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Abstract—Reed-Solomon convolutional concatenated (RSCC)
codes are a popular coding scheme for wireless communications.
However, the current decoding algorithm for the outer code, i.e.,
the Reed-Solomon (RS) code, employs hard-decision decoding
and cannot make full use of the soft information provided by the
decoder of the inner code. Consequently, the concatenated code’s
error-correction potential is not fully exploited. This paper pro-
poses an improved soft-decision decoding algorithm for the RSCC
codes. The maximum a posteriori (MAP) algorithm is applied to
decode the inner code, providing soft information for the outer
code. The iterative decoding algorithm that can approach the
maximum likelihood (ML) decoding performance for RS codes
is applied to decode the outer code, exploiting the benefits of
the soft output of the inner decoder. The iterative decoding
of RS codes integrates the adaptive belief propagation (ABP)
algorithm and the Koetter-Vardy (KV) list decoding algorithm,
namely the ABPKV algorithm. Our performance analysis shows
that sizable error-correction performance gains can be achieved
over the conventional decoding scheme. The complexity of the
proposed decoding scheme will also be presented, discussing the
implementation cost for achieving the performance improvement.

Index Terms—Concatenated codes, convolutional codes, itera-
tive decoding, Reed-Solomon codes, soft-decision decoding.

I. INTRODUCTION

Concatenated codes were first introduced by Forney [1] in
the 1960s. It showed that the concatenation of a nonbinary
outer code and a binary inner code could constitute a capacity
approaching error-correction code with a polynomial-time de-
coding complexity. One popular example of the concatenated
codes is the legacy Reed-Solomon convolutional concatenated
(RSCC) codes, with the Reed-Solomon (RS) code and the
convolutional code being the outer code and the inner code,
respectively. The inner code is good at correcting spread bit
errors, while the outer code is good at correcting burst errors.
Such combinatorial functions ensure that RSCC codes are a
popular coding scheme whose application can be found in
wireless and space communications [2] [3].

The conventional decoding scheme for RSCC codes em-
ploys the Viterbi algorithm [4] for the inner code and the
Berlekamp-Massey (BM) algorithm [5] for the outer code,
respectively. In order to strengthen the error-correction per-
formance, a block interleaver is usually employed between
the inner and outer codes. In [2], the RSCC code is used in
code division multiple access (CDMA) systems. Specifically,
interleaver design was proposed to cope with the multiple ac-
cess interference. Moreover, the error-correction performance
upper bound for the concatenated coding scheme was derived
considering the presence of multi-path fading and multiple
access interference. In [3], an improved decoding algorithm

that performs repeated decoding trials for RSCC codes was
proposed. Information on the outcome of BM decoding is
given as the constraints for the next round Viterbi decoding.
However, existing efforts have not fully exploited the error-
correction potential of the concatenated code. On one hand,
the maximum a posteriori (MAP) algorithm [6] can be used to
decode the inner code, providing the a posteriori probability
(APP) values for the RS coded bits. On the other hand, soft
decoding of RS codes has been well developed in recent years.
They include the Koetter-Vardy list decoding algorithm [7] and
the iterative soft decoding algorithms [8] [9], both of which
are capable of making a better use of the MAP outputs.

This paper proposes an improved soft-decision decoding
algorithm for RSCC codes. The MAP algorithm is employed
to decode the inner code, providing the APP values for the
following RS decoding. The APP values are then deinterleaved
symbol wise. The deinterleaved APP values will be utilized by
the iterative soft decoding of the outer code. The iterative soft
decoding first performs the belief propagation (BP) algorithm
based on an adaptive parity-check matrix whose density has
been reduced according to the bit reliabilities. It is called
the adaptive belief propagation (ABP) algorithm. It provides
improved symbol reliabilities for the following Koetter-Vardy
(KV) list decoding algorithm. The KV algorithm finalizes
the decoding of each RS codeword frame. The iterative soft
decoding algorithm is therefore named the ABPKV algorithm.
It has been shown that the ABPKV algorithm can approach
the maximum likelihood (ML) error-correction performance
bound for the RS codes [9]. Hence, the decoding algorithm
for the inner code is optimal, while the decoding algorithm
for the outer code approaches the optimal performance. The
proposed MAP-ABPKV soft-decision decoding scheme is
capable of better exploiting the error-correction potential of the
concatenated codes. To the best of the author’s knowledge, this
is the first time a bit level soft-decision decoding algorithm for
RS codes is utilized in the concatenated coding scheme. It can
therefore make better use of the RS coded bits’ APP which are
inherited from the MAP algorithm. Our performance analysis
shows significant performance improvements can be obtained
over the conventional Viterbi-BM decoding algorithm. In order
to give an insight into the implementation cost of the proposed
algorithm, a discussion on the decoding complexity will also
be provided.

The rest of the paper is organized as the follows. Section II
presents the preliminary knowledge of the RSCC code. Section
III presents the proposed soft-decision decoding scheme for
the concatenated code. Sections IV and V present the com-
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Fig. 1. Block diagram of the RSCC encoder.

plexity and performance analyses of the proposed decoding
scheme, respectively. Finally, Section VI concludes the paper.

II. RSCC CODES

The encoder block diagram of an RSCC code is shown
by Fig. 1. Let D denote the depth of the block interleaver,
indicating there are D RS codeword being interleaved. Let
γ denote the index of the RS codeword and 1 ≤ γ ≤ D.
The code rates of the RS code and the convolutional code
are r1 and r2, respectively. As a result, the code rate of the
concatenated code is r1r2. Let Fq denote the finite field of
size q and Fq = {ρ1, ρ2, . . . , ρq}. In this paper, it is assumed
that q = 2ω and ω is an integer that is greater than 1.

The message vector of an (n, k) RS code can be written as

F
(γ)

= [F
(γ)
1 , F

(γ)
2 , . . . , F

(γ)
k ] ∈ Fk

q , (1)

where n and k are the length and dimension of the code,
respectively. The generator matrix G of the RS code is defined
as

G =


1 1 · · · 1
1 α . . . αn−1

...
...

. . .
...

1 αk−1 . . . α(k−1)(n−1)

 , (2)

where α is a primitive element of Fq. The codeword can be
generated by

C
(γ)

= F
(γ) · G = [C

(γ)
1 , C

(γ)
2 , . . . , C(γ)

n ] ∈ Fn
q . (3)

Note that in the remainder of the paper, the superscript (γ)
denotes the variable belongs to the γth RS codeword.

In order to perform the ABP decoding for RS codes, it is
necessary for the parity-check matrix to be known. It is defined
as

H =


1 α · · · αn−1

1 α2 . . . α2(n−1)

...
...

. . .
...

1 αn−k . . . α(n−k)(n−1)

 . (4)

With knowledge of the companion matrix A [10] of the
primitive polynomial for Fq, the equivalent binary image of
matrix H can be generated by replacing its entries αi by Ai,
where i = 0, 1, . . . , q − 2. It is called the binary parity-check
matrix Hb with dimensions (n− k)ω × nω.

The D codeword are then interleaved by a block interleaver,
yielding the interleaved codeword denoted as

C ′(γ) = [C
′(γ)
1 , C

′(γ)
2 , . . . , C ′(γ)

n ]. (5)

!

!

!

!

MAP ABPKV
Y !

)(�
F

)()(  �
jc

P

Fig. 2. Block diagram of the MAP-ABPKV algorithm

Note that the interleaved codeword C ′(γ) may not be a valid
RS codeword. The D interleaved codeword are then read out
horizontally, giving an interleaved codeword sequence

C ′(1), C ′(2), . . . , C ′(D)
.

It is then converted to a binary interleaved codeword sequence

c
′(1)
1 , c

′(1)
2 , . . . , c′(1)nω , . . . , c

′(D)
1 , c

′(D)
2 , . . . , c′(D)

nω ,

which is the input to the convolutional encoder. In this paper,
it is assumed that the convolutional code is a nonsystematic
nonrecursive code with r2 = 1

2 . Its generator polynomials
G1(D) and G2(D) are represented in an octal form [10].
Notice that variable rates of the RSCC codes can be realized
by puncturing the convolutional codeword. We denote t as the
convolutional codeword defined by

t = [t1, t2, . . . , tN ] ∈ FN
2 , (6)

where N = 2nωD.

III. THE MAP-ABPKV DECODING

This section presents the MAP-ABPKV soft-decision de-
coding algorithm for RSCC codes. Its block diagram is shown
in Fig. 2.

A. The MAP Algorithm

Given Y ∈ R as the received vector observed from the
channel. We are able to obtain the APP values for each
convolutional coded bit ti as

Pti(ϑ) = Pr[ti = ϑ | Y ], (7)

where i = 1, 2, . . . , N and ϑ ∈ {0, 1}. The MAP algorithm [6]
will then be applied based on the trellis of the convolutional
code. The APP values of (7) are used to determine the trellis
transition probabilities during the forward trace and backward
trace of the MAP algorithm [6]. It yields the APP values for
the interleaved RS coded bits c

′(γ)
j as

P
c
′(γ)
j

(ϑ) = Pr[c
′(γ)
j = ϑ | Y ], (8)

where j = 1, 2, . . . , nω. They will then be deinterleaved,
yielding the APP values for the RS coded bits c

(γ)
j as

P
c
(γ)
j

(ϑ) = Pr[c
(γ)
j = ϑ | Y ]. (9)

Notice that since every ω consecutive pairs of bit APP values
(P

c
′(γ)
j

(0), P
c
′(γ)
j

(1)) constitute the APP values for an RS
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codeword symbol, they are grouped together to participate in
the deinterleaving process.

B. The ABPKV Algorithm

By reading out the deinterleaved APP values horizontally,
we can obtain the bit APP values for the D RS codeword. For
the γth RS codeword, we have

P
c
(γ)
1

(ϑ), P
c
(γ)
2

(ϑ), . . . , P
c
(γ)
nω

(ϑ). (10)

The ABPKV algorithm is now applied to decode each of the D
RS codewords. Based on the bit reliability information of (10),
the ABPKV algorithm will first perform Gaussian elimination
on the binary parity-check matrix Hb, reducing its density and
eliminating some of its short cycles. Then, BP decoding will
be performed to enhance the bit reliabilities. Finally, KV list
decoding will be performed based on the enhanced reliability,
to find the message vector F

(γ)
.

The log-likelihood ratio (LLR) value of bit c
(γ)
j can be

determined by

L(c
(γ)
j ) = ln

(
P
c
(γ)
j

(0)

P
c
(γ)
j

(1)

)
. (11)

The LLR vector L
(γ)

for the γth RS codeword is

L
(γ)

= [L(c
(γ)
1 ), L(c

(γ)
2 ), . . . , L(c(γ)nω )]. (12)

A larger magnitude |L(c(γ)j )| implies bit c(γ)j is more reliable.
Hence, all the magnitudes |L(c(γ)j )| will be sorted in an
ascending order. It yields a refreshed bit index sequence
δ1, δ2, . . . , δ(n−k)ω, . . . , δnω , indicating

|L(c(γ)δ1
)| < |L(c(γ)δ2

)| < · · · < |L(c(γ)δ(n−k)ω
)| < · · · < |L(c(γ)δnω

)|.
(13)

Let B ⊆ {1, 2, . . . , nω} be a set of the bit indices and
|B| = (n − k)ω. With B = {δ1, δ2, . . . , δ(n−k)ω} collecting
the indices of the (n− k)ω least reliable bits, the sorted LLR
vector becomes

L
(γ)

B = [L(c
(γ)
δ1

), L(c
(γ)
δ2

), . . . , L(c
(γ)
δ(n−k)ω

), · · · , L(c(γ)δnω
)].
(14)

Notice that the complementary set Bc = {1, 2, . . . , nω} \ B.
For matrix Hb, Gaussian elimination will be performed on
the columns that correspond to the bits of B. Let Υδ denote
the weight-1 column vector with 1 at its δth entry and 0
elsewhere. Gaussian elimination reduces column δ1 to Υ1,
then reduces column δ2 to Υ2 etc. It attempts to reduce the
first (n− k)ω independent columns defined by B to weight-1
columns. However, it is not guaranteed all the columns that are
indicated by B can be reduced. In that case, the columns w.r.t.
the bordering bits between sets B and Bc will be reduced. The
above mentioned process is called matrix adaptation. It results
in an updated binary parity-check matrix H′

b.
Let huj ∈ {0, 1} denote the entry of H′

b with 1 ≤ u ≤
(n− k)ω and 1 ≤ j ≤ nω. Let

U(j) = {u | huj = 1, ∀ 1 ≤ u ≤ (n− k)ω}, (15)

J(u) = {j | huj = 1, ∀ 1 ≤ j ≤ nω}. (16)

Iterative BP decoding will be performed, yielding the extrinsic
bit LLR values

Lext(c
(γ)
j ) =

∑
u∈U(j)

2 tanh−1
( ∏

τ∈J(u)\j

tanh
(L(c(γ)τ )

2

))
.

(17)
After a number of BP iterations, the LLR value for the coded
bit c(γ)j is updated by

L∗(c
(γ)
j ) = L(c

(γ)
j ) + η · Lext(c

(γ)
j ), (18)

where 0 < η ≤ 1 is the damping factor [9]. They form an
updated LLR vector, i.e.,

L∗(γ) = [L∗(c
(γ)
1 ), L∗(c

(γ)
2 ), . . . , L∗(c(γ)nω )]. (19)

We can then transform the updated LLR value into the
enhanced APP values for bit c(γ)j by

P ∗
c
(γ)
j

(0) =
1

1 + e−L∗(c
(γ)
j )

, (20)

P ∗
c
(γ)
j

(1) =
1

1 + eL
∗(c

(γ)
j )

. (21)

With knowledge of each RS coded bit’s enhanced APP
values, the reliability matrix Π w.r.t. an RS codeword C

(γ)

can be formed. Based on the binary decomposition of each
field element ρµ (µ = 1, 2, . . . , q), every ω consecutive
pairs of bit APP values will be multiplied in q different
permutations, generating a column of the reliability matrix Π.
Its entry πµν is the APP value for the RS codeword symbol
C

(γ)
ν (ν = 1, 2, . . . , n) and defined as

πµν = Pr[C(γ)
ν = ρµ | Y ]. (22)

Matrix Π will then be transformed into a multiplicity matrix
M [7] with entries mµν . The cost of matrix M is

Λ(M) = 0.5
∑
µ,ν

mµν(mµν + 1), (23)

which indicates the number of the interpolation constraints [7].
Interpolation will be carried out based on the instruction of M,
yielding an interpolated polynomial Q(x, y) [11]:

Q(x, y) =
∑
a,b∈N

Qabx
ayb, (24)

where N denotes the set of nonnegative integers and Qab ∈ Fq.
Factorization will then be carried out [12] [13], finding the y
roots of the interpolated polynomial by

{p(x) | Q(x, p(x)) = 0 and deg p(x) ≤ k − 1}. (25)
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The coefficients of p(x) form a decoded message vector.
Observe that by increasing the factorization output list size
l, i.e., the y-degree of Q, the KV algorithm will have a better
error-correction capability.

It is important to mention that the ABPKV algorithm is
an iterative decoding process. Let NADP and NBP denote
the number of the matrix adaptations and the BP iterations,
respectively. Based on each adapted binary parity-check matrix
H′

b, NBP BP iterations will be performed, yielding an improved
reliability matrix Π. The KV algorithm will then be deployed
to find the decoded message candidates, which are stored in
the global decoding output list L. If there are multiple matrix
adaptations, i.e., NADP > 1, the updated LLR vector L∗(γ)

will be fed back, and mapped to the original LLR vector as
L∗(γ) 7→ L

(γ)
. Based the newly updated LLR vector L

(γ)
, the

next round bit reliability sorting process will be performed.
It is then followed by Gaussian elimination which produces
another updated binary parity-check matrix H′

b. Based on H′
b,

the BP decoding and KV list decoding will be performed. If
a new message candidate is produced, it will be added to the
global decoding output list L.

The incentive of reducing the columns defined by B to
weight-1 is to prevent the propagation of unreliable informa-
tion during the BP process in (17) and (18). At the same time,
their reliabilities are likely to be improved. However, it is pos-
sible that the bit LLR values of Bc are incorrectly estimated. If
we can ensure their corresponding columns will be reduced to
weight-1, they will also have the opportunity to be corrected.
Therefore, after the initial sorting process, we can exchange
the bit indices between B and Bc, generating a different set of
bit indices B [9]. For example, with z < min{kω, (n− k)ω},
we can regenerate B as

B = {δ(n−k)ω+1, . . . , δ(n−k)ω+z, δ1, . . . , δ(n−k)ω−z}. (26)

The proceeding Gaussian elimination will reduce columns that
are defiend by B to weight-1. Based on each regenerated
bit indices set B, the above mentioned APBKV decoding
algorithm will be performed. Hence, given NB as the number
of bit indices set B, the ABPKV algorithm will produce at
most lNBNADP decoded message vectors in the output list
L. The one whose corresponding codeword has the minimal
Euclidean distance to the received vector Y will be chosen as
the decoded message.

IV. COMPLEXITY ANALYSIS

This section analyzes the computational complexity of the
above mentioned MAP-ABPKV algorithm. Recall NB, NADP
and NBP are the numbers of bit indices set, matrix adaptations
and BP iterations, respectively. To decode each of the D RS
codeword, the ABPKV algorithm will deploy NBNADP Gaus-
sian eliminations and KV decodings, and NBNADPNBP BP
iterations. Therefore, the MAP-ABPKV algorithm has a high
decoding complexity. This section will give a numerical insight
of the decoding complexity, revealing the computational cost.

At the same time, a facilitated decoding strategy will also be
suggested.

If the trellis of the convolutional code has Ω states, per-
forming the MAP algorithm requires O(8DΩnω) floating
point operations. The ABPKV decoding consists of Gaussian
elimination, BP iteration and KV list decoding. Gaussian elim-
ination requires O(nω(nω − kω)2) binary operations. While
the BP iteration and KV decoding require O((nω)2) floating
point operations and O( 23Λ

3(M)) finite field arithmetic oper-
ations, respectively. Hence, to decode an RSCC code with the
interleaver depth of D, the MAP-ABPKV algorithm requires

O(8DΩnω +DNBNADPNBP(nω)
2) (27)

floating point operations,

O(DNBNADPnω(nω − kω)2) (28)

binary operations, and

O(DNBNADP
2

3
Λ3(M)) (29)

finite field arithmetic operations, respectively.
Although the MAP-ABPKV algorithm inherits a high de-

coding complexity, the decoding process can be made more
efficient by notifying the decoder once the intended message
vector F

(γ)
has been found, and the decoding process will be

terminated. Practically, such an output validation function can
be realized by utilizing a cyclic redundant check (CRC) code.
In fact, when the channel condition is sufficiently good, most
message vectors can be found with NB = 1 and NADP = 1,
and the decoding complexity can be scaled down significantly.

V. PERFORMANCE ANALYSIS

This section analyzes the error-correction performance of
the proposed MAP-ABPKV algorithm. It is measured on
the additive white Gaussian noise (AWGN) channel using
binary phase shift keying (BPSK) modulation scheme. The
MAP-ABPKV algorithm is parameterized by the KV decod-
ing output list size (l) and the ABP decoding parameters
(NB,NADP,NBP). In the presented results, the damping factor
is set as η = 0.20, which optimizes the MAP-ABPKV
decoding performance. All the shown RSCC codes employ
an interleaver of depth D = 10.

Fig. 3 shows the bit error rate (BER) performance of the
RSCC code with the (15, 11) RS code as an outer code and
the (5, 7)8 convolutional code as an inner code. The inner
code is a 4 states trellis code. It can be seen that the MAP-
ABPKV algorithm achieves significant performance gains over
the conventional Viterbi-BM algorithm. For example, with de-
coding parameters of l = 10 and (NB,NADP,NBP) = (1, 3, 3),
0.8dB performance gain can be achieved at a BER of 10−5.
Compared to the MAP-KV (optimal) algorithm, it has a 0.3dB
performance gain. This is due to the fact that the iterative
ABPKV algorithm has a stronger error-correction capability
than the KV list decoding algorithm. It can make full use of
the soft information provided by the MAP algorithm. Notice
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Fig. 3. Performance of the RS(15, 11)-conv(5, 7)8 concatenated code over
the AWGN channel
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Damping factor = 0.20 for ABPKV decoding

Fig. 4. Performance of the RS(63, 50)-conv(15, 17)8 concatenated code
over the AWGN channel

that the optimal KV decoding performance can be achieved
with knowledge of the reliability matrix Π [7]. It shows the
asymptotic optimal error-correction performance of the KV
algorithm as l → ∞. Further performance improvement can
be achieved by enhancing the decoding parameters, e.g., with
(NB,NADP,NBP) = (50, 5, 3). However, based on the analysis
of Section IV, such a performance improvement is achieved
with a larger computational cost.

Fig. 4 shows the BER performance of the RSCC code with
the (63, 50) RS code and the 16-state (15, 17)8 convolutional
code as the outer code and inner code, respectively. Again,
we can see significant performance gains can be achieved over
the conventional Viterbi-BM algorithm. The above two figures
show that significant performance gains can be achieved if
the RS decoding algorithm can utilize the soft output of the
inner code decoding algorithm, i.e., by deploying the KV list
decoding algorithm or the iterative ABPKV algorithm.

Variable rates of the RSCC codes can be realized by
puncturing the output of the inner code. Fig. 5 shows the per-
formance of the above mentioned RSCC code with puncture
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1.E-03

1.E-02

1.E-01

2 3 4 5 6 7 8

SNR (dB)

B
E

R
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Puncture rate 3/4

Damping factor = 0.20 for ABPKV decoding

Puncture rate 3/5
           MAP-KV (l=10)

           MAP-ABPKV (l=10) (2,5,3)

Fig. 5. Performance of the punctured RS(63, 50)-conv(15, 17)8 concatenated
code over the AWGN channel

rates of 3/4 and 3/5. If the first 4 consecutive bits of the
convolutional codeword are:

t1, t2, t3, t4.

The rate 3/4 puncture output is:

t1, t2, t4.

It results in the code rate of the RSCC code being 0.529. If the
first 10 consecutive bits of the convolutional codeword are:

t1, t2, t3, t4, t5, t6, t7, t8, t9, t10.

The rate 3/5 puncture output is:

t1, t2, t4, t5, t8, t9.

It results in the code rate of the RSCC code being 0.661. Fig.
5 shows that by increasing the code rate, the MAP-ABPKV
algorithm achieves a larger performance gain over the MAP-
KV algorithm. It demonstrates when the code rate of the RSCC
code increases, it is more beneficial to deploy the ABPKV
algorithm to decode the outer code.

VI. CONCLUSION

This paper has proposed an improved soft-decision decoding
algorithm for the RSCC codes, called the MAP-ABPKV
algorithm. The MAP algorithm is used to decode the inner
code, while the ABPKV algorithm is used to decode the
outer code. Since the MAP algorithm delivers the bit APP
values for the interleaved RS codeword, it is desirable to have
an RS decoder that can fully utilize those bit APP values.
The ABPKV algorithm that integrates the ABP algorithm
and the KV list decoding algorithm is the best candidate.
The ABP algorithm is bit reliability oriented, providing the
improved symbol wise reliability information for the following
KV algorithm. A complexity analysis of the proposed MAP-
ABPKV algorithm has also been presented to demonstrate the
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computational cost of the improved soft-decision decoding
approach. Our performance analysis showed that the MAP-
ABPKV algorithm achieves sizable performance gains over the
conventional Viterbi-BM algorithm. Variable rates of RSCC
codes have been realized by puncturing the output of the
convolutional code. It has been also shown that by increasing
the code rate, the MAP-ABPKV algorithm achieves more
significant performance gain over the MAP-KV algorithm,
demonstrating its advantage in high rate scenarios. Therefore,
the proposed MAP-ABPKV algorithm is a more advanced
decoding approach for the RSCC codes and can be considered
for more practical applications.
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