
Algebraic Chase Decoding of Reed-Solomon Codes

Using Module Minimisation

Li Chen †, Martin Bossert ‡

† School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China

‡ Institute of Communications Engineering, Ulm University, Ulm, Germany

Email: chenli55@mail.sysu.edu.cn, martin.bossert@uni-ulm.de

Abstract—This paper proposes a low-complexity high perfor-
mance soft-in hard-out decoding algorithm for Reed-Solomon
(RS) codes. The Guruswami-Sudan (GS) algebraic list decoding
algorithm can correct errors beyond half the distance bound by
performing a curve-fitting decoding process. However, its extra
error-correction capability is exchanged with a high computa-
tional cost which is dominated by the interpolation. In this paper,
an algebraic Chase decoding (ACD) approach that utilises the
module minimisation (MM) technique is introduced, namely the
ACD-MM algorithm. The MM technique solves the interpolation
problem with less computational cost than the conventional
Koetter’s interpolation. The proposal exploits the soft received
information to formulate the interpolation test-vectors. The re-
encoding transform is further employed to reduce the size of the
entries of the module, benefiting a simpler MM process. Our
analyses show that the ACD-MM algorithm can outperform the
legacy Koetter-Vardy (KV) soft-decision list decoding algorithm
with a much lower complexity. Moreover, the proposal allows
parallel execution of each Chase decoding trial, resulting in a
low decoding latency for practical interest.

Index Terms—Algebraic decoding, Chase decoding, interpola-
tion, module minimisation, Reed-Solomon codes

I. INTRODUCTION

Reed-Solomon (RS) codes are widely employed in wireless

communications and data storage systems. In industry, the

conventional Berlekamp-Massey (BM) algorithm [1] is used.

It has an efficient running time but with error-correction

capability limited by half of the minimum Hamming distance

of the code. In late 90s, Guruswami and Sudan introduced the

algebraic list decoding, namely the GS algorithm [2], which

can correct errors beyond the half distance bound. It is a curve-

fitting approach that includes interpolation and factorisation,

while the former dominates the complexity. Soft-decision list

decoding was later introduced by Koetter and Vardy, namely

the KV algorithm [3], offering a significant soft decoding gain.

However, the algebraic list decoding algorithm’s high com-

plexity prevents its more immediate applications. This is

mainly due to the interpolation that finds the minimal in-

terpolated polynomial. It is often realised using Koetter’s

algorithm [4] which is an iterative polynomial construction

approach. The main complexity reduction methods include

the re-encoding transform [5], Wu’s algorithm [6] and the

low-complexity Chase (LCC) algorithm [7]. Meanwhile, the

average decoding complexity issue has been addressed by [8]

and [9] that proposes a progressive list decoding mechanism.

The interpolation problem can also be solved from the

perspective of Gröbner basis of module [10]. In contrast to

Koetter’s interpolation that grows the entries of the Gröbner

basis in a point-by-point fashion, one can define a module

with polynomials that interpolate all the prescribed points.

The Mulders-Storjohann (MS) algorithm [11] can be further

deployed to reduce the module into the weak Popov form,

resulting in the desired Gröbner basis from which the minimal

interpolated polynomial can be found. Such an interpolation

technique is called module minimisation (MM) and it is less

complex than Koetter’s interpolation. The subsequent MM

improvements for decoding RS codes include the divide-and-

conquer approach [12] and its further modified parameteri-

sation [13]. Recently, a MM based multi-trial GS decoding

approach was developed in [14]. On the other aspect, Chase

decoding of RS codes using the extended Euclidean algorithm

has recently been reported in [15].

Inspired by the MM interpolation technique, this paper

proposes a new algebraic Chase decoding (ACD) algorithm

for RS codes, namely the ACD-MM algorithm. Soft received

information is exploited to formulate the interpolation test-

vectors. Such a formulation paves the way of performing

the re-encoding transform which results in a simpler MM

process by reducing the size of the module entries. Our

simulation results and analyses show that the proposal can

outperform most of the decoding algorithms for RS codes

with a complexity that is orders of magnitude less than the

KV algorithm. In addition, the ACD-MM algorithm allows

parallel execution for all the Chase decoding trials, granting a

low decoding latency which is of practical interest.

II. RS CODES AND LIST DECODING

This section reviews the RS encoding and its GS list

decoding utilising MM.

A. RS Codes

Let Fq = {0, 1, 2, . . . , q − 1} denote the finite field of size

q, and Fq[x] and Fq[x, y] denote the univariate and bivariate

polynomial rings defined over Fq, respectively. For an (n, k)

RS code, where n = q−1 and k are the length and dimension

of the code, respectively, the message polynomial f (x) ∈ Fq[x]
can be written as

f(x) = f0 + f1x+ · · ·+ fk−1x
k−1, (1)

ISITA2016, Monterey, California, USA, October 30-November 2, 2016

Copyright (C) 2016 by IEICE 310

where f0, f1, . . . , fk−1 are the message symbols. The code-

word c = (c0, c1, . . . , cn−1) ∈ F
n
q can be generated by

c = (f(α0), f(α1), . . . , f(αn−1)), (2)

where α0, α1, . . . , αn−1 are n distinct nonzero elements of Fq,

and they are called the code locators.

B. List Decoding Using MM

Let ω = (ω0, ω1, . . . , ωn−1) ∈ F
n
q denote the hard-decision

received word. To perform interpolation, the following n
points can be formed as

(α0, ω0), (α1, ω1), . . . , (αn−1, ωn−1). (3)

Let us define the Hamming distance between codeword c and

a received word ω as

dH(c, ω) = |{j | cj 6= ωj , ∀j}|. (4)

Furthermore, given a polynomial Q(x, y) =
∑

a,b Qabx
ayb ∈

Fq[x, y], its (µ, ν)-weighted degree is defined as

degµ,ν Q(x, y) = max{µa+ νb | Qab 6= 0}. (5)

Armed with the above prerequisites, the following GS list

decoding theorem can be introduced.

Theorem 1: For an (n, k) RS code, let Q ∈ Fq[x, y] denote

the interpolated polynomial that passes through the n points of

(3) with a multiplicity of m, and it has a maximal y-degree of

l1. If m(n−dH(c, ω)) > deg1,k−1 Q, then Q(x, f(x)) = 0 [2].
Interpolation is to find such a polynomial Q with the

minimal (1, k − 1)-weighted degree. Factorisation can be

further performed to find its y-roots [16]. Now, we start

to describe the MM technique for solving the interpolation

problem.

Definition I: Let ξ = (ξ0(x), ξ1(x), . . . , ξt(x)) denote a

vector over Fq[x], we define the degree of ξ as

deg ξ = max{deg ξi(x), i = 0, 1, . . . , t}. (6)

The leading position (LP) of vector ξ is defined as

LP(ξ) = max{i | deg ξi(x) = deg ξ}, (7)

and hence the leading term (LT) of vector ξ is

LT(ξ) = ξLP(ξ)(x). (8)

Since the entries of ξ can be elaborated as ξi(x) = ξ
(0)
i +

ξ
(1)
i x+ · · ·+ ξ

(deg ξi(x))
i xdeg ξi(x), the leading coefficient (LC)

of ξi(x) can be further defined as

LC(ξi(x)) = ξ
(deg ξi(x))
i . (9)

For GS decoding with an interpolation multiplicity of m
and it delivers at most l message candidates, a moduleMm,l

which can be seen as a (l+ 1)× (l+ 1) matrix over Fq[x] is

required. The module is defined as follows.

Definition II: A module Mm,l is the space of all bivariate

polynomials over Fq[x, y] that interpolate the n points with a

multiplicity of m and have the maximal y-degree of l.

1Parameterisation of m and l can be seen at [2, 14] and it holds that m ≤ l.

In order to constitute module Mm,l, the following two

polynomials are needed.

G(x) =

n−1∏

j=0

(x− αj), (10)

R(x) =

n−1∑

j=0

ωjLj(x), (11)

where Lj(x) =
∏n−1

i=0,i6=j
x−αi

αj−αi
is a Lagrange basis polyno-

mial. Consequently, the module Mm,l can be formed by the

following l+ 1 generators.

Pt(x, y) = G(x)m−t(y −R(x))t, if 0 ≤ t ≤ m, (12)

Pt(x, y) = yt−m(y −R(x))m, if m < t ≤ l. (13)

By realising R(αj) = ωj , ∀ j, it can be seen that polynomial

Pt(x, y) interpolates the n points of (3) with a multiplicity

of m and has y-degree of t (t ≤ l). Since Pt(x, y) can also

be written as Pt(x, y) =
∑

τ≤t P
(τ)
t (x)yτ , where P

(τ)
t (x) ∈

Fq[x], a moduleMm,l can be constructed by fulfilling its entry

of row-t column-τ with P
(τ)
t (x). For now, one can see module

Mm,l is a square matrix over Fq[x].
Definition III: Let Dβ,l = diag(1, xβ , . . . , xlβ) and D̈β,l =

diag(xlβ , x(l−1)β , . . . , 1) denote the diagonal matrices of size

(l + 1) × (l + 1), where β is an integer. One can have two

types of mapping for module Mm,l following

Am,l =Mm,l · Dβ,l, (14)

Am,l =Mm,l · D̈β,l. (15)

Note that Am,l is no longer a module, but a square matrix

over Fq[x]. Inversely, the demapping of Am,l can be

Mm,l = Am,l · D−β,l, (16)

Mm,l = Am,l · D̈−β,l. (17)

With the demapping of Am,l, a module is restored.

Definition IV: A matrix over Fq[x] is in weak Popov form

if the leading position of each row is different [11].

For list decoding utilising MM, after the module Mm,l is

formed by the generators of (12)(13), the mapping of

Am,l =Mm,l · Dk−1,l (18)

is performed. As a result, for a row ξ
t

in Am,l, we have

deg ξ
t
= deg1,k−1 Pt(x, y). Afterwards, the following MS row

reduction algorithm [11] is applied on Am,l, yielding Am,l

being in the weak Popov form and it is denoted as A′
m,l. By

further performing the demapping of

M′
m,l = A

′
m,l · D−(k−1),l, (19)

the minimal interpolated polynomial Q can be taken from a

row of M′
m,l. This row corresponds to the row in A′

m,l with

the minimal degree.

ISITA2016, Monterey, California, USA, October 30-November 2, 2016

Copyright (C) 2016 by IEICE 311

Algorithm 1 Mulders-Storjohann Algorithm

Input: Am,l;

Output: A′
m,l;

1: While Am,l is not in weak Popov form do

2: Find two rows ξ
a

and ξ
b

in Am,l such that deg ξ
a
≤

deg ξ
b

and LP(ξ
a
) = LP(ξ

b
);

3: Perform ξ
b
← ξ

b
−

LC(ξLP(ξ
b
)(x))

LC(ξLP(ξ
a
)(x))

xdeg ξ
b
−deg ξ

a · ξ
a
;

4: End while

III. THE ACD-MM ALGORITHM

This section presents the ACD-MM algorithm. We start with

formulation of the interpolation test-vectors.

A. Test-Vector Formulation

Let Π ∈ R
q×n denote the reliability matrix observed from

the channel. By assuming its rows are indexed by elements

of Fq, its entry πij is the a posteriori probability defined as

πij = Pr[cj = i], for i = 0, 1, . . . , q−1, j = 0, 1, . . . , n−1. By

identifying the largest and the second largest entries of column

j as πI
j = maxi∈Fq

{πij} and πII
j = maxi∈Fq

{πij | πij 6= πI
j},

respectively, we can define

rI
j = i|πij=πI

j
, rII

j = i|πij=πII
j

(20)

as the most likely and the second most likely decisions for

symbol cj . Define the symbol wise reliability metric as [7]

γj =
πII
j

πI
j

, (21)

where γj ∈ (0, 1). With γj → 0, the decision on cj
is more reliable, and vise versa. By sorting the n relia-

bility metrics in an ascending order, we can have a re-

freshed symbol index sequence j0, j1, . . . , jn−1. It indicates

γj0 < γj1 < · · · < γjn−1 . Therefore, we can define

Θ = {j0, j1, . . . , jk−1} as the indices for the reliable symbols

and Θ = {jk, jk+1, . . . , jn−1} as the indices for the unreliable

ones. Choose η (η ≤ n− k) unreliable symbols from Θ, and

they can either be realised as rI
j or rII

j , we can formulate 2η

interpolation test-vectors which can be generally written as

ru = (r
(u)
j0

, r
(u)
j1

, . . . , r
(u)
jk−1

, r
(u)
jk

, . . . , r
(u)
jn−1

), (22)

where u = 1, 2, . . . , 2η, among which r
(u)
j = rI

j for

j = j0, j1, . . . , jn−η−1 and r
(u)
j = rI

j or rII
j for j =

jn−η, jn−η+1, . . . , jn−1.

B. Re-encoding Transform

The MM interpolation can be simplified by reducing

the size (degree) of the module entries. This will make

the row reduction in Algorithm 1 simpler with less fi-

nite field operations. The re-encoding transform serves

this motivation. After the test-vector formulation, points

(αj0 , r
I
j0
), (αj1 , r

I
j1
), . . . , (αjk−1

, rI
jk−1

) are chosen for re-

encoding. The re-encoding polynomial is defined as

H(x) =
∑

j∈Θ

rI
jhj(x), (23)

where hj(x) =
∏

i∈Θ,i6=j
x−αi

αj−αi
is again a Lagrange basis

polynomial. All test-vectors ru can be transformed by

ru 7→ zu : z
(u)
j = r

(u)
j −H(αj), ∀j. (24)

Since H(αj) = rI
j , ∀ j ∈ Θ, the transformed test-vectors can

be generally written as

zu = (0, 0, . . . , 0, z
(u)
jk

, . . . , z
(u)
jn−1

). (25)

With the first k symbols being zero, it allows the entry size

of the module to be reduced as described in the following

C. Module Formulation and Minimisation

The MM interpolation will now be performed for each of

the transformed test-vectors zu. With zu, polynomial R(x) of

(11) can be rewritten as

R(x) =
n−1∑

j=0

z
(u)
j Lj(x). (26)

With z
(u)
j = 0, ∀ j ∈ Θ, it can be realised that

V (x) =
∏

j∈Θ

(x− αj) (27)

is the gcd for both G(x) of (10) and R(x) of (26). Therefore,

given a particular test-vector zu, we define

G̃(x) =
G(x)

V (x)
=

∏

j∈Θ

(x− αj), (28)

R̃(x) =
R(x)

V (x)
=

∑

j∈Θ

z
(u)
j

̟j

∏

i∈Θ,i6=j

(x− αi), (29)

where ̟j =
∏n−1

i=0,i6=j(αj − αi).
To continue, the following lemma is needed.

Lemma 2: Given a test-vector in the form of (25) and

interpolation multiplicity of m,V (x)m|Pt(x, yV (x)) holds.

Proof: With the generators defined by (12) and (13), when

0 ≤ t ≤ m,Pt(x, yV (x)) can be expanded as

Gm−t(−R)t +

(
t

1

)
Gm−t(−R)t−1V y + · · ·+Gm−t(V y)t.

When m < t ≤ l, Pt(x, yV (x)) can be elaborated as

(−R)m(V y)t−m+

(
m

1

)
(−R)m−1(V y)t−m+1+ · · ·+(V y)t.

By acknowledging V (x)|G(x) and V (x)|R(x), it is straight-

forward to conclude that V (x)m|Pt(x, yV (x)) for all t. �

Armed with the above lemma, the following mapping can

be performed on module generators Pt(x, y)

V (x)−mPt(x, yV (x)) 7→ P̃t(x, y). (30)

It results in the module generators becoming

P̃t(x, y) = G̃(x)m−t(y − R̃(x))t, if 0 ≤ t ≤ m, (31)

ISITA2016, Monterey, California, USA, October 30-November 2, 2016

Copyright (C) 2016 by IEICE 312

P̃t(x, y) = (yV (x))t−m(y − R̃(x))m, if m < t ≤ l. (32)

Since P̃t(x, y) =
∑

τ≤t P̃
(τ)
t (x)yτ and P̃

(τ)
t (x) ∈ Fq[x],

we can generate an isomorphism of Mm,l and denote it

as ϕ(Mm,l). In ϕ(Mm,l), its entry of row-t column-τ is

P̃
(τ)
t (x). Note that degP̃

(τ)
t (x) < degP

(τ)
t (x), and it will lead

to a simpler following row reduction process.

After the re-encoding transform, polynomials of Fq[x, y]
are ordered under the (1,−1)-weighted degree. However,

performing Am,l = ϕ(Mm,l) · D−1,l will cause some of the

entries leaving Fq[x]. Instead, the following mapping will be

performed before deploying the MS algorithm

Am,l = ϕ(Mm,l) · D̈1,l. (33)

For a row ξ
t

in Am,l, we have degξ
t
= deg1,−1P̃t(x, y) + l.

Afterwards, the MS algorithm can be applied on Am,l, deliv-

ering A′
m,l in the weak Popov form. By performing

ϕ(M′
m,l) = A

′
m,l · D̈−1,l, (34)

polynomial Q̃ can be taken from the row of ϕ(M′
m,l) which

corresponds to the minimal row of A′
m,l. Finally, the minimal

interpolated polynomial Q can be restored by

Q(x, y) =

l∑

τ=0

Q̃(τ)(x)V (x)m
(y

V (x)

)τ

. (35)

It interpolates points (αj , z
(u)
j) for all j with a multiplicity of

m. Factorisation [16] can be performed to retrieve the y-roots

of Q, yielding f ′(x) in the form of (1), the intended message

polynomial f̂(x) can now be estimated by

f̂(x) = f ′(x) +H(x). (36)

Summarising the above description, the ACD-MM algo-

rithm is stated as follows.

Algorithm 2 The ACD-MM Algorithm

Input: Π, η, m;

Output: f̂(x);
1: Determine metrics γj as in (21) and define Θ and Θ;

2: Formulate 2η test-vectors ru as in (22);

3: Perform re-encoding transform for all ru as in (24);

4: For each transformed test-vector zu do

5: Formulate ϕ(Mm,l) using the generators (31)(32);

6: Perform Algorithm 1, yielding ϕ(M′
m,l);

7: Restore the interpolated polynomial Q as in (35);

8: Factorise Q and estimate f̂ as in (36);

9: End for

IV. PERFORMANCE AND COMPLEXITY ANALYSIS

This section presents the decoding and complexity per-

formance of the ACD-MM algorithm. The complexity is

measured as the average number of arithmetic finite field

operations in decoding a codeword frame. Using BPSK mod-

ulation, frame error rate (FER) performance over the additive

white Gaussian noise (AWGN) channel is shown.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 1 2 3 4 5 6 7 8 9 10

F
E

R

SNR (dB)

BM / GS (m = 1)

KV (l = 4)

ACD-MM (η = 2)

KV (l = 8)

ACD-MM (η = 4)

KV (l = 35)

ACD-MM (η = 8)

Fig. 1. Performance of the (15, 7) RS code over the AWGN channel.

Fig. 1 compares the ACD-MM algorithm with the BM, GS

and KV algorithms for the (15, 7) RS code. The ACD-MM

algorithm performs each Chase decoding trial with m = 1.

In both the GS and KV algorithms, Koetter’s interpolation

is used. In particular, we compare the ACD-MM and KV

algorithms under the condition that both of the soft decod-

ings incur a similar interpolation cost (the total number of

interpolation constraints) since it is a good indicator for the

complexity of Koetter’s interpolation. For the KV algorithm,

it is shown in Definition 3 of [3]. For the ACD-MM algorithm

with parameters η and m, the interpolation cost will be

2η · n ·

(
m+ 1

2

)
.

With m = 1 and η = 2, 4 and 8, the interpolation cost for

ACD-MM decoding of the (15, 7) RS code will be 60, 240

and 3840, respectively. KV decoding with l = 4, 8 and 35

would incur a similar interpolation cost as the above ones.

Fig. 1 shows that with a similar interpolation cost, the ACD-

MM decoding can outperform the KV decoding, especially

with a large η value. However, the ACD-MM algorithm is

much simpler. This is evidenced by Table I that compares the

complexity of several RS decoding algorithms.

With the same η, the ACD-MM algorithm performs the

same as the LCC algorithm [7] since they adopt the same

test-vector formulation. Table I shows that the LCC algorithm

is less complex. However, the LCC algorithm is restricted

with an interpolation multiplicity of one, limiting the error-

correction capability of each Chase decoding trial. This will

not be the case for the ACD-MM algorithm. Moreover, the

LCC algorithm performs its Koetter’s interpolation in a binary

tree growing manner which benefits a lower complexity. But

on the other hand, it prevents the Chase decoding trials to

be performed in parallel. In contrast, the ACD-MM algorithm

can perform its Chase decoding trials in parallel, benefiting a

lower decoding latency.

Fig. 2 shows the ACD-MM decoding performance over the

AWGN channel with different interpolation multiplicities. For

the (15, 7) RS code, with m = 1, each Chase decoding

ISITA2016, Monterey, California, USA, October 30-November 2, 2016

Copyright (C) 2016 by IEICE 313

TABLE I
DECODING COMPLEXITY FOR THE (15, 7) RS CODE

BM GS (m = 1) KV (l = 8) LCC (η = 4) ACD-MM (m = 1, η = 4) ACD-MM (m = 4, η = 4)
2.54× 103 5.03 × 103 2.23× 106 1.25× 104 2.74× 104 5.22 × 106

TABLE II
COMPLEXITY IMPACT OF THE RE-ENCODING TRANSFORM ON ACD-MM DECODING OF THE (15, 7) RS CODE

Parameters m = 1, η = 2 m = 1, η = 4 m = 1, η = 8 m = 4, η = 2 m = 4, η = 4 m = 4, η = 8
w/o re-enc. 8.24× 103 3.40× 104 5.71× 105 1.56× 106 7.79× 106 1.68× 108

w re-enc. 8.74× 103 2.74× 104 4.32× 105 1.05× 106 5.22× 106 1.26× 108

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 1 2 3 4 5 6 7 8 9 10

ACD-MM (m = 1, η = 2)

ACD-MM (m = 4, η = 2)

ACD-MM (m = 1, η = 4)

ACD-MM (m = 4, η = 4)

ACD-MM (m = 1, η = 6)

ACD-MM (m = 4, η = 6)

ACD-MM (m = 1, η = 8)

ACD-MM (m = 4, η = 8)

SNR (dB)

F
E

R

Fig. 2. Performance of ACD-MM decoding of the (15, 7) RS code with
m = 1, 4 and η = 2, 4, 6, 8.

trial can correct four symbol errors. When m = 4, its error-

correction capability is enhanced to five. With the same η
value, this rewards 0.5 - 0.6 dB performance gain at the FER

of 10−4. Of course, such a performance gain is exchanged

with a more complex decoding as indicated by Table I.

Finally, Table II shows the complexity impact brought by

the re-encoding transform. Without re-encoding, the ACD-MM

algorithm will perform GS list decoding for each formulated

interpolation test-vector as described in Section II.B. It shows

more complexity can be reduced with a larger interpolation

multiplicity. E.g., when η = 4, performing re-encoding with

m = 1 can reduce the complexity by a factor of 1/5. With

m = 4, the complexity reduction factor is 1/3. However,

notice that when m = 1 and η = 2, performing the re-

encoding transform incurs a slight complexity increase. This

is because the complexity reduction for MM interpolation has

been offset by the extra computation brought by the transform

itself. Finally, it should be pointed out that without the re-

encoding as the KV algorithm, the ACD-MM (m = 1, η = 4)
still remains much simpler than the KV (l = 8).

V. CONCLUSIONS

This paper has proposed the ACD-MM algorithm that

achieves high decoding performance with low complexity and

latency for RS codes. Facilitated by the re-encoding trans-

form, the MM technique is utilised to solve the interpolation

problem. Our simulation results show that it can outperform a

number of RS decoding algorithms with a low computation.

ACKNOWLEDGEMENT

This work is sponsored by the National Natural Science

Foundation of China (NSFC) with project ID 61372079 and

the National Basic Research Program of China (973 Program)

with project ID 2012CB316100.

REFERENCES

[1] J. Massey, “Shift register synthesis and BCH decoding,” IEEE Trans.

Inform. Theory, vol. 15, no. 1, pp. 122-127, Jan. 1991.
[2] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and

algebraic-geometric codes,” IEEE Trans. Inform. Theory, vol. 45, no. 6,
pp. 1757-1767, Sept. 1999.

[3] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-
Solomon codes,” IEEE Trans. Inform. Theory, vol. 49, no. 11, pp. 2809-
2825, Nov. 2003.

[4] R. Koetter, “On algebraic decoding of algebraic-geometric and cyclic
codes,” Ph.D dissertation, Univ. Linköping, Linköping, Sweden, 1996.

[5] R. Koetter, J. Ma, and A. Vardy, “The re-encoding transformation in
algebriac list-decoding of Reed-Solomon codes,” IEEE Trans. Inform.

Theory, vol. 57, no. 2, pp. 633-647, Feb. 2011.
[6] Y. Wu, “New list decoding algorithm for Reed-Solomon and BCH codes,”

IEEE Trans. Inform. Theory, vol. 54, no. 8, pp. 3611-3630, Aug. 2008.
[7] J. Bellorado and A. Kavc̆ić, “Low-complexity soft-decoding algorithms

for Reed-Solomon codes—Part I: An algebraic soft-in hard-out Chase
decoder,” IEEE Trans. Inform. Theory, vol. 56, no. 3, pp. 68-79, Mar.
2010.

[8] Y. Cassuto, J. Bruck, and R. McEliece, “On average complexity of Reed-
Solomon list decoders,” IEEE Trans. Inform. Theory, vol. 59, no. 4, pp.
2336-2351, Apr. 2013.

[9] L. Chen, S. Tang, and X. Ma, “Progressive algebraic soft-decision
decoding of Reed-Solomon codes,” IEEE Trans. Commun., vol. 61, no.
2, pp. 433-442, Feb. 2013.

[10] K. Lee and M. O’Sullivan, “List decoding of Reed-Solomon codes from
a Gröbner basis perspective,” J. Symb. Comput., vol. 43, no. 9, pp. 645-
658, Sept. 2008.

[11] T. Mulders and A. Storjohann, “On lattice reduction for polynomial
matrices,” J. Symb. Comput., vol. 35, no. 4, pp. 377-401, Apr. 2003.

[12] M. Alekhnovich, “Linear diophantine equations over polynomials and
soft decoding of Reed-Solomon codes,” IEEE Trans. Inform. Theory, vol.
51, no. 7, pp. 2257-2265, Jul. 2005.

[13] P. Beelen and K. Brander, “Key equations for list decoding of Reed-
Solomon codes and how to solve them,” J. Symb. Comput., vol. 45, no.
7, pp. 773-786, Jul. 2010.

[14] J. Nielsen and A. Zeh, “Multi-trial Guruswami-Sudan decoding for
generalised Reed-Solomon codes,” Des. Codes Cryptogr., vol. 73, no.
2, pp. 507-527, Nov. 2014.

[15] M. Mohamed and M. Bossert, “A Chase-like decoding algorithm for
Reed-Solomon codes based on the extended Euclidean algorithm,” Proc.

10th Int. ITG Conf. on Syst., Commun. and Coding (SCC), Hamburg,
Germany, Feb. 2015.

[16] R. Roth and G. Ruckenstein, “Efficient decoding of Reed-Solomon codes
beyond half the minimum distance,” IEEE Trans. Inform. Theory, vol. 46,
no. 1, pp. 246-256, Jan. 2000.

ISITA2016, Monterey, California, USA, October 30-November 2, 2016

Copyright (C) 2016 by IEICE 314

