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a b s t r a c t

The algebraic soft decoding (ASD) algorithm for Reed–Solomon (RS) codes can correct er-
rors beyond the half distance bound with a polynomial time complexity. However, the de-
coding complexity remains high due to the computationally expensive interpolation that
is an iterative polynomial construction process. By performing the interpolation progres-
sively, the progressive ASD (PASD) algorithm can adapt the decoding computation to the
need, leveraging the average complexity of multiple decoding events. But the complexity
reduction is realised at the expense of system memory, since the intermediate interpola-
tion information needs to bememorised. Addressing this challenge, this paper proposes an
improved PASD (I-PASD) algorithm that can alleviate thememory requirement and further
reduce the decoding complexity. A condition on expanding the set of interpolated polyno-
mials will be introduced, which excepts the need of performing iterative updates for the
newly introduced polynomial. Further incorporating the re-encoding transform, the I-PASD
algorithm can reduce the decoding complexity over the PASD algorithm by a factor of 1/3
and its memory requirement is at most half of the PASD algorithm. The complexity and
memory requirement will be theoretically analysed and validated by numerical results.
Finally, we will confirm that the complexity and memory reductions are realised with pre-
serving the error-correction capability of the ASD algorithm.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Reed–Solomon (RS) codes are widely used in digi-
tal communications and storage systems. The conven-
tional unique decoding algorithms for RS codes include
Berlekamp–Massey (BM) algorithm [1] and Welch–
Berlekamp (WB) algorithm [2,3]. For an (n, k) RS code,
where n and k are the length and dimension of the code,
respectively, its error-correction capability is limited by
⌊
d−1
2 ⌋ where d = n − k + 1 is the code’s minimum Ham-

ming distance. The algebraic list decoding algorithm [4,5]
improves the error-correction capability by a curve-fitting
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decoding approach, thereby correcting errors beyond the
half distance bound. In this paper, it is referred as the al-
gebraic hard decoding (AHD) algorithm. The algebraic soft
decoding (ASD) algorithm [6] was later proposed, enhanc-
ing the AHD algorithmby introducing an extra process that
maps the reliability information to the interpolation mul-
tiplicity information. Being able to utilise the soft informa-
tion provided by the channel, it outperforms the AHD and
the unique decoding algorithms.

In algebraic decodings, interpolation that is an iter-
ative polynomial construction process [7–9] dominates
the computational complexity and there exists various
complexity reduction approaches. In [10], interpolation
complexity is reduced by eliminating the interpolated
polynomials with a leading order that is greater than
the number of interpolation constraints. In [11], a low-
complexity Chase (LCC) algebraic decoding algorithm was
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proposed. It reduces complexity by exploiting the similar-
ity among the interpolation test-vectors. In [12], by formu-
lating the AHD as a rational curve-fitting problem utilising
the outcome of the BM algorithm, i.e., the error locator and
error-correction polynomials, it results in a significantly
reduced interpolation multiplicity. The re-encoding trans-
form [13–15] is another important approach. Interpolation
complexity can be reduced by choosing k received sym-
bols to perform re-encoding, alleviating the iterative poly-
nomial construction computation. Meanwhile, it should be
mentioned that there exists other efficient realisations for
the interpolation problem, such as the Lee–O’Sullivan ap-
proach [16] and its modified variant [17], and the Bee-
len–Brander approach [18].

The above mentioned approaches were proposed to re-
duce the computation of a single decoding event. By fur-
ther observing the fact that different decoding events may
require different error-correction capability, the progres-
sive ASD (PASD) [19] algorithm was proposed aiming to
reduce the average decoding complexity of multiple de-
coding events. It functions with a progressively enlarged
designed factorisation output list size (OLS), leading to a
gradually strengthened error-correction capability. By en-
larging the factorisation OLS, both the cardinality of the in-
terpolated polynomial set and the size of each polynomial
will be increased. Since such an expansion is realised at
the cost of interpolation computation, the PASD algorithm
adapts the computation of each individual decoding event
to the need, leveraging the average decoding complexity.
Other similar efforts include the work of [20] that analyses
the interpolation cost’s dependence on the receivedword’s
error weight. It also proposed an interpolation algorithm
that gives priority to update the polynomials that aremore
likely to be chosen for factorisation.More recently, amulti-
trial AHD approach was proposed in [21]. It performs a
similar progressive decoding based on the Beelen–Brander
interpolation [18].

However, the PASD algorithm’s merit in reducing the
average decoding complexity is realised at the expense
of system memory, since the intermediate interpolation
information needs to be memorised. In particular, when
a new polynomial is introduced into the set, it needs to
be iteratively updated w.r.t. the constraints which have
been satisfied by the existing polynomials of the set, dur-
ing which the intermediate interpolation information is
needed. Addressing this challenge, this paper proposes
an improved PASD (I-PASD) algorithm that can alleviate
the memory requirement and further reduce the decod-
ing complexity. In particular, a condition on expanding the
polynomial set will be established such that the newly in-
troduced polynomial is excepted from performing the it-
erative updates. It further incorporates the re-encoding
transform, offering a memory requirement that is at most
half of the PASD algorithm and a complexity reduction
over the PASD algorithm by a factor of 1/3. Our complexity
analysis shows that when the decoding terminates with a
factorisation OLS that is greater than one, such a complex-
ity reduction is mainly attributed to the new polynomial
set expansion. Both of the complexity and memory anal-
yses of the I-PASD algorithm will be validated by numeri-
cal results. Finally, our simulation results confirm that the
proposed low complexity algorithm preserves the error-
correction capability of the ASD algorithm.

The rest of this paper is organised as the follows. The
background knowledge of the paper is presented in Sec-
tion 2. Section 3 presents I-PASD algorithm. The memory
and complexity analyses of the new proposal will be pre-
sented in Sections 4 and 5, respectively. The proposed al-
gorithm’s error-correction performance will be presented
in Section 6. Finally, Section 7 concludes the paper.

2. Background knowledge

2.1. Encoding of RS codes

Let Fq = {α0, α1, . . . , αq−1} denote the finite field of
size q, and Fq[x] and Fq[x, y] denote the univariate and
bivariate polynomial rings defined over Fq, respectively.
Given a message vector µ = (µ0, µ1, . . . , µk−1) ∈ Fk

q, the
message polynomial µ(x) ∈ Fq[x] can be written as:

µ(x) = µ0 + µ1x + · · · + µk−1xk−1. (1)
A codeword c of an (n, k) RS code is generated by:
c = (c0, c1, . . . , cn−1)

= (µ(χ0), µ(χ1), . . . , µ(χn−1)), (2)
where c ∈ Fn

q . χ0, χ1, . . . , χn−1 are n distinct elements of
Fq and they are called the code locators.

2.2. The ASD algorithm and its progressive variant

It is assumed that an RS codeword is modulated and
transmitted through a memoryless channel, e.g., the ad-
ditive white Gaussian noise (AWGN) channel. Given a re-
ceived vector Y ∈ R, the q × n reliability matrix 5 can be
obtained, whose entry πij = Pr[cj = αi | Y]. Matrix 5 is
then transformed into a multiplicity matrix M of the same
size [6] and its entrymij represents the interpolationmulti-
plicity for the point (χj, αi), where χj ∈ Fq and cj = µ(χj).
Given a polynomial Q (x, y) =


a,b Qabxayb ∈ Fq[x, y] and

a nonnegative integer pair (r, s), the (r, s)th Hasse deriva-
tive evaluation of Q at point (χj, αi) is defined as [22]:

Dr,s(Q (x, y))|(χj,αi) =


a≥r,b≥s


a
r


b
s


Qabχ

a−r
j αb−s

i . (3)

Q interpolates point (χj, αi) with a multiplicity of mij
if Dr,s(Q (x, y))|(χj,αi) = 0 for all the (r, s) pairs with
r + s < mij. In the following, we will simply use
(r, s)ij to denote the interpolation constraint that im-
plies Dr,s(Q (x, y))|(χj,αi). The number of interpolation con-
straints defined by matrixM is

C(M) =
1
2

q−1
i=0

n−1
j=0

mij(mij + 1). (4)

In decoding an (n, k) RS code, monomials xayb are or-
ganised by the (1, k − 1)-revlex order.1 Given a poly-

1 The (1, k − 1)-weighted degree of monomial xayb is defined as:
deg1,k−1xayb = a + (k − 1)b. Given two distinct monomials xa1yb1

and xa2yb2 , we have ord(xa1yb1 ) < ord(xa2yb2 ), if a1 + (k − 1)b1 <

a2 + (k − 1)b2 , or a1 + (k − 1)b1 = a2 + (k − 1)b2 and b1 < b2 .
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nomial Q ∈ Fq[x, y], if xa
′

yb
′

is the leading monomial
(lm) as lm(Q ) = xa

′

yb
′

with coefficient Qa′b′ ≠ 0, the
(1, k−1)-weighted degree of Q is defined as: deg1,k−1Q =

deg1,k−1xa
′

yb
′

, and its leading order (lod) is defined as:
lod(Q ) = ord(xa

′

yb
′

). Given two polynomials (H,Q ) ∈

Fq[x, y], we declare H < Q if lod(H) < lod(Q ). Interpola-
tion is to find a polynomial Q that has the minimal (1, k −

1)-weighted degree and satisfies all the C(M) constraints.
Given a multiplicity matrix M, we use ij to denote the

row index i that yields αi = cj. The codeword score is
defined as:

SM(c) =

n−1
j=0

mijj, (5)

and the following successful ASD condition can be
introduced.

Theorem 1. Given Q ∈ Fq[x, y] as an interpolated polyno-
mial, if

SM(c) > deg1,k−1Q , (6)

themessage polynomialµ(x) can be found out by the factoris-
ing Q as Q (x, µ(x)) = 0 [6].

Proof. For the proof, it is important to be armed with the
following prerequisite. If the polynomial Q ∈ Fq[x, y]
passes through a point (χj, αi) with a multiplicity of mij,
and p(x) ∈ Fq[x] is a polynomial that evaluates p(χj) = αi,
then (x − χj)

mij |Q (x, p(x)). For the message polynomial
u(x), we have u(χj) = cj, ∀j. Let Q ′(x) = Q (x, µ(x)), then

(x − χ0)
mi00(x − χ1)

mi11 · · · (x − χn−1)
min−1n−1 | Q ′(x).

The number of x-roots that polynomial Q ′ has is at least
SM(c). Since degxµ ≤ k − 1, degxQ ′

≤ deg1,k−1Q . There-
fore, if SM(c) > deg1,k−1Q , we must have Q ′(x) = 0. �

The factorisation [23–25] of Q delivers a list L of mes-
sage polynomial candidates that are in the form of µ(x).
The cardinality of L is referred as the factorisation OLS.
Since deg1,k−1Q is upper bounded by∆1,k−1(C(M)), where
∆1,k−1(C(M)) = deg1,k−1(xayb|ord(xayb) = C(M)), the
following corollary on the successful decoding condition
can be led to.

Corollary 2. Given an interpolated polynomial Q ∈ Fq[x, y],
the message polynomial µ(x) can be found out if

SM(c) > ∆1,k−1(C(M)). (7)

Proof. It is known that deg1,k−1Q ≤ ∆1,k−1(C(M)). If
SM(c) > ∆1,k−1(C(M)), then SM(c) > deg1,k−1Q . The
conclusion follows based on Theorem 1. �

In order to explain the evolution from the ASD algo-
rithm to its progressive variant, i.e., the PASD algorithm,
the following definitions need to be introduced.

Definition 1. Let Λ(mij) denote the set of interpolation
constraints defined by mij as: Λ(mij) = {(r, s)ij, ∀ r +

s < mij}. Λ(M) is used to denote a collection of all the
constraint sets Λ(mij) that are defined by the nonzero
entries ofM as:

Λ(M) = {(r, s)ij, ∀ mij ∈ M and mij ≠ 0}. (8)

Therefore, we have |Λ(M)| = C(M).

Definition 2. Let MA and MB denote two multiplicity ma-
trices of the same size with entries m(A)

ij and m(B)
ij , respec-

tively. With m(A)
ij ≤ m(B)

ij for all entries, the incremental
interpolation constraints introduced by the two matrices
are defined as:

Λ(MB\A) = {Λ(MB) \ Λ(MA)}

= {Λ(m(B)
ij ) \ Λ(m(A)

ij ),

∀ m(A)
ij ∈ MA and m(B)

ij ∈ MB}. (9)

Note that |Λ(MB\A)| = C(MB) − C(MA).

The PASD algorithm performs decoding with a series
of monotonically increasing designed factorisation OLS
values l1, l2, . . . , lv−1, lv, . . . , lT , where lT is the maxi-
mal OLS set according to the decoding’s computational
budget. Based on the above OLS series, a correspond-
ing series of multiplicity matrices can be generated as:
M1,M2, . . . ,Mv−1,Mv, . . . ,MT , where m(v−1)

ij ≤ m(v)
ij .

With Definition 2, it can be realised that

Λ(Mv) = Λ(M1\0) ∪ Λ(M2\1) ∪ · · · ∪ Λ(Mv\v−1), (10)

for v = 1, 2, . . . , T . Since M0 = [0]q×n and Λ(M0) =

∅, we have Λ(M1\0) = Λ(M1). The PASD algorithm
performs interpolation w.r.t. the constraints of Λ(M1),
Λ(M2\1), . . . , Λ(Mv\v−1), . . . , Λ(MT\T−1) progressively,
and it will be terminated if the message can be found
from its intermediate interpolation outcome.2 According
to Corollary 2, once

SMv (c) > ∆1,k−1(C(Mv)), (11)

the decoding will be terminated. However, if interpolation
w.r.t. constraints of Λ(MT\T−1) has been performed and
the intended message polynomial still cannot be found,
the decoding will also be terminated and a decoding fail-
ure will be declared. Therefore, with a mildly corrupted
received information, condition of (11) will happen in an
earlier decoding stage with a smaller OLS value. It results
in a lower decoding complexity, and vice versa.

3. The improved progressive interpolation

The improved progressive interpolation is charac-
terised by two new features. First, the re-encoding trans-
form will be performed based on matrix M1, reducing the
iterative polynomial construction task of k interpolation
points. Second, a polynomial set expanding condition as
well as the updating operation for the newly introduced
polynomial will be established. Consequently, the newly

2 The decoding output can be validated by the maximum likelihood
(ML) criterion of [26].
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introduced polynomial does not need to perform the itera-
tive updates w.r.t. the previous constraints. It cannot only
reduce the memory requirement in realising the progres-
sive interpolation, but also reduce the decoding complex-
ity. Based on the above new features, the I-PASD algorithm
will be proposed.

3.1. The re-encoding transform based onM1

The set of interpolation points indicated by matrix M1
can be defined as:

PM1 = {(χj, αi), ∀ mij ∈ M1 andmij ≠ 0}. (12)

We first identify k points in the set PM1 to perform re-
encoding [15]. In matrix 5, the maximal entry of each
column can be identified as π∗

j = max{πij | i =

0, 1, . . . , q − 1}. Sorting the n maximal entries in a de-
scending order yields a refreshed column index sequence
θ0, θ1, . . . , θk−1, . . . , θn−1, which implies π∗

θ0
≥ π∗

θ1
≥

· · · ≥ π∗

θk−1
≥ · · · ≥ π∗

θn−1
. Let i(θ) denote the row in-

dex of entry π∗

θ as i(θ) = {i | πi,θ = π∗

θ }, the following set
of points can be constituted for re-encoding as:

P I
M1

= {(χθ0 , αi(θ0)), (χθ1 , αi(θ1)), . . . , (χθk−1 , αi(θk−1))}

(13)

and |P I
M1

| = k. Let Θ = {θ0, θ1, . . . , θk−1}, the re-encoding
polynomial T (x) can be defined as:

T (x) =


j∈Θ

αi(j)tj(x), (14)

where tj(x) is the Lagrange basis polynomial that is written
as:

tj(x) =


j,δ∈Θ,

δ≠j

x − χδ

χj − χδ

. (15)

Note that T (χj) = αi(j), ∀ j ∈ Θ . Therefore, for the origi-
nal interpolation points (χj, αi), we can transform them by
(χj, αi + T (χj)). Consequently, set PM1 is transformed into

P ′

M1
= {(χj, αi + T (χj)), ∀ mij ∈ M1 and mij ≠ 0}. (16)

In particular, P I
M1

is transformed into

P I′
M1

= {(χj, 0), ∀ j ∈ Θ}. (17)

Note that in matrix M1, there can be less than k nonzero
entries. The above sorting process aims to enable set P I

M1

(or P I′
M1

) include most of the points that correspond to the
nonzero entries ofM1, so that the following process can re-
duce the interpolation complexity in its best capability.

At the beginningwith an initial factorisation OLS l1 = 1,
polynomial set G1 = {g0, g1} is initialised by [15]

gu = yu

j∈Θ

(x − χj)
[mi(j)j−u]+ , (18)

where u = 0, 1 and [mi(j)j − u]+ = max{mi(j)j − u, 0}. Let
ΛI(M1) denote the set of interpolation constraints defined
by points of P I′

M1
, polynomials of G1 have already satisfied

those constraints. They will further perform interpolation
w.r.t. the remaining constraints of {Λ(M1) \ ΛI(M1)}.
Regarding each constraint (r, s)ij ∈ {Λ(M1) \ ΛI(M1)},
Hasse derivative evaluation of (3) will be performed
for each polynomial of G1. For those polynomials with
D(r,s)ij(gu) ≠ 0, the minimal one will be selected as:

f = min{gu | D(r,s)ij(gu) ≠ 0}, (19)

and the bilinear modification will be performed follow-
ing [6]:

gu =

gu −
D(r,s)ij(gu)

D(r,s)ij(f )
f , if gu ≠ f , (a)

(x − χj)f , if gu = f . (b)
(20)

We define the above bilinear modification as the polyno-
mial update such that the updated polynomial satisfies the
current constraint (r, s)ij. After interpolation w.r.t. con-
straints of {Λ(M1) \ ΛI(M1)} has been performed, an up-
dated polynomial set G̃1 = {g̃0, g̃1} will be obtained. The
minimal polynomial Q1 = min{gu|gu ∈ G̃1} will be cho-
sen for factorisation. If µ′(x) ∈ L as it is the factorisation
outcome, the intended message polynomial can be further
determined by

µ(x) = µ′(x) + T (x). (21)

If the intended message polynomial cannot be found, the
OLSwill be increased to l2 = l1+1 forcing another stronger
algebraic decoding attempt. In the PASD algorithm, cardi-
nality of the set of interpolated polynomials will be subse-
quently increased by introducing a newpolynomial yl2 . The
newly introduced polynomial will then perform updates of
(20)(a) by engaging with the minimal polynomials f that
were identified and memorised when l1 = 1, so that it can
satisfy interpolation constraints of Λ(M1). Therefore, such
an updating process requiresmemory for storing the inter-
mediate interpolation information. Addressing this chal-
lenge, the following subsection introduces a condition on
expanding the polynomial set without performing the re-
interpolation.

3.2. Polynomial set expanding condition

In order to explicitly formulate the polynomial set
expanding condition, the following two definitions are
necessary to be introduced.

Definition 3. For the σ th interpolation constraint (r, s)ij,
its corresponding kernel Kσ is defined as the set of
polynomials of Fq[x, y] that satisfy the constraint, i.e.,

Kσ = {Q ∈ Fq[x, y] | D(r,s)ij(Q ) = 0}. (22)

The cumulative kernel Kσ can be further defined as:

Kσ = Kσ−1 ∩ Kσ = K1 ∩ K2 ∩ · · · ∩ Kσ . (23)

Note that K0 = K0 = {Q ∈ Fq[x, y]}, since no interpola-
tion constraint has been imposed.

Definition 4. The set of polynomials of Fq[x, y] whose
leading monomial has a y-degree of u is defined as:

Wu = {Q ∈ Fq[x, y] | degylm(Q ) = u}. (24)
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In the conventional ASD algorithm [6] that performs
decoding with an OLS of lT , the iterative polynomial
construction begins with a set of polynomials G(0)

=

{g(0)
0 = 1, g(0)

1 = y, . . . , g(0)
u = yu, g(0)

u+1 = yu+1,

. . . , g(0)
lT

= ylT }.3 Set G(0) defines the Gröbner basis
of cumulative kernel K0 and each of its polynomials
g(0)
u = min{K0 ∩ Wu}. After the σ th interpolation con-

straint has been satisfied, the polynomial set evolves to
G(σ )

= {g(σ )
0 , g(σ )

1 , . . . , g(σ )
u , g(σ )

u+1, . . . , g
(σ )
lT

}, where g(σ )
u =

min{Kσ ∩ Wu}. It is important to observe that in set
G(0), g(0)

u+1 is divisible by g(0)
u and such an observation will

lead to the following lemma.

Lemma 3. If lod(g(σ )
u ) = lod(g(0)

u ), then g(σ )
u+1 can be com-

puted by yg(σ )
u [27].

Proof. According to the property of cumulative kernel, if
g(σ )
u ∈ Kσ , then yg(σ )

u ∈ Kσ . Since lod(g(σ )
u ) = lod(g(0)

u ),
then lod(g(σ )

u (g(0)
u+1/g

(0)
u )) = lod(g(0)

u+1).With g(0)
u+1 being the

minimal polynomial inK0∩Wu+1, g
(σ )
u (g(0)

u+1/g
(0)
u )will also

be the minimal polynomial in Kσ ∩ Wu+1. Knowing that
g(0)
u+1/g

(0)
u = y, g(σ )

u+1 can be computed by yg(σ )
u . �

Based on the above statement, it can be realised that
in polynomial set G(σ ) with |G(σ )

| = u + 1, as far as
polynomial g(σ )

u is not chosen as the minimal polynomial
f as in (19), its update that is conducted by (20)(a) will not
lead to its lod being increased. Consequently, the newly
introduced polynomial g(σ )

u+1 can always be generated by
g(σ )
u+1 = yg(σ )

u such that it is the minimal polynomial
in Kσ ∩ Wu+1. Therefore, polynomial set G(σ ) should be
expanded by introducing a newpolynomial g(σ )

u+1 when g(σ )
u

becomes the minimal polynomial, i.e., when f = g(σ )
u . The

following theorem defines the update of polynomial g(σ )
u+1

once it is introduced into set G(σ ).

Theorem 4. In a polynomial set G(σ ) with |G(σ )
| = u + 1,

if g(σ )
u is the minimal polynomial that does not satisfy the

current interpolation constraint (r, s)ij, i.e., f = g(σ )
u , a new

polynomial g(σ+1)
u+1 should be introduced and updated by [27]

g(σ+1)
u+1 = (y − αi)g(σ )

u , (25)

such that it satisfies all the interpolation constraints that
polynomial g(σ )

u has satisfied and the current one, i.e., (r, s)ij.

Proof. Based on Lemma 3, we know that the new
polynomial g(σ )

u+1 shall be introduced into the set as g(σ )
u+1 =

yg(σ )
u so that it is the minimal polynomial in Kσ ∩ Wu+1.

3 In the progressive interpolation, there are two types of iterations. One
is the iterative polynomial construction and the other is the progressive
iteration. In this paper,weuseσ to denote the index of a certain constraint
(r, s)ij and so for the iterative polynomial construction, and G(σ ) denotes
the set of polynomials w.r.t. the σ th constraint. Alternatively, we use
v to denote the progressive iteration index and Gv denotes the set of
polynomials at progressive iteration v.
To further enable polynomial g(σ )
u+1 satisfy the current

constraint, update of (20)(a) needs to be performed, i.e.,

g(σ+1)
u+1 = g(σ )

u+1 −
D(r,s)ij(g

(σ )
u+1)

D(r,s)ij(g
(σ )
u )

g(σ )
u

= yg(σ )
u −

αiD(r,s)ij(g
(σ )
u )

D(r,s)ij(g
(σ )
u )

g(σ )
u

= (y − αi)g(σ )
u .

As a result, g(σ+1)
u+1 is the minimal polynomial in Kσ+1 ∩

Wu+1. �

Theorem 4 formulates the polynomial set expanding
condition and the updating operation for the newly
introduced polynomial. This update does not require the
polynomials f thatwere identified during the interpolation
w.r.t. the previous constraints. Therefore, it reduces the
memory requirement in storing the polynomials f as
in the PASD algorithm. Moreover, since no iterative
update is needed for the newly introduced polynomial,
it also reduces the computational cost in expanding the
polynomial set.

3.3. The I-PASD algorithm

In the PASD algorithm, the polynomial set will expand
once the designed factorisation OLS is increased. For
the newly proposed I-PASD algorithm, the polynomial
set’s expansion may not happen simultaneously with the
designed OLS. For this reason, during the progressive
iteration v, we use l′v to denote the maximal y-degree of
polynomials in set Gv as:

l′v = max{degygu | gu ∈ Gv}. (26)

It implies the cardinality of set Gv is l′v + 1. During the
iterations, it is always maintained that 1 ≤ l′v ≤ lv ≤ lT ,
where lv is the designed OLS of progressive iteration v.
Note that any polynomial with a y-degree greater than
the designed OLS lv will not be chosen as the minimal
polynomial of the set Gv for factorisation, and the updating
computation for the polynomial will be redundant. Hence,
in set Gv , we need to ensure l′v ≤ lv . Moreover, we let lv
progresses with a step size of one, i.e., lv+1 = lv + 1.

It is suffice now to apply Theorem 4 in the new
progressive interpolation. Without loss of generality, we
now describe the I-PASD algorithm as being performed at
iteration v with a designed factorisation OLS of lv , where
2 ≤ v < T . At the beginning of iteration v, we have
polynomial set

Gv = {g0, g1, . . . , gl′v }. (27)

They all satisfy the constraints of Λ(Mv−1). At the current
iteration, theywill perform interpolation as in (19)–(20)(b)
w.r.t. the constraints of Λ(Mv\v−1). Once

f = gl′v (28)

during the interpolation for a constraint (r, s)ij of
Λ(Mv\v−1), a new polynomial g∗ needs to be introduced
by

g∗
= (y − αi)gl′v . (29)
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Since we need to ensure lod(gl′v ) is unchanged when gl′v
is utilised to generate g∗, the update of (29) should be
performed before the update of gl′v itself utilising (20)(b).
In order to ensure l′v ≤ lv , we need to determine whether
g∗ should be included in setGv to interpolate the remaining
constraints of Λ(Mv\v−1). The following two cases can be
classified for the set expansion.

Case 1.1: If l′v < lv , polynomial set Gv needs to be
expanded by

Gv = {g0, g1, . . . , gl′v } ∪ {g∗
}. (30)

Afterwards, l′v is increased by one and Gv = {g0, g1, . . . ,
gl′v−1, gl′v }. Polynomials of Gv will perform interpolation
w.r.t. the remaining constraints of Λ(Mv\v−1).

Case 1.2: If l′v = lv , polynomial set Gv does not need to
be expanded since the maximal y-degree of polynomials
of Gv already reaches lv and degyg∗ > lv . The new
polynomial g∗ will not be chosen to be factorised after
the current progressive interpolation. Instead, it will be
stored in memory. Such an operation guarantees l′v ≤

lv throughout the progressive interpolation. The existing
polynomials of Gv will proceed to perform interpolation
w.r.t. the remaining constraints (r1, s1)i1j1 , (r2, s2)i2j2 , . . . ,
(rP , sP )iP jP of Λ(Mv\v−1)

4 and the identified minimal
polynomials f during this process will be stored with their
constraint identity (r, s)ij.

In the end of iteration v, we will have an updated
polynomial set G̃v as:

G̃v = {g̃0, g̃1, . . . , g̃l′v }, (31)

and its polynomials satisfy the constraints of Λ(Mv). The
minimal polynomial of G̃v , i.e.,

Qv = min{g̃u | g̃u ∈ G̃v} (32)

will be chosen for factorisation. After performing the
factorisation, the y-roots of Qv will be obtained as µ′(x).
Perform the message recovery by (21) to find the intended
message polynomial µ(x). If it cannot be found, the
designed factorisation OLS will be updated as lv+1 = lv +1
and matrixMv+1 will be generated accordingly.

In the progressive iteration v + 1, polynomial set Gv+1

inherits information from G̃v and such a process can again
be classified into two cases.

Case 2.1: If l′v + 1 < lv+1, it implies either condition of
(28) has not occurred or it has occurred as inCase1.1. In the
latter case, the newly generated polynomial g∗ has already
been included in the polynomial set G̃v . Hence, there is no
expansion from G̃v to Gv+1, and

Gv+1 = G̃v. (33)

Case 2.2: If l′v + 1 = lv+1, it implies condition of (28)
has occurred as in Case 1.2 and an expansion is needed
following

Gv+1 = G̃v ∪ {g∗
} = {g̃0, g̃1, . . . , g̃l′v , g

∗
}. (34)

4 Note that {(r1, s1)i1 j1 , (r2, s2)i2 j2 , . . . , (rP , sP )iP jP } ⊂ Λ(Mv\v−1).
Polynomial g∗ will then perform interpolation w.r.t. the
constraints of (r1, s1)i1j1 , (r2, s2)i2j2 , . . . , (rL, sL)iLjL by
engaging with the respective polynomials f as in (20)(a).
For example, if f is the memorised polynomial w.r.t. the
constraint of (r1, s1)i1j1 , g

∗ will be updated by g∗
=

g∗
−

D(r1,s1)i1 j1
(g∗)

D(r1,s1)i1 j1
(f ) f . After performing interpolationw.r.t. the

remaining constraints, it results in an updated polynomial
g̃∗ and Gv+1 becomes

Gv+1 = {g̃0, g̃1, . . . , g̃l′v , g̃
∗
}. (35)

Note that during the update of g∗, it is possible that a
constraint does not have a corresponding polynomial f
being stored in memory. This is because all polynomials
of Gv had satisfied the constraint without performing the
update. In such a case, polynomial g∗ becomes theminimal
polynomial f w.r.t. the constraint and it shall be utilised
to generate a new polynomial as in (29) to be stored in
the memory. With defining the polynomial set Gv+1, the
following interpolation can be performed as in iteration v.
The decoding will be terminated either when the intended
message polynomial is found or the maximal designed
factorisation OLS lT is exceeded.

We summarise the I-PASD algorithm as in Algorithm 1.
The above algorithm sets up the guideline for imple-

menting the I-PASD algorithm, during which there are two
subtle details that should be noticed. First, when v = 1,
one dose not need to perform the iterative polynomial con-
struction w.r.t. all the constraints of Λ(M1\0) = Λ(M1).
Since the polynomials of set G1 already satisfy the con-
straints of ΛI(M1), the iterative polynomial construction
is only performed w.r.t. the remaining constraints, i.e.,
{Λ(M1) \ ΛI(M1)}. Second, when v = 1, if there is en-
try mi(j)j > 1 for all j ∈ Θ, lod(g1) > lod(y) when g1 is
initialised as in (18). Consequently, we cannot utilise The-
orem 4 to generate a new polynomial once f = g1 for the
first set expansion. However, it is often that with l1 = 1,
entries of M1 will not be greater than one and the intro-
duced polynomial set expanding approach can still be ap-
plied.

4. Memory requirement analysis

Based on Section 3, we can see that the I-PASD
algorithm does not need to store all the intermediate
interpolation information thanks to the new polynomial
set expansion. Consequently, it requires less memory than
the PASD algorithm. For the memory requirement analysis
of the I-PASD algorithm, let us consider the worst case
scenario as when the interpolation terminates at iteration
v with C(Mv) constraints having been satisfied, there are
lv +1 polynomials in set Gv and C(Mv)(lv +1) polynomial
updates. Regarding each constraint, there is a minimal
polynomial f being identified. We now seek to analyse the
memory requirement for storing the minimal polynomials
f by assuming one polynomial coefficient consumes a
memory unit.

We first re-characterise the memory requirement of
the PASD algorithm as it will be a memory reduction
benchmark for the new proposal. In the end of iteration
v, the chosen polynomial Qv has a leading order lod(Qv)
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Algorithm 1 The I-PASD Algorithm
Input: The maximal designed OLS lT and the reliability matrix Π ;
Output: The message polynomial µ(x) or ∅;
Initialisations: Let v = 1 and l1 = 1;
1: Generate matrixMv based on lv;
2: If v = 1, perform the re-encoding transform based on M1 and initialise polynomial set G1 as in (18); Otherwise, if
l′v−1 + 1 < lv , generate polynomial set Gv as in (33), else if l′v−1 + 1 = lv , generate polynomial set Gv as in (34)-(35);
3: For each constraint (r, s)ij of Λ(Mv\v−1) {
4: Determine D(r,s)ij(gu) for each polynomial of Gv as in (3), and identify f as in (19);
5: If f = gl′v , generate g∗ as in (29);
6: If l′v < lv , expand polynomial set Gv as in (30); Otherwise, set Gv is left intact and start to memorise the identified
polynomial f ;
7: Perform the polynomial update for set Gv as in (20a)-(20b); }
8: Determine Qv as in (32);
9: Factorise Qv to retrieve the intended message polynomial µ(x);
10: If µ(x) is found, terminate the decoding; Otherwise, update lv+1 = lv + 1 and v = v + 1;
11: If lv > lT , terminate the decoding and declare a decoding failure; Otherwise, go to 1.
≤ C(Mv) and the identified minimal polynomials f will
obey lod(f ) < C(Mv) [19]. Hence, they have at most
C(Mv) nonzero coefficients which is referred as the size of
the polynomials. In the PASD algorithm, there are at most
C(Mv) − C(Mv−1) minimal polynomials f being stored at
iteration v. Therefore, when it terminates at iteration v, its
total memory consumption can be accumulated by

SPASD(lv) =

v
v′=1


C(Mv′) − C(Mv′−1)


C(Mv′). (36)

Note that C(M0) = 0. According to Corollary 3 of [19],
when lv is sufficiently large,

C(Mv) ∼=
k − 1
2

l2v. (37)

We can further formulate SPASD(lv) as:

SPASD(lv) ∼=

v
v′=1

k − 1
2

l2v′ −
k − 1
2

l2v′−1

k − 1
2

l2v′

=
(k − 1)2

2

v
v′=1

(2lv′ − 1)
l2
v′

2

∼=
(k − 1)2

2

v
v′=1

l3v′ . (38)

Since
v

v′=1 l
3
v′ =

l2v(lv+1)2

4 , SPASD(lv) becomes

SPASD(lv) ∼=
(k − 1)2

8
l2v(lv + 1)2. (39)

The I-PASD algorithm offers a memory reduction as the
minimal polynomials f will only need to be stored in Case
1.2 as shown in Section 3.3. In order to analyse thememory
reduction, the following lemma is introduced.

Lemma 5. During iteration v, polynomial glv of set Gv can
only become the minimal polynomial f after at least

k − 1
2

(lv + 1)lv (40)

interpolation constraints have been satisfied.
Proof. With glv = ylv , we can determine deg1,k−1glv =

(k − 1)lv . During the iterative polynomial updates, only
(20)(b) will lead to the weighted degree of the polynomial
increased by one. At the first iteration, g1 can become the
minimal polynomial f after at least k − 1 interpolation
constraints have been satisfied. Similarly, at the second
iteration with l2 = 2, polynomial g2 can only become
f after at least 2(k − 1) + (k − 1) constraints have
been satisfied. Following a similar accumulation pattern, at
iteration v, polynomial glv can only become f after at least

lv
λ=1

(k − 1)λ =
k − 1
2

(lv + 1)lv

interpolation constraints have been satisfied. �

Hence, at iteration v, the number of polynomials f
that need to be stored is equal to the difference between
the total number of constraints C(Mv) and the number
of constraints that have been satisfied before Case 1.2
happens, i.e.,

Γv = C(Mv) −
k − 1
2

(lv + 1)lv. (41)

Armedwith this knowledge, the following theorem further
characterises the memory requirement of the I-PASD
algorithm.

Theorem 6. If the I-PASD algorithm terminates at iteration
v, its memory requirement is upper bounded by

SI-PASD(lv) <
(k − 1)2

16
l2v(lv + 1)2. (42)

Proof. The above analysis shows at iteration v, the
algorithm requires at most ΓvC(Mv) memory for storing
the minimal polynomials f . Therefore, when the I-
PASD algorithm terminates at iteration v, its memory
requirement can be accumulated by

SI-PASD(lv) =

v
v′=1

Γv′C(Mv′). (43)
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Table 1
Average memory requirement in decoding the (63, 47) RS code.

SNR (dB) 1 2 3 4 5 6 7 8

PASD (lT = 5) 1.86 × 105 1.86 × 105 1.86 × 105 1.84 × 105 6.13 × 104 5.20 × 103 1.60 × 103 1.25×101

I-PASD (lT = 5) 8.18 × 104 8.08 × 104 8.06 × 104 7.49 × 104 2.13 × 104 1.19 × 103 2.32 × 101 0
PASD (lT = 7) 6.65 × 105 6.55 × 105 6.43 × 105 5.47 × 105 1.84 × 105 1.02 × 104 1.60 × 103 1.25×103

I-PASD (lT = 7) 3.12 × 105 3.10 × 105 3.10 × 105 2.35 × 105 9.04 × 104 4.28 × 103 2.32 × 101 0
Table 2
Average memory requirement in decoding the (255, 239) RS code.

SNR (dB) 1 2 3 4 5 6 7 8

PASD (lT = 5) 4.93 × 106 4.93 × 106 4.93 × 106 4.93 × 106 4.08 × 106 2.57 × 105 9.71 × 104 1.88×104

I-PASD (lT = 5) 2.35 × 106 2.35 × 106 2.34 × 106 2.29 × 106 2.18 × 106 1.17 × 105 9 × 101 0
PASD (lT = 7) 2.03 × 107 2.03 × 107 2.03 × 107 2.03 × 107 1.92 × 107 5.78 × 105 9.79 × 104 1.88×104

I-PASD (lT = 7) 9.30 × 106 9.30 × 106 9.30 × 106 8.97 × 106 8.80 × 106 2.08 × 105 9 × 101 0
When lv is sufficiently large, ∆1,k−1(C(Mv)) can be
approximated by [6]

∆1,k−1(C(Mv)) ∼=


2(k − 1)C(Mv). (44)

Based on the Lemma 15 of [6], we know

(k − 1)lv ≤ ∆1,k−1(C(Mv)) < (k − 1)(lv + 1). (45)

In conjunction of the above two expressions, we can bound
C(Mv) by

k − 1
2

l2v ≤ C(Mv) <
k − 1
2

(lv + 1)2. (46)

Therefore, based on (43), we have

SI-PASD(lv) <

v
v′=1

k − 1
2

(lv′ + 1)2 −
k − 1
2

(lv′ + 1)lv′


×

k − 1
2

(lv′ + 1)2


∼=
(k − 1)2

4

v
v′=1

l3v′ =
(k − 1)2

16
l2v(lv + 1)2. �

By comparing SPASD(lv) and SI-PASD(lv), we have the
following corollary that quantises the memory reduction
achieved by the I-PASD algorithm.

Corollary 7. If both of the progressive decoding algorithms
terminate at iteration v, the I-PASD algorithm offers a
memory requirement reduction over the PASD algorithm by
a factor that is greater than 1/2 as:

SI-PASD(lv) <
1
2

SPASD(lv). (47)

Proof. Based on (42) and the SPASD(lv) characterisation of
(39), the conclusion can be straightforwardly led to. �

Tables 1 and 2 show the numerical results on the
average memory requirement for storing the minimal
polynomials f in decoding the (63, 47) and the (255, 239)
RS codes, respectively. The simulations are conducted in
the AWGN channel using the binary phase shift keying
(BPSK) modulation. They are measured by running 10
000 decoding events at each signal-to-noise ratio (SNR).
This simulation test bed and measurement setup will also
be adopted later in the complexity analysis. However,
it is important to emphasise that the simulation test
bed is chosen to demonstrate the relationship between
the memory requirement and complexity of the I-PASD
algorithm and the quality of the channel. The I-PASD
algorithm’s computational flexibility will not be affected
by the choice of channel model. The simulation results
show the memory requirements of both of the progressive
decoding algorithms are channel dependent. As the SNR
increases, more decoding events will be terminated at an
earlier decoding stage with a small OLS value, resulting
in less memory requirement. In particular, when SNR =

8 dB, memory requirement of the I-PASD algorithm is
zero. This is because the message polynomial can be
found after the first progressive iteration during which
polynomial g1 has never been identified as the minimal
polynomial f . Hence, no memory is required. At SNR =

1 dB, most of the decoding events terminate with lT and
the average memory requirement of the I-PASD algorithm
can be characterised by SI-PASD(lT ). Our numerical results
validate Eq. (42) is an accurate upper bound for the I-PASD
algorithm’s memory requirement. Moreover, they show
that the I-PASD algorithm’s memory consumption is less
than half of the PASD algorithm, which verifies Corollary 7.

It can be realised that the actual memory requirement
and decoding complexity relate to the probability of the
progressive decoding terminates with a certain OLS value.
This probability has been defined by [19] in which its
relationship with the channel condition has also been
discussed. Therefore, it is not reinvestigated in this paper.
As we aim to characterise the I-PASD algorithm’s memory
and complexity reductions over the PASD algorithm, this
paper’s analyses are performed to serve this motivation.

5. Computational complexity analysis

This section further analyses the average decoding com-
plexity of the I-PASD algorithm and it is measured as the
average number of finite field arithmetic operations in de-
coding a codeword frame. Compared to the PASD algo-
rithm, the new proposal offers a complexity reduction as
a result of the re-encoding transform and the new pro-
gressive polynomial set expansion. Again, computational
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Fig. 1. The polynomial set expansion comparison between the PASD and the I-PASD algorithms.
complexity of the I-PASD algorithm will be derived from
analysing the computation reduction over the PASD algo-
rithm. We will first analyse the polynomial update reduc-
tion over the PASD algorithm.

For the PASDalgorithm that terminates at iteration v, its
worst case interpolation complexity can again be analysed
by assuming all the lv + 1 polynomials are updated
during each of the C(Mv) iterations. Consequently, there
are C(Mv)(lv + 1) polynomial updates. For the I-PASD
algorithm, we also assume that at iteration v the number
of polynomials in set Gv is lv + 1, i.e., l′v = lv which also
indicates the worst case scenario as in practice l′v ≤ lv . The
following theorem characterises the polynomial update
reduction offered by the I-PASD algorithm.

Theorem 8. When the I-PASD algorithm terminates at
iteration v, it is able to reduce polynomial updates by at most

Ω(lv) =
k − 1
6

(l3v − lv + 6). (48)

Proof. Based on Section 4, we know that the lv + 1th (v ≥

1) polynomial will be generated and added to set Gv if glv
becomes theminimal polynomial f . Based on Lemma 5, we
know there are k−1

2 (lv + 1)lv polynomial updates having
been skipped. Therefore, when the I-PASD algorithm
terminates at iteration v, it has reduced in total

Ξ(lv) =

v−1
v′=1

k − 1
2

(lv′ + 1)lv′ =
k − 1
2

v−1
v′=1

(l2v′ + lv′) (49)

polynomial updates. With lv+1 = lv + 1, we have lv′ = v′

and
v−1

v′=1 l
2
v′ =

2l3
v−1+3l2

v−1+lv−1
6 , Ξ(lv) can be formulated

to

Ξ(lv) =
k − 1
6

(l3v − lv). (50)
Moreover, by performing the re-encoding transform at the
beginning of the progressive interpolation, the number
of interpolation constraints that were satisfied by the
polynomial initialisation is upper bounded by C(M1) as
when Λ(M1) = ΛI(M1). Therefore, there are at most
2C(M1) polynomial updates having been replaced by the
re-encoding transform. Based on (46), it is known that
C(M1) ≥

k−1
2 , the number of polynomial updates that are

reduced by performing the re-encoding transform will be
at most k− 1. In conjunction with the conclusion of (50), if
the I-PASD algorithm terminates at iteration v, it is able to
reduce updates by at most

Ω(lv) = Ξ(lv) + (k − 1) =
k − 1
6

(l3v − lv + 6). �

The above proof shows that the I-PASD algorithm re-
duces the polynomial updates and the decoding complex-
ity over its predecessor due to its two new features, the
re-encoding transform and the new polynomial set ex-
pansion. It is important to point out that when the pro-
gressive decoding terminates with a large OLS, the latter
contributes a larger portion in the overall reductions. e.g.,
with l1 = 1, Ω(1) = k − 1 and the polynomial update
reduction is mainly due to the re-encoding transform.
However, if the decoding terminates with l7 = 7, the
new polynomial set expansion will contribute to an up-
date reduction of 56(k − 1) while the contribution of the
re-encoding transform is only k − 1. This can be better
illustrated by Fig. 1 which compares the polynomial set
expansion process between the PASD and the I-PASD algo-
rithms with both of the algorithms terminate at iteration
v. The progressive polynomial set expansion consists of a
horizontal expansion and a vertical expansion, which cor-
respond to introducing a new polynomial into the set and
performing updates for the newly introduced polynomial,
respectively. The grey areas indicate the existing polyno-
mial set Gv−1 performing iterative polynomial construc-
tion at iteration v−1 to satisfy constraints ofΛ(Mv−1\v−2).



Y. Lyu, L. Chen / Physical Communication 20 (2016) 48–60 57
Table 3
Average number of polynomial updates in decoding the (15, 9) RS code.

SNR (dB) 1 2 3 4 5 6 7 8

PASD 2293 2100 1586 780 233 47 20 19
I-PASD 1441 1335 1007 489 141 20 2 1
Table 4
Average number of polynomial updates in decoding the (63, 47) RS code.

SNR (dB) 4 4.5 5 5.5 6 6.5 7 7.5

PASD 11187 7805 3277 889 229 150 105 96
I-PASD 7210 5086 2113 549 101 43 9 2
The newly introduced polynomials glv are introduced dur-
ing the expansion as indicated by the pointers. In the PASD
algorithm, polynomial glv will be introduced into the set
Gv−1 at the end of iteration v − 1 and it needs to re-
interpolate w.r.t. the previous constraints, i.e., Λ(Mv−1).
While in the I-PASD algorithm, polynomial glv will be in-
troduced during iteration v − 1 and it does not need to
perform the re-interpolation. Updates for the newly intro-
duced polynomials are indicated by the grid areas. There-
fore, the polynomial update reduction Ω(lv) is illustrated
by the areas that are bordered by the dash lines in Fig. 1. It
can be seen thatwhen the progressive decoding terminates
with a large OLS, a large portion of the update reduction is
attributed to the newly introduced polynomial set expan-
sion.

The following corollary that further quantises the
polynomial update reduction over the PASD algorithm can
be straightforwardly derived.

Corollary 9. When both of the progressive decoding algo-
rithms terminatewith a large OLS, the I-PASD algorithm offers
a polynomial update reduction over the PASD algorithm by a
factor of 1/3.

Proof. The above analysis shows that when the progres-
sive decodings terminate at iteration v, the PASD algorithm
will have performed atmostC(Mv)(lv +1) polynomial up-
dates. Based on Theorem 8, we know that the I-PASD algo-
rithm offers a polynomial update reduction over the PASD
algorithm by a factor of

(k − 1)(l3v − lv + 6)
6

/C(Mv)(lv + 1)

>
(k − 1)(l3v − lv + 6)

6
/
(k − 1)(lv + 1)3

2

=
1
3

·
1 − l−2

v + 6l−3
v

1 + 3l−1
v + 3l−2

v + l−3
v

. (51)

Therefore, when lv is large, the polynomial update
reduction factor of 1/3 can be led to. �

Tables 3 and 4 show the numerical results on the
average number of polynomial updates in decoding a
codeword frame for the (15, 9) and the (63, 47) RS codes,
respectively. The maximal designed factorisation OLS is
lT = 10. In the low SNR region, most of the decoding
events terminate with a large OLS. Our results show
that compared to the PASD algorithm, the new proposal
reduces the number of polynomial updates by factor that
is approximately 1/3, verifying Corollary 9. By increasing
the SNR, the progressive decodings will terminate with a
small OLS and the average number of polynomial updates
decreases. In the high SNR region, most of the decoding
events terminate with l1 = 1. For the I-PASD algorithm,
the interpolated polynomial Q can often be obtained by
the re-encoding transform outcome without performing
the iterative polynomial construction. Consequently, its
average number of polynomial updates tends to zero.

We can now further characterise the computational
complexity of the I-PASD algorithm. Let OPASD(lv) and
OI-PASD(lv) denote the computational complexity of the
PASD algorithm and the I-PASD algorithm, respectively,
with both of the algorithms terminate with an OLS of lv .
Let us recall Corollary 3 of [19] that characterises OPASD(lv)
as:

OPASD(lv) ∼= O
 (k − 1)2

4
(l5v + l4v)


. (52)

The following theorem further characterises OI-PASD(lv) by
calculating the computational reduction over OPASD(lv).

Theorem 10. The computational complexity of the I-PASD
algorithm in decoding a codeword frame with an OLS of lv
is

OI-PASD(lv) ∼= O
 (k − 1)2

12
(2l5v + 3l4v)


. (53)

Proof. Based on Theorem 8, we know with a decoding
OLS of lv , the I-PASD algorithm offers a polynomial
update reduction of k−1

6 (l3v − lv + 6). By assuming each
polynomial has atmostC(Mv)+1 coefficients, performing
an update for a polynomial needs O


C(Mv) + 1


finite

field operations, the I-PASD algorithm offers a finite field
operation reduction of

1O(lv) = O
k − 1

6
(l3v − lv + 6)(C(Mv) + 1)


. (54)

Based on (37), we know when lv is sufficiently large,
C(Mv) ∼=

k−1
2 l2v and

1O(lv) = O
k − 1

6
(l3v − lv + 6)

k − 1
2

l2v + 1


∼= O
 (k − 1)2

12
(l5v − l3v + 6l2v)


. (55)
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Fig. 2. Average computational complexity in decoding the (63, 47) RS
code.

Therefore, OI-PASD(lv) can be determined by:

OI-PASD(lv) = OPASD(lv) − ∆O(lv)

∼= O
 (k − 1)2

12
(2l5v + 3l4v + l3v − 6l2v)


∼= O

 (k − 1)2

12
(2l5v + 3l4v)


. �

We can see that the computational complexity of the
two progressive algorithms increases exponentially with
lv and they are quadratic in the dimension of the code.
Therefore, it is desirable to utilise an appropriate OLS value
for the decoding, adapting the complexity to the need. Both
the PASD and the I-PASD algorithms enable such a function
by performing decoding with a progressively enlarged lv
value. Comparing OI-PASD(lv) of (53) and OPASD(lv) of (52)
will further lead to the following corollary that quantises
the computational complexity reduction offered by the I-
PASD algorithm.

Corollary 11. With the same decoding OLS of lv , the I-
PASD algorithm’s computational complexity is approxi-
mately 2/3 of that of the PASD algorithm.

Proof. By considering the dominant component of
OPASD(lv) and OI-PASD(lv), we have

OPASD(lv) ∼= O
 (k − 1)2

8
(2l5v + 2l4v)


∼= O

 (k − 1)2

8
2l5v


and

OI-PASD(lv) ∼= O
 (k − 1)2

12
2l5v


.

Therefore, OI-PASD(lv) ∼=
2
3OPASD(lv). �

In fact, the conclusion of Corollary 11 is in concert
with Corollary 9. The computational complexity reduction
factor of 1/3 is fundamentally due to the new proposal’s
capability in reducing the polynomial updates by a factor
of 1/3 and this complexity reduction is mainly attributed
to the newpolynomial set expansionwhen the progressive
decoding terminates with a large factorisation OLS.

Figs. 2 and 3 show the numerical results on the average
computational complexity in decoding the (63, 47) and
Fig. 3. Average computational complexity in decoding the (255, 239) RS
code.

the (255, 239) RS codes, respectively. We compare the I-
PASD algorithm with the ASD algorithm, the complexity
reducing ASD algorithm of [15] and the PASD algorithm.
The two progressive algorithms have the same maximal
designed factorisation OLS of lT = 5 which is otherwise
a fixed decoding OLS for the ASD algorithm and its
complexity reducing variant [15]. As a result, all the
algorithms have the same error-correction capability.
Note that for the ASD algorithm of [15], its re-encoding
transform is performed based onmatrixMT . Our numerical
results show that the computational complexity of the
I-PASD algorithm is approximately 2/3 of the PASD
algorithm, which verifies Corollary 11. Moreover, it can
be seen that the average complexity of the ASD algorithm
is insensitive to the channel condition. In contrast, the
average complexity of the progressive decoding algorithms
are channel dependent and it is reduced with an increased
SNR. For all the codes, it converges to the minimal level
at 8 dB. For the (63, 47) and the (255, 239) RS codes,
the ASD algorithm of [15] has a lower complexity than
the I-PASD algorithm in the low to medium SNR region.
This is because in this region, most of the decoding events
produce the intended message vector with a large OLS.
The ASD algorithm of [15] is more capable in reducing the
complexity by performing the re-encoding transformwith
matrix MT since more iterative polynomial construction
can be replaced by polynomial initialisation. However,
as the SNR increases, both the PASD and the I-PASD
algorithms are far less computationally expensive than the
ASD algorithm of [15]. In the high SNR region, most of the
progressive decoding events terminate at the first iteration
leading to the complexity of the I-PASD algorithm lower
than that of the ASD algorithm with lT = 1. Different to
the ASD and the PASD algorithms, the I-PASD algorithm
further performs the re-encoding transform based on M1,
which benefits a lower decoding complexity. Moreover,
it should be pointed out that the progressive decoding
algorithms would perform multiple factorisations if the
decoding terminateswith a factorisationOLS that is greater
than one. However, this extra computation can be easily
offset by reducing the interpolation complexity which
dominates the overall decoding complexity [19]. Finally,
it is worthwhile to mention that the proposed algorithm
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Fig. 4. Average computational complexity in decoding the (15, 13) GRS
code.

can also be applied to decode Generalised RS (GRS)
codes, yielding a similar channel dependent feature for
its complexity. In order to demonstrate this aspect, Fig. 4
shows the average computational complexity in decoding
the (15, 13) GRS code.

6. Error-correction performance

This section presents the error-correction performance
of the I-PASD algorithm aiming to confirm the above men-
tioned memory and complexity reductions are realised
without sacrificing the code’s performance. Fig. 5 shows
the bit error rate (BER) performance of the (255, 239) RS
code. All the algebraic soft decoding algorithms, including
the PASD, the I-PASD and the ASD algorithms, are function-
ing with the same maximal OLS value. It shows that all the
three algebraic soft decoding algorithms perform similarly,
and they have significant performance gains over the BM
and AHD algorithms. The optimal AHD results are obtained
by assuming that it can correct atmost n−⌊

√
n(n − d)⌋−1

symbol errors. It can also be noticed that the progressive
decoding performance is slightly better than the ASD per-
formance. Thismarginal performance improvement comes
from the fact that multiple factorisations have been per-
formed to find the intended message vector in the pro-
gressive decoding mechanism. In Section 2, it has been
mentioned that themessage polynomialµ(x) can be found
if the successful decoding criterion of (11) is satisfied.
There exists some decoding events in which (11) is sat-
isfied with an OLS that is less than lT . However, when
the OLS reaches lT , (11) is no longer satisfied. Since the
ASD algorithm only performs factorisation once with a de-
coding OLS of lT , it cannot succeed in decoding the in-
tended message. However, such events rarely happen and
consequently the performance improvement delivered by
multiple factorisations is marginal. Overall, our simulation
results have confirmed that the I-PASD algorithm pre-
serves the error-correction performance of the ASD algo-
rithm.

7. Conclusions

This paper has proposed an improved PASD algorithm
for RS codes, reducing the decoding computation and the
Fig. 5. BER performance of the (255, 239) RS code over the AWGN
channel.

memory requirement in realising the progressive decod-
ingwhich is capable of adapting the decoding computation
to the need. The improved progressive decoding mecha-
nism is featured by both the re-encoding transform and the
newpolynomial set expansion. It has been realised that the
progressively decoding is at the expense of system mem-
ory since the intermediate interpolation information needs
to be memorised. Addressing this issue, a polynomial set
expanding condition has been established such that the
newly introduced polynomial does not need to perform
re-interpolation, reducing the memory requirement in
storing the intermediate interpolation information. Our
memory requirement analysis has shown that the I-PASD
algorithm requires less than half of the memory of its pre-
decessor, i.e., the PASD algorithm. The new polynomial set
expansion also results in less decoding computation as it
has been shown that the number of polynomial updates
can be reduced by a factor of 1/3. Further assisted by the
re-encoding transform that is performed at the beginning
of the progressive decoding, the I-PASD algorithm offers
a significant average decoding complexity reduction over
the PASD algorithm by a factor of approximately 1/3. Our
computational complexity analysis has shown that when
the progressive decoding terminateswith a large OLS, such
a reduction mainly thanks to the new polynomial set ex-
pansion. Our numerical results have verified the theoreti-
cal analyses and further shown that the I-PASD algorithm
is less computationally expensive than various algebraic
soft decoding algorithms. Finally, error-correction perfor-
mance of the I-PASD algorithm has also been presented,
showing the memory and complexity reductions are re-
alised with maintaining the ASD performance. Therefore,
the proposed algorithm has offered a practical solution for
realising the high performance decoding of RS codes. It can
be considered to be applied in the RS coded date commu-
nication systems.
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