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Abstract—The progressive algebraic soft decoding (PASD)
algorithm can leverage the average complexity for algebraic soft
decoding (ASD) of Reed-Solomon (RS) codes. With a progressive-
ly enlarged decoding parameter that is the designed factorization
output list size (OLS), it adapts the expensive interpolation
computation to the quality of the received information and makes
the average complexity of multiple decoding events channel
dependent. However, the complexity reduction is realized at the
expense of system memory since the intermediate interpolation
information needs to be stored. Addressing this issue, this
paper proposes a new PASD algorithm that can significantly
reduce the memory requirement through the establishment of
a condition on expanding the interpolated polynomial group
without using the intermediate information. It has also embraced
the interpolation coordinate transform (ICT) that alleviates the
iterative polynomial construction task, resulting in the new
proposal less computationally expensive than its predecessor, the
PASD algorithm. Our numerical analysis shows that its memory
requirement will be at most half of that of the PASD algorithm
and it is less complex than various ASD algorithms, while the
error-correction capability of ASD is preserved.

Index Terms—Algebraic soft decoding, decoding complexity,
progressive decoding, Reed-Solomon codes

I. INTRODUCTION

Reed-Solomon (RS) codes are widely used in communica-
tions and storage systems. The conventional unique decoding
algorithms [1][2] are efficient, but with limited error-correction
capability. The algebraic hard decoding (AHD) algorithm [3]
performs a curve-fitting decoding process and is able to correct
errors beyond the code’s half distance bound. The algebraic
soft decoding (ASD) algorithm [4] matures the AHD approach
by utilizing the soft information provided by the channel as
it maps the reliability information to the interpolation mul-
tiplicity information. It outperforms the conventional unique
decoding and the AHD algorithms.

In algebraic decodings, interpolation that is an iterative
polynomial construction process dominates the computation-
al complexity, and various complexity reduction approaches
have been proposed so far. In [5], interpolation complexity
is reduced by eliminating the polynomials with a leading
order greater than the number of interpolation constraints. The
interpolation complexity can also be reduced by utilizing the
unique decoding outcome [6], which leads to a reduction of the
interpolation multiplicity. In [7], interpolation complexity is
reduced by performing a Chase-type algebraic decoding which
saves computation by exploiting the similarity among several

interpolation test-vectors. The interpolation coordinate trans-
form (ICT) [8] that is realized through re-encoding a received
word is another important complexity reduction approach. By
transforming certain interpolation points into having a zero
y-coordinate, the iterative polynomial construction task can
be alleviated. Motivated by the fact that different decoding
event may require different error-correction capability, the
progressive ASD (PASD) [9] algorithm was recently proposed.
It performs ASD with a progressively enlarged factorization
output list size (OLS), adapting both the error-correction
capability and computational complexity to the quality of
the received information. Consequently, the average decoding
complexity of multiple decoding events can be leveraged and
becomes channel dependent. However, this approach is real-
ized at the expense of system memory since the intermediate
interpolation information needs to be stored as they will be
utilized later in the progressive interpolation.

This paper proposes a new PASD algorithm that is capable
of reducing the memory requirement and further the decoding
complexity. The progressive interpolation can be considered
as a progressive polynomial group expansion process. In this
paper, a condition on expanding the polynomial group will
be established such that the newly introduced polynomial into
the group does not need to perform interpolation w.r.t. the
previous constraints. Consequently, the memory requirement
can be reduced significantly. Our numerical analysis shows
that the new proposal reduces the memory requirement over its
predecessor, the PASD algorithm, by a factor that is great than
two. It also results in less computation for updating the newly
introduced polynomial. Together with the ICT, the new PASD
algorithm reduces the decoding complexity over the PASD
algorithm by a factor of approximately three and meanwhile
it is less complex than various ASD approaches. We will also
confirm that this economic realization of ASD preserves its
error-correction capability.

II. PRELIMINARIES

Let Fq = {α0, α1, ..., αq−1} denote the finite field of size
q, and Fq[x] and Fq[x, y] denote the univariate and bivariate
polynomial rings defined over Fq , respectively. To encode an
(n, k) RS code, the message vector u = (u0, u1, · · · , uk−1) ∈
Fk
q can be written as a polynomial u(x) = u0 + u1x+ · · ·+

uk−1x
k−1, and the codeword c ∈ Fn

q can be generated by

c = (c0, c1, ..., cn−1) = (u(x0), u(x1), ..., u(xn−1)), (1)
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where x0, x1, ..., xn−1 are n distinct nonzero elements of Fq .
The code’s minimum Hamming distance is d = n− k + 1.

It is assumed that an RS codeword is modulated and
transmitted through a memoryless channel, e.g., the additive
white Gaussian noise (AWGN) channel. Given a received
vector Y ∈ R, the q×n reliability matrix Π can be obtained
with entry πij being defined as:

πij = Pr[cj = αi | Y]. (2)

Matrix Π is then transformed into a multiplicity matrix M
of the same size [4]. Entry mij represents the interpolation
multiplicity for point (xj , αi). Interpolation is to iteratively
construct a polynomial group G and each of its polynomials
interpolates all the points defined by the nonzero entries of
M. Given an interpolated polynomial Q =

∑
a,b Qabx

ayb ∈
Fq[x, y], for a nonnegative integer pair (r, s), the (r, s)th Hasse
derivative evaluation of Q at point (xj , αi) is defined as [10]:

Dr,s(Q(x, y))|(xj ,αi) =
∑

a≥r,b≥s

(
a

r

)(
b

s

)
Qabx

a−r
j αb−s

i .

(3)
Polynomial Q interpolates point (xj , αi) with a multiplicity
of mij if Dr,s(Q(x, y))|(xj ,αi) = 0 for all r + s < mij .
For simplicity, we will use (r, s)ij to denote the interpolation
constraints and Hasse derivative evaluation of (3) is denoted
by D(r,s)ij (Q).

In decoding an (n, k) RS code, monomials xayb are orga-
nized by the (1, k − 1)-revlex order [5]. Given a polynomial
Q ∈ Fq[x, y], if xa′

yb
′

is the leading monomial (lm) with
coefficient Qa′b′ ̸= 0, the (1, k − 1)-weighted degree of Q is
defined as deg1,k−1Q = deg1,k−1 lm(Q) = a′+(k− 1)b′ and
its leading order is defined as lod(Q) = ord(xa′

yb′
). Given

two polynomials (H,Q) ∈ Fq[x, y], we declare H < Q if
lod(H) < lod(Q).

In matrix M, let ij denote the row index i with αi = cj ,
i.e. ij = {i | αi = cj}. Entry mijj is the multiplicity for
point (xj , cj). The codeword score is defined as SM(c) =∑n−1

j=0 mijj . Given an interpolated polynomial Q, if [4]

SM(c) > deg1,k−1 Q, (4)

the message polynomial u(x) can be determined by factoriza-
tion that finds out the y-roots of Q [11]. It delivers a list of
message polynomial candidates p(x) as:

L = {p(x) ∈ Fq[x] | Q(x, p(x)) = 0 and degx p(x) < k}.
(5)

The cardinality of L is referred as the factorization OLS.
The PASD algorithm performs decoding with a progressive-

ly enlarged designed OLS, adapting both decoding capability
and computation to the actual need. In order to better explain
the progressive decoding concept, the following definitions are
introduced.

Definition I: Let Λ(mij) denote the set of interpolation
constraints defined by a nonzero entry mij as:

Λ(mij) = {(r, s)ij , ∀ r + s < mij}. (6)

Λ(M) is used to denote a collection of all the constraint sets
Λ(mij) that are defined by the nonzero entries of M as:

Λ(M) = {Λ(mij), ∀ mij ∈ M and mij ̸= 0}. � (7)

The total number of constraints defined by matrix M is given
by C(M) = |Λ(M)| = 1

2

∑q−1
i=0

∑n−1
j=0 mij(mij + 1).

Definition II: Let MA and MB denote two multiplicity
matrices of the same size with entries m

(A)
ij and m

(B)
ij , re-

spectively. With m
(A)
ij ≤ m

(B)
ij for all entries, the incremental

interpolation constraints introduced by the two matrices are

Λ(MB\A) = {Λ(MB) \ Λ(MA)}. � (8)

Note that |Λ(MB\A)| = C(MB)− C(MA).
The PASD algorithm performs decoding with a series

of monotonically increasing designed factorization OLS
l1, l2, · · · , lv−1, lv, · · · , lT , where lv = lv−1 +1 and lT is the
maximal OLS set according to the system’s decoding budget.
Correspondingly, a series of multiplicity matrices are gener-
ated as M1,M2, · · · ,Mv−1,Mv, · · · ,MT , where m

(v−1)
ij ≤

m
(v)
ij for all the matrices. It can be realized that

Λ(Mv) = Λ(M1) ∪ Λ(M2\1) ∪ · · · ∪ Λ(Mv\v−1) (9)

for v = 1, 2, . . . , T . Note that Λ(M0) = [0]q×n. The PASD
algorithm is to perform interpolation w.r.t. the constraints of
Λ(M1), Λ(M2\1), . . ., Λ(Mv\v−1) progressively. If Qv is the
interpolated polynomial that has satisfied all the constraints of
Λ(Mv), the intended message polynomial can be found if [9]

SMv (c) > deg1,k−1(Qv), (10)

and the decoding will be terminated. Note that SMv (c) is
defined similarly as SM(c). Therefore, in a good channel con-
dition most of the received information are mildly corrupted,
condition of (10) will happen in an earlier decoding stage
with a smaller OLS value, and vice versa. Since the decoding
complexity grows exponentially with the OLS [9], average
decoding complexity of the new PASD algorithm is channel
dependent.

III. THE NEW PROGRESSIVE INTERPOLATION

The new PASD algorithm embraces two important features
into its progressive interpolation to reduce the memory re-
quirement and decoding complexity. They are the ICT that is
performed based on M1 and the new progressive polynomial
group expansion.

A. The ICT Based on M1

The set of interpolation points indicated by matrix M1 can
be defined as PM1 = {(xj , αi), ∀ mij ∈ M1 and mij ̸= 0}.
We first identify k points in the set PM1 to perform re-encoding
[8]. In matrix Π, the maximal entry of each column can be
identified as π∗

j = max{πij | i = 0, 1, · · · , q−1}. Sorting the
n maximal entries in a descending order yields a refreshed
column index sequence θ0, θ1, · · · , θk−1, · · · , θn−1, which
implies π∗

θ0
≥ π∗

θ1
≥ · · · ≥ π∗

θk−1
≥ · · · ≥ π∗

θn−1
. Let i(θ)

denote the row index of entry π∗
θ as i(θ) = {i | πi,θ = π∗

θ},
the following set of points can be constituted for re-encoding
as P I

M1
= {(xθ0 , αi(θ0)), (xθ1 , αi(θ1)), · · · , (xθk−1

, αi(θk−1))}
and |P I

M1
| = k. Let Θ = {θ0, θ1, · · · , θk−1}, the re-encoding

polynomial T (x) can be defined as:
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T (x) =
∑
j∈Θ

αi(j)tj(x), (11)

where tj(x) =
∏

(j,δ)∈Θ,
δ ̸=j

x−xδ

xj−xδ
is the Lagrange basis poly-

nomial and T (xj) = αi(j) for all j ∈ Θ. Therefore, for the
original interpolation points (xj , αi), we can transform them
by (xj , αi + T (xj)). Consequently, set PM1 is transformed
into P ′

M1
= {(xj , αi + T (xj)), ∀ mij ∈ M1 and mij ̸= 0}.

In particular, P I
M1

is transformed into a set of points with a
zero y-coordinate as P I′

M1
= {(xj , 0), ∀ j ∈ Θ}. Note that

in matrix M1, there can be less than k nonzero entries. The
above sorting process aims to enable set P I

M1
(or P I′

M1
) include

most of the points that correspond to the nonzero entries of
M1, so that the following process can reduce the interpolation
complexity in its best capability.

At the beginning, with an initial factorization OLS l1 = 1,
polynomial group G1 = {g0, g1} is initialized by [8]

gu = yu
∏
j∈Θ

(x− xj)
[mi(j)j−u]+ , (12)

where u = 0, 1 and [mi(j)j − u]+ = max{mi(j)j − u, 0}.
Let ΛI(M1) denote the set of interpolation constraints defined
by points of P I′

M1
, polynomials of G1 have already satisfied

those constraints. They will further perform interpolation w.r.t.
the remaining constraints of {Λ(M1) \ ΛI(M1)}. Regarding
each constraint (r, s)ij ∈ {Λ(M1)\ΛI(M1)}, Hasse derivative
evaluation will be performed for each polynomial of G1. For
those polynomials with D(r,s)ij (gu) ̸= 0, the minimal one will
be selected as:

f = min{gu | D(r,s)ij (gu) ̸= 0}, (13)

and the bilinear modification will be performed following [4]:

gu =

 gu −
D(r,s)ij (gu)

D(r,s)ij (f)
f, if gu ̸= f , (14a)

(x− xj)f, if gu = f . (14b)

We define the above bilinear modification as the polynomial
update such that the updated polynomial satisfies the cur-
rent constraint (r, s)ij . After interpolation w.r.t. constraints
of {Λ(M1) \ ΛI(M1)} has been performed, the minimal
polynomial in G1 will be chosen as Q1 for factorization.
If u′(x) ∈ Fq[x] with degx u

′(x) < k is the factorization
outcome, the intended message polynomial can be further
determined by u(x) = u′(x) + T (x). If the intended message
polynomial cannot be found 1, the OLS will be increased to
l2 forcing another stronger ASD attempt.

B. New Progressive Polynomial Group Expansion

In the PASD algorithm, the OLS increment will immediately
lead to the polynomial group expansion, i.e., |Gv| = lv + 1
where Gv is the polynomial group of progressive iteration v.
The newly introduced polynomial will have to perform re-
interpolation w.r.t. the previous constraints by engaging with
the identified minimal polynomials f as in (14a). It requires a
large memory for storing those polynomials. The new proposal

1The decoding output validation is performed by the maximum likelihood
criterion of [12].

significantly reduces the memory requirement by establishing
a new polynomial group expanding condition with which
most of the re-interpolation can be excepted. The following
description formulates the establishment of the condition.

Let σ denote the index of an interpolation constraint (r, s)ij
and kernel Kσ can be defined as:

Kσ = {Q ∈ Fq[x, y] | D(r,s)ij (Q) = 0}. (15)

Accumulated kernel Kσ can be further defined as Kσ = Kσ ∩
Kσ−1 = Kσ ∩ Kσ−1 ∩ · · · ∩ K1. We also define Wb as:

Wb = {Q ∈ Fq[x, y] | degy lm(Q) = b}. (16)

In the ASD algorithm [4] that performs decoding with an
OLS of lT , the interpolation begins with a polynomial group
G(0) = {g(0)0 = 1, g

(0)
1 = y, · · · , g(0)u = yu, · · · , g(0)lT

= ylT },
and each of its polynomials g

(0)
u is the minimal polyno-

mial of Wu where u = 0, 1, . . . , lT . After the σth con-
straint has been satisfied, group G(0) evolves to G(σ) =

{g(σ)0 , g
(σ)
1 , · · · , g(σ)u , · · · , g(σ)lT

} 2 and each of its polynomials
g
(σ)
u = min{Kσ ∩ Wu}. By observing g

(0)
u+1 is divisible by

g
(0)
u , the following lemma can be led to.

Lemma 1: If lod(g(σ)u ) = lod(g(0)u ), then yg
(σ)
u can be the

candidate of g(σ)u+1 [13].
Lemma 1 implies as far as lod(g(σ)u ) = lod(g(0)u ), yg(σ)u =

min{Kσ ∩Wu+1}. Notice that during the polynomial update,
only (14b) will lead to the lod increase. That says as far as g(σ)u

has not become the minimal polynomial f , g(σ)u+1 can always be
generated by g

(σ)
u+1 = yg

(σ)
u . Therefore, the following theorem

establishes the expanding condition and the updating operation
for the newly introduced polynomial.

Theorem 2: In a polynomial group G(σ) with |G(σ)| = u+1,
if g

(σ)
u is the minimal polynomial that does not satisfy the

current constraint (r, s)i,j , polynomial g(σ+1)
u+1 should be intro-

duced into the group and updated by [13]

g
(σ+1)
u+1 = (y − αi)g

(σ)
u , (17)

such that it satisfies all the interpolation constraints that
polynomial g(σ)u has satisfied and the current one.

Proof: Based on Lemma 1, we know that the new polyno-
mial g(σ)u+1 shall be introduced into the group as g

(σ)
u+1 = yg

(σ)
u

so that it satisfies all the constraints that g(σ)u has satisfied. To
further enable polynomial g(σ+1)

u+1 satisfy the current constraint,
update of (14a) will be performed as:

g
(σ+1)
u+1 = g

(σ)
u+1 −

D(r,s)ij (g
(σ)
u+1)

D(r,s)ij (g
(σ)
u )

g(σ)u

= yg(σ)u −
αiD(r,s)ij (g

(σ)
u )

D(r,s)ij (g
(σ)
u )

g(σ)u

= (y − αi)g
(σ)
u . �

2In the progressive interpolation, there are two types of iterations. One
is the iterative polynomial construction for which we use σ to denote the
index of an interpolation constraint and G(σ) to denote the polynomial group
w.r.t. the constraint. The other is the progressive iteration for which we use
v to denote the iteration index and Gv to denote the polynomial group of
progressive iteration v.
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The above description shows the polynomial group does not
expand simultaneously with the designed OLS increment. For
this reason, during the progressive iteration v, we use l′v to
denote the maximal y-degree of polynomials in Gv as:

l′v = max{degy gu | gu ∈ Gv}. (18)

It implies |Gv| = l′v + 1. During the progressive iterations,
1 ≤ l′v ≤ lv ≤ lT . It is assumed that l′v also progresses by

l′v = l′v−1 + 1. (19)

Without loss of generality, we now describe the new PASD
algorithm as being performed at iteration v−1 with a designed
factorization OLS of lv−1, where 2 < v ≤ T . At the beginning
of iteration v − 1, we have polynomial group

Gv−1 = {g0, g1, · · · , gl′v−1
}. (20)

They all satisfy the constraints of Λ(Mv−2). At the current
iteration, they perform the iterative polynomial updates as
in (13)-(14b) w.r.t. constraints of Λ(Mv−1\v−2). Based on
Theorem 2, we know during the polynomial updates, once

f = gl′v−1
, (21)

we need to introduce a new polynomial g∗ by:

g∗ = (y − αi)gl′v−1
, (22)

where αi is the y-coordinate of the current interpolation point.
We can now determine whether g∗ should be included in group
Gv−1 to participate into the interpolation w.r.t. the remaining
constraints of Λ(Mv−1\v−2). The following two cases can be
classified for the group expansion.

Case 1.1: If l′v−1 < lv−1, polynomial group Gv−1 needs to
be expanded by

Gv−1 = {g0, g1, · · · , gl′v−1
} ∪ {g∗}. (23)

Afterwards, l′v−1 will be increased by one and Gv−1 can be
expressed as:

Gv−1 = {g0, g1, · · · , gl′v−1−1, gl′v−1
}. (24)

Polynomials of Gv−1 will perform interpolation w.r.t. the
remaining constraints of Λ(Mv−1\v−2).

Case 1.2: If l′v−1 = lv−1, polynomial group Gv−1 does not
need to be expanded, since the newly introduced polynomial
g∗ will not be chosen to be factorized after the current
iteration. Instead, it will be stored in memory. Polynomials
of Gv−1 will continue to perform interpolation w.r.t. the re-
maining constraints (r1, s1)i1j1 , (r2, s2)i2j2 , · · · , (rL, sL)iLjL

of Λ(Mv−1\v−2) and the identified minimal polynomials f
will be stored.

In the end of iteration v − 1, an updated polynomial group
G̃v−1 will be yielded and

G̃v−1 = {g̃0, g̃1, · · · , g̃l′v−1
}. (25)

The minimal polynomial of G̃v−1 will be chosen as Qv−1 to
be factorized. If the intended message polynomial cannot be
found after the factorization, the OLS lv−1 will be increased
by one and matrix Mv will be generated accordingly.

In progressive iteration v, polynomial group Gv inherits
information from G̃v−1 and such a process can again be
classified into two cases.

TABLE I
AVERAGE MEMORY REQUIREMENT IN DECODING THE (15, 11) RS CODE

SNR (dB) 2 3 4 5 6 7

lT = 5
PASD 8213 6075 3060 945 202 8

new PASD 2924 1980 876 232 30 0

lT = 7
PASD 30258 20571 9664 2800 437 8

new PASD 12035 8534 4008 1063 130 0

Case 2.1: If l′v−1 + 1 < lv, it implies in the previous
iteration, condition of (21) has not occurred or it has occurred
with Case 1.1. Hence

Gv = G̃v−1. (26)

Case 2.2: If l′v−1+1 = lv, it implies Case 1.2 has occurred
and an expansion is needed following

Gv = G̃v−1 ∪ {g∗}. (27)

Polynomial g∗ will perform interpolation w.r.t. constraints
of (r1, s1)i1j1 , (r2, s2)i2j2 , · · · , (rL, sL)iLjL by engaging with
the corresponding minimal polynomials f as in (14a), yielding
an updated polynomial g̃∗. Note that g∗ may become the
minimal polynomial f during the update. If so, it will be
utilized to generate a new polynomial as in (22).

With defining the polynomial group Gv, the following
interpolation will be performed as in iteration v − 1. The
decoding will be terminated either when the intended message
polynomial is found or the maximal OLS lT is reached.

IV. NUMERICAL ANALYSIS

The above description shows that the new PASD algorith-
m does not need to store all the intermediate interpolation
information. The intermediate information only needs to be
stored in Case 1.2. Moreover, with performing ICT based
on M1, there are at most |ΛI(M1)| minimal polynomials
f have been excepted from the storage. As a result, the
new PASD algorithm’s memory requirement will be less
than that of the PASD algorithm. Table I shows the average
memory requirement for storing the minimal polynomials f
in decoding the (15, 11) RS code. It is measured in the
AWGN channel with using BPSK for transmission. It is
averaged over running 10 000 independent decoding events
at each signal-to-noise ratio (SNR). It is assumed that one
polynomial coefficient consumes one memory unit. Note that
such a simulation testbed and measurement setup will also
be adopted in the computational complexity analysis later.
It can be seen that with the same maximal OLS, the new
PASD algorithm requires less than half of the memory of
its predecessor. As the SNR increases, the average memory
requirement reduces since more decoding events will produce
the intended outcome with a smaller OLS value. E.g. at 7dB,
most of the intended message polynomials can be delivered
after the first iteration in which only polynomial initialization
of (12) has been performed. The new PASD algorithm does
not store any intermediate information.

Table II shows the average number of finite field arithmetic
operations in decoding the (15, 11) RS code. The data are
presented as in ×104. E.g., at 5dB, the average complexity
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TABLE II
AVERAGE COMPUTATIONAL COMPLEXITY IN DECODING THE (15, 11) RS

CODE WITH lT = 5

SNR (dB) 2 3 4 5 6 7 8
ASD 208 208 200 181 159 141 127

ASD of [8] 89.0 77.0 54.0 35.0 23.0 18.0 15.0
PASD 134 96.0 47.0 14.0 2.54 0.77 0.72

new PASD 92.0 67.0 31.0 9.00 1.50 0.46 0.43

1.E-06

1.E-05
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1.E-03

1.E-02

1.E-01

1.E+00

2 3 4 5 6 7 8 9 10
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T
l

7
T
l

5
T
l
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T
l

7
T
l

7
T
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Fig. 1. FER performance of the (15, 11) RS code over the AWGN channel.

of the new PASD algorithm is 9 × 104. The comparison
benchmarks include the original ASD algorithm of [4], the
complexity reducing ASD algorithm of [8] and the PASD
algorithm of [9]. All the algorithms are functioning with the
same decoding budget as indicated by lT = 5. For the ASD
algorithm of [8] with a designed OLS of lT , its ICT will be
performed based on matrix MT . Table II shows the average
complexity of the progressive decoding algorithms reduces
significantly as the SNR increases and they are far simpler
than the ASD algorithm. Compared to the PASD algorithm,
the new proposal offers a complexity reduction by a factor
of approximately three, thanking to both the ICT and the
new approach for expanding the polynomial group. In the
new expansion, tangible amount of updates for the newly
introduced polynomials have been skipped. It can also be
noticed that in the low SNR region, e.g. at 2-3dB, the ASD
algorithm of [8] has a similar complexity as the new PASD
algorithm. It is because in this region the new PASD algorithm
delivers the intended message polynomial with a large OLS
value. The ASD algorithm of [8] is also very competent in
reducing the complexity by performing the ICT with matrix
MT as more iterative polynomial construction task can be
replaced by polynomial initializations.

Finally, Fig.1 shows the frame error rate (FER) performance
of the same RS code over the AWGN channel using BPSK.
The algebraic soft decoding algorithms are functioning with
the same lT value. The unique decoding is performed by the
Berlekamp-Massey (BM) algorithm [1] and the optimal AHD
result is obtained by assuming it can correct at most n −
⌊
√
n(n− d)⌋ − 1 symbol errors. It shows the algebraic soft

decoding algorithms outperform both the unique decoding and

the AHD algorithms. In particular, the new PASD algorithm
preserves the error-correction capability of the ASD algorithm,
but with a far smaller average decoding complexity.

V. CONCLUSIONS

This paper has proposed a new PASD algorithm that can
significantly reduce the average decoding complexity and the
memory requirement. A new polynomial group expanding
condition has been established such that during the progressive
interpolation, the newly introduced polynomial does not need
to perform re-interpolation w.r.t. the previous constraints.
Further assisted by performing the ICT at the beginning of
the progressive decoding, the new PASD algorithm is less
complex than the PASD algorithm. Our numerical analysis
has shown that the new proposal requires less than half of the
memory that would be required by the PASD algorithm and
it is less complex than various ASD approaches. Finally, we
have confirmed the new PASD algorithm preserves the error-
correction capability of the ASD algorithm.
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