsive, since it has a non-Gaussian
distribution. In this subsection, we will show how to apply
DE to SαS channels.
First we characterize LDPC ensembles by degree distribu-

tions. A (dv, dc) regular LDPC code is defined by all variable
nodes having degree dv and all check nodes having degree dc.
Naturally, irregular LDPC codes are defined by non-uniform
variable node degrees and check node degrees. The edge
degree distributions are expressed as:

λ(x) =
dv∑
i=2

λix i−1, ρ(x) =
dc∑
i=2

ρix i−1, (17)

where dv and dc are the maximum variable node degree and
check node degree respectively and λi or ρi is the fraction
of edges that are connected to variable or check nodes of
degree i.
It is known that DE assumes the channel output is

symmetric and we can prove the symmetry property for
SαS channels, as shown below:

P(y|x = 1) =
1
2π

∫
∞

−∞

exp(−γ α|t|α)e−jt(y−1)dt

=
1
2π

∫
∞

−∞

exp(−γ α|t|α)e−jt[−(y−1)]dt

= P(−y|x = −1). (18)

DE tracks the pdf of LLRs during the iterative Sum-Product
decoding (SPD) process. The initial LLR of a variable node
is given as

ω(0)
= ln

P(x = +1|y)
P(x = −1|y)

= ln
fα(y− 1; γ )
fα(y+ 1; γ )

. (19)

It is difficult to evaluate the pdf of (19) analytically, except
when α = 2, hence a numerical and histogram method is

used to find the pdf of (19). Then the DE of a check node is
expressed as

p(l)φ = 3
−1

[ dc∑
i=2

ρi

(
3
[
p(l−1)ω

])⊗(i−1)]
, (20)

where p(l)φ is the pdf of each check node output φ(l)i and p(l)ω is

the pdf of each variable node output ω(l)
j at the l-th iteration.

The symbol ⊗ represents convolution, 3 and 3−1 are the
changes of density due to the transformations g(·) and g−1(·)
respectively, where g(y) = (sign (y) , ln coth (|y/2|)). The DE
of a variable node is

p(l)ω = p(0)ω ⊗
dv∑
i=2

λi

(
p(l)φ
)⊗(i−1)

. (21)

The summations in the variable node update of the SPD
become convolution operations in (21). Let us assume that
the all-zero codeword (x = +1) is transmitted. During this
two-stage iterative algorithm, the fraction of incorrect mes-
sages for the l-th iteration can be denoted as

P(l)e =
∫ 0

−∞

p(l)ω (x)dx. (22)

We note that P(l)e will be used to derive an expression
for the estimated BEP for finite length LDPC codes on
SαS impulsive noise channels in the next section.

For a given noise parameter γ , this two-stage iterative
algorithm is performed until the error probability either tends
to zero or remains at a fixed value. Hence, the threshold γth
of a specific LDPC ensemble on SαS channels is defined as

γth = sup
{
γ : lim

l→∞

∫ 0

−∞

p(l)ω (x)dx = 0
}
, (23)

When γ < γth, the decision error converges to zero as the
number of iterations tends to infinity and when γ > γth, the
error will be bounded away from zero.

The obtained threshold γth can be used to predict the
asymptotic performance of LDPC codes since DE assumes
the block length is infinite and cycle-free. In the results
section, the corresponding SNR of the threshold will be
included in figures to indicate the start of the waterfall
region.

V. BLOCK AND BIT-ERROR PROBABILITY OF FINITE
LENGTH LDPC CODES ON SαS CHANNELS
A. ESTIMATING THE BLOCK-ERROR PROBABILITY
1) OBSERVED BIT-ERROR RATE ON SαS CHANNELS
The observed bit-error rate (BER) Pαobs is defined as the BER
of any received word of length N [3]. We assume the all-
zero codeword c is transmitted, hence an error occurs when
L(yj) =

P(cj=0|yj)
P(cj=1|yj)

is negative. To find the pdf of Pαobs, we take
N samples from the LLR distribution, where each bit has a
probability Pαb of being incorrect. Then, the probability mass
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function (pmf) of Pαobs is given as

fPαobs (N ,P
α
b ) =

(
N
K

)
(Pαb )

K (1− Pαb )
N−K , (24)

where K = NPαobs is the average number of errors in a
codeword of length N , which follows a binomial distribution
B(N ,Pαb ). When N → ∞, the pdf of Pαobs can be approxi-
mated by a normal distribution N (Pαb ,P

α
b (1− P

α
b )/N ).

2) BLOCK ERROR PROBABILITY
We employ a threshold method to estimate the BLEP
PαB(N , λ, ρ) for LDPC codes of block lengthN on SαS impul-
sive noise channels. The threshold of a specific ensemble of
LDPC codes is defined as the maximum channel parameter
where the probability of a bit error from the sum-product
decoder converges to zero. Once the threshold γth is obtained,
we can use the threshold method to estimate PαB(N , λ, ρ).

To find PαB(N , λ, ρ) of a specific ensemble of LDPC codes,
the probability that the observed channel behaves worse than
the decoding threshold is calculated using Pαobs defined ear-
lier. First, we calculate the corresponding BEP Pth of the
SαS impulsive noise channel at the threshold γth using (10)

Pth = Qα

(√
4RcC

( 2
α
−1)

g

(
Eb
N0

)
th

)
, (25)

where
(
Eb
N0

)
th
is the threshold SNR defined by γth. Then we

calculate fPαobs (N ,P
α
obs) according to the block length N of the

codeword and the probability that Pαobs > Pth. Hence, the
estimated BLEP is

PαB(N , λ, ρ) =
∫ 1

Pth
fPαobs (N , x)dx, (26)

where (26) calculates the probability of a block error for an
ensemble of LDPC codes with block length N and degree
distributions λ(x) and ρ(x). When N is large, fPαobs (N ,P

α
obs)

can be approximated as a normal distribution. Hence the
BLEP can be expressed as

PαB(N , λ, ρ) = Q

(
Pth − µPαobs
σPαobs

)
, (27)

where µPαobs = Pα0 and σPαobs = Pα0 (1− P
α
0 )/N .

B. ESTIMATING THE BIT ERROR PROBABILITY
The coded BEP can be derived from the BLEP by observing
that the error rate when the decoder fails does not change
significantly for channel parameters worse than the threshold.
Consequently, there is an error probability of P(l)e when the
decoder fails at the l-th iteration, as defined in (22). Since
each block has a probability PαB(N , λ, ρ) of an error occur-
ring, the BEP is given as

Pαb (N , λ, ρ) = P(lmax)
e PαB(N , λ, ρ), (28)

where lmax is the maximum number of iterations when DE
is performed. We model the observed BER as a random

FIGURE 3. BEP comparison of regular (3,6) LDPC codes showing
estimated and simulation results with different block lengths on
SαS channels when α = 1.9.

variable with a binomial distribution as in [3]. However, this
paper extends the estimation of the BLEP of LDPC codes on
AWGNchannels tomore general non-Gaussian SαS channels
by using our derived uncoded BEP and threshold dispersion
for SαS channels.

VI. RESULTS AND DISCUSSION
The accuracy of the estimated performance for finite length
LDPC codes is now investigated by comparing theoretical bit-
error probabilities with bit-error rates obtained by simulations
of rate 1/2 regular and irregular LDPC codes of different
block lengths (N = 1000, 4000, 20000) at different values
of α (α = 0.8, 1, 1.5, 1.9). The decoding algorithm is the
sum-product algorithm and the maximum number of decoder
iterations is set to 100. For regular codes, we fix the column
weights and rowweights to 3 and 6, respectively. For irregular
codes, the degree distributions are selected to be λ(x) =
0.30013x + 0.28395x2 + 0.41592x7, ρ(x) = 0.22919x5 +
0.77081x6 and λ(x) = 0.4x2 + 0.4x5 + 0.2x8, ρ(x) = x8.
The first degree distribution pair is chosen from [19] which is
the optimized code with maximum variable node degree of 8.
The second degree distribution pair is chosen from [3]. In our
simulations, short and medium length codes (N ≤ 4000 bits)
are constructed using a progressive edge-growth (PEG) algo-
rithm [20], which maximizes the local girth to reduce the
effects of cycles. For long LDPC codes, we useMackay’s ran-
dom construction since the complexity of the PEG algorithm
at large block lengths is very high.

In Figs. 3 - 7, the capacity and thresholds of each LDPC
ensemble for SαS channels are given. For regular LDPC
codes and different values of α, as shown in Figs. 3 - 5, the gap
between the estimated and simulated performance becomes
smaller as the block length increases. When N = 1000,
the gap between the estimated and simulated performance is
around 0.2 dB and reduces to about 0.1 dB when N increases
to 4000. When N = 20000, the estimated and simulated
performance are almost identical. We also observe that these
differences in performance are independent of α.
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FIGURE 4. BEP comparison of regular (3,6) LDPC codes showing
estimated and simulation results with different block lengths on
SαS channels when α = 1.

FIGURE 5. BEP comparison of regular (3,6) LDPC codes showing
estimated and simulation results with different block lengths on
SαS channels when α = 0.8.

Our estimation method is also shown to match closely with
the simulation results for irregular LDPC codes. As shown in
Fig. 6, the actual performance is accurately predicted by our
analytically derived PαB and Pαb in (27) and (28) with only
a 0.15 dB difference at a bit-error rate of 10−5, while the
gap to the threshold is 1.04 dB. In Fig. 7, the performance
of optimized LDPC codes is presented when α = 1. It is
shown that the gaps between the estimated and simulated
performance for different block lengths are similar to the
results for the regular LDPC codes, with both sets of results
becoming almost identical when N = 20000 bits. Compared
with Fig. 4, we note that the performance of this optimized
code is about 1 dB better than the regular (3, 6) LDPC codes
with the same block lengths.

We observe that the gap between the estimated and sim-
ulated results is greater at shorter block lengths. There are
two reasons for this result: First, the threshold γth and its
corresponding Pth obtained from DE assume the LDPC code
is cycle-free. However, short cycles cannot be avoided for

FIGURE 6. Block and bit error probability of irregular LDPC codes with
degree distribution λ(x) = 0.4x2 + 0.4x5 + 0.2x8, ρ(x) = x8 showing
estimated and simulation results with N = 4000 on SαS channels when
α = 1.5.

FIGURE 7. BEP comparison of irregular LDPC codes with degree
distribution λ(x) = 0.30013x + 0.28395x2 + 0.41592x7,
ρ(x) = 0.22919x5 + 0.77081x6 showing estimated and simulation results
with different block lengths on SαS channels when α = 1.

short LDPC codes. Hence, the effect of cycles on short block
length LDPC codes is more serious and this degrades perfor-
mance [20]. For long LDPC codes, the prediction becomes
more accurate since the concentration theorem states that the
average behavior of individual codes concentrates around its
expected behavior as the block length grows and this average
behavior converges to the cycle-free case [21]. Second, the
pdf of Pαobs is not well approximated by a Gaussian distribu-
tion when N is small, which means (27) and (28) become
less accurate. To numerically evaluate the accuracy of the
Gaussian approximation, the Kullback-Leibler (KL) diver-
gence is employed to calculate the difference between the
two pdfs. KL divergence is defined as DKL(P||Q) =∑

i P(i) log
P(i)
Q(i) , where P is the true pdf and Q is an approxi-

mation of P. In our case, P is the binomial pdf B(N ,Pαb ) and
Q is the normal distribution N (Pαb ,P

α
b (1− P

α
b )/N ). We note

that the accuracy of this approximation generally improves as
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N increases and Pαb is not near to 0 or 1. In order to investigate
the validity of Gaussian approximation, as an example, we
choose the smallest Pαb = 0.0802 which can be calculated
from (10) at Eb/N0 = 3 dB which is the largest SNR in
Fig. 3. Knowing the value of block length N and Pαb , the
pdf of Pαobs can be determined. Therefore, the KL divergence
between the pdf of Pαobs and Gaussian distribution is obtained
as 8.02 × 10−4, 1.99 × 10−4, 3.98 × 10−5 for N =

1000, 4000, 20000, respectively. This indicates that the
approximation becomes more accurate as the block length
increases and we also observe that the Gaussian approxi-
mation is very accurate even for short length LDPC codes
(N = 1000), since the KL divergence is very small.

VII. CONCLUSION
In this paper, we have performed a finite length analysis
of regular and irregular LDPC codes to derive the block
and bit-error probabilities on additive impulsive noise chan-
nels with SαS pdfs. First, a general expression of the exact
BEP of BPSK on SαS channels is derived. Then DE has
been employed to obtain the decoding threshold of infinitely
long LDPC codes since the simpler Gaussian approximation
method was not feasible due to the non-Gaussian nature of
the channel. This was used to derive the block and bit error
probabilities of long and short LDPC codes. At long block
lengths (N = 20000 bits), the estimated BEPs are almost
identical to the simulated bit-error rates for different values
of α, but it has been observed that the gap between theoretical
and simulation results increases as the block length decreases.
The reasons for this are the effect of short cycles in the
Tanner graph and theGaussian approximation of the observed
error probabilities becoming weaker as the block length is
reduced, although the gap was still only around 0.2 dB when
the block length is as low as 1000 bits. Hence, we have
shown that for a given degree distribution pair our method
can be used to obtain accurate estimates of the block and
bit error probabilities of finite length LDPC codes on SαS
additive impulsive noise channels. Furthermore, our anal-
ysis implies that for a given uncoded BEP and threshold,
the prediction of the actual performance for short LDPC
codes could be accomplished on more general memoryless
channels.
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