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Abstract—Reed-Solomon tail-biting convolutional concatenat-
ed (RS-TBCC) codes are investigated in this paper, aiming to
eliminate the rate loss caused by the tail bits of the traditional
RS convolutional concatenated (RS-CC) codes. The iterative soft
decoding (ISD) for the RS-TBCC code is proposed, which inte-
grates the tail-biting maximum a posteriori (TB-MAP) decoding
algorithm for the inner tail-biting convolutional (TBC) code and
the adaptive belief propagation (ABP) decoding algorithm for
the outer RS codes. The proposed decoding is able to obtain
significant performance gains through iterations. The outer
decoding output will be validated by the maximum likelihood
(ML) criterion, which alters the feedback to the inner decoding.
However, the effectiveness of ML assessment degrades as the
outer codeword length decreases. Therefore, a modified ISD is
also proposed for shorter RS-TBCC codes in which smaller RS
codes are employed.

Index Terms—concatenated codes, Reed-Solomon codes, tail-
biting convolutional codes, iterative decoding

I. INTRODUCTION

Future communication networks will be embedded by the
features of ultra reliability and ultra low latency [1] [2].
Codes of short-to-moderate length, which have the potential
of yielding a low latency and high performance, become the
promising candidates for future networks [3].

Reed-Solomon convolutional concatenated (RS-CC) codes
have been demonstrated to have low complexity and high
reliability features [4], in which multiple RS codes serve as the
outer codes and a convolutional code serves as the inner code.
Between the outer and inner codes, the RS coded symbols are
interleaved. The advantages of such a concatenated coding
system include: 1) It can cope with a large variety of error
patterns, since the inner code is good at correcting random
errors [4] while the outer codes are good at correcting burst
errors; 2) Efficient decoding algorithms exist for both the inner
and outer codes.

However, in short-to-moderate blocklength regime, RS-CC
codes would suffer a significant rate loss due to the necessity
of the tail bits for the inner code. By initializing shift registers
of the convolutional code with the last information bits, so
called tail-biting, the tail bits can be removed to avoid rate
loss without sacrificing the performance [5]. However, the tail-
biting structure requires finding the initial state of the shift
registers, which could result in a dramatic rise in complexity.
Hence, RS-TBCC codes performance advantage (due to its
higher rate) will be at the cost of decoding complexity.

RS Π Binary
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TBCC

𝑈(𝜄) 𝐶(𝜄) 𝐶′(𝜄) 𝑏 𝑐

Fig. 1. Block diagram of the RS-TBCC encoder.

The RS-TBCC code was proposed in [6], in which the
Viterbi decoder for tail-biting convolutional (TBC) code and
the collaborative decoder for the interleaved RS code were
employed to form a non-iterative decoder. To fully exploit the
advantages of concatenated codes, iterative decoding should be
employed to effectively exchange soft information between the
inner and outer decoders. The iterative soft decoder for RS-CC
codes was proposed in [7], which yields a significant coding
gain over the conventional non-iterative Viterbi-Berlekamp-
Massey (Viterbi-BM) decoder. For TBC codes, by extending
a few sections of the tail-biting supertrellis, the wrap-around
Viterbi algorithm (WAVA) can achieve a near-optimal perfor-
mance with a low complexity [8]. A wrap-around maximum a
posteriori (MAP) decoding algorithm was then devised in [9]
to realize the SISO decoding of TBC codes, namely the TB-
MAP decoding. For RS codes, the adapted belief propagation
(ABP) decoder is a relatively efficient SISO decoder which
yields a competent decoding performances [10].

This paper investigates the RS-TBCC code and proposes
its iterative decoding algorithm. The proposed RS-TBCC
decoder adopts the TB-MAP decoding [9] for the inner TBC
code and the ABP decoding [10] for the outer RS codes,
constituting an iterative decoding mechanism. In particular,
the outer RS codes are decoded by the ABP-BM algorithm.
If the BM decoding succeeds, it will feed back deterministic
information for the inner TB-MAP algorithm, otherwise the
extrinsic information will be fed back. Therefore, the outer
decoding output validation is important, for which we employ
the maximum likelihood (ML) criterion of [11]. However, the
accuracy of this validation degrades as the RS codeword length
decreases. Therefore, two ISD algorithm, namely the ISD-I
and ISD-II, respectively, are proposed to decode RS-TBCC
codes of various length. Our simulation results show that both
the ISD-I and ISD-II of RS-TBCC codes yield a significant
performance than the ISD of RS-CC codes.

II. RS-TBCC CODES

Let Fq = {ρ0, ρ1, · · · , ρq−1} denote the finite field of size
q, which is assumed to be an extension field of F2, i.e., q = 2ω
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Fig. 2. Block interleaver.

where ω is a positive integer. An RS code of length n = 2ω−1
and dimension k is denoted as an (n, k) RS code.

Fig. 1 shows an RS-TBCC code formed by encoding a
sequence of D interleaved RS codewords with an inner TBC
code. Given an (n, k) RS code of rate k/n, D×k information
symbols form the message U =

[
U (1) U (2) · · · U (D)

]
, where

U (ι) =
[
U

(ι)
0 U

(ι)
1 · · · U (ι)

k−1

]
is the ι-th information sequence,

and 1 ≤ ι ≤ D. Let

G =


1 1 · · · 1
1 α · · · αn−1

...
...

. . .
...

1 αk−1 · · · α(k−1)(n−1)

 (1)

denote the generator matrix of the RS code, where α is a
primitive element of Fq . As shown in Fig. 1, U will be encoded
into C =

[
C(1) C(2) · · ·C(D)

]
, where each RS codeword

C(ι) = U (ι) ×G =
[
C

(ι)
0 C

(ι)
1 · · · C(ι)

n−1

]
.

Due to the nature of convolutional codes, burst errors will
often be produced by the inner decoding. To better cope with
burst errors, block interleaver is needed to interleave C as
Fig. 2 shows into

C ′ =
[
C

(1)
0 · · ·C(D)

0 C
(1)
1 · · ·C(D)

1 · · ·C(D)
n−1

]
, (2)

which will then be converted into the binary string b of length
N = Dnω. Finally, binary string b is the input of the TBC
encoder, which yields a binary RS-TBCC codeword c.

For simplicity, this paper considers the TBC code with 1
input, 2 outputs, and m shift registers, denoted as the (2, 1,m)
TBC code. Hence, the length of codeword c is 2N . It should
be noted that the overall RS-TBCC code rate is 1

2 ·
k
n , while

with the same component codes the overall RS-CC code rate
is 1

2 ·
ωDk
N+m . It can be seen that the latter suffers a rate loss in

comparison with the RS-TBCC code.

III. ITERATIVE SOFT DECODING I

Fig. 3 shows the proposed ISD-I for RS-TBCC codes, where
P and P ∗ denote the input/output probability sequences of
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Fig. 3. Block diagram of the ISD-I.

the inner decoder and the outer decoders, respectively. For the
probability sequence P = [P0 P1 · · ·PN−1] (so as for P ∗), its
j-th element, Pj , denotes the probability mass function over
θ ∈ {0, 1} and Pj(θ) = Pr {cj = θ} denotes the probability
of the outcome θ, where j ∈ {0, 1, . . . , N − 1}. Let Ĉ denote
the BM decoding estimation (a non-binary vector) and ĉ
denote its binary representation. With the channel observations
P ch = [Pch,0 Pch,1 · · ·Pch,2N−1] and the a priori probabilities
P a = [Pa,0 Pa,1 · · ·Pa,N−1] of the RS-TBCC coded bits,
the TB-MAP decoder determines the extrinsic probabilities
P e = [Pe,0 Pe,1 · · ·Pe,N−1] of the RS coded bits by

Pe,j(θ) = $
Pp,j(θ)

Pa,j(θ)
, (3)

where $ is a normalization factor that ensures Pe,j(0) +
Pe,j(1) = 1 and P p = [Pp,0, Pp,1, . . . , Pp,N−1] is the a
posteriori probabilities determined by the TB-MAP decoder.
Then, P e will be deinterleaved1 and mapped to the a priori
probabilities P ∗a =

[
P ∗(1)

a P ∗(2)
a · · ·P ∗(D)

a

]
for the outer ABP

decoder, where P ∗(ι)a =
[
P
∗(ι)
a,0 P

∗(ι)
a,1 · · ·P

∗(ι)
a,N−1

]
are the a

priori probabilities of all coded bits of the ι-th RS codeword.
For all 1 ≤ ι ≤ D, the ABP decoder utilizes P ∗(ι)a to
determine the extrinsic probabilities P ∗(ι)e and the a posteriori
probabilities P ∗(ι)p of the RS coded bits. The hard-decisions
of P ∗(ι)p are then converted to the symbol wise received
word and decoded by the BM algorithm [12]. If the BM
decoding succeeds, it estimates an RS codeword Ĉ

(ι)
. Its

binary representation ĉ(ι) can be further obtained, in which
ĉ
(ι)
j denotes its j-th bit, where 0 ≤ j ≤ ωn − 1. Let

P̃
(ι)

=
[
P̃

(ι)
0 P̃

(ι)
1 · · · P̃ (ι)

ωn−1

]
. It can be updated based on

the following rule: if Ĉ
(ι)

satisfies the ML criterion [11],
P̃

(ι)
j

(
ĉ
(ι)
j

)
= 1 and P̃

(ι)
j

(
1− ĉ(ι)j

)
= 0, ∀j; Otherwise,

P̃
(ι)

= P ∗(ι)e . Finally, by interleaving P̃ , we can obtain the
updated a priori probabilities P a for the TB-MAP decoder
in the next iteration. The iterative decoder will be terminated
if all outer codewords Ĉ

(ι)
satisfy the ML criterion or the

maximum iteration number is reached.
We then describe the TB-MAP decoder, the ABP decoder

and the ML criterion to substantiate ISD-I algorithm.

1During deinterleaving, every ω consecutive extrinsic probabilities are
grouped to represent the extrinsic information of an RS coded symbol.
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A. TB-MAP Decoding of the Inner TBC Code

The TB-MAP decoder performs the BCJR algorithm [13]
with the following two modifications: 1) The BCJR algorithm
is performed over the supertrellis [9] of the TBC code, in
which the supertrellis has 2m equal-probable initial states; 2)
Given a wrap depth w, which is the length of the extended
supertrellis [8], the TB-MAP decoder determines the extrinsic
probabilities using (3) from the wrap-around channel observa-
tions P wrap

ch and the wrap-around a priori probabilities P wrap
a ,

where

P wrap
ch = [Pch,0 Pch,1 · · ·Pch,2N−1 Pch,0 · · ·Pch,2w−1], (4)

P wrap
a = [Pa,0 Pa,1 · · ·Pa,N−1 Pa,0 · · ·Pa,w−1]. (5)

It should be noted that P wrap
ch and P wrap

a are circularly
extended from P ch and P a, respectively.

From P wrap
ch and P wrap

a , the TB-MAP decoder determines
the wrap-around extrinsic probabilities

P wrap
e = [Pe,0 Pe,1 · · ·Pe,N−1 Pe,N · · ·Pe,N+w−1] (6)

using (3) and outputs the last N probabilities of P wrap
e as

P e = [Pe,N · · ·Pe,N+w−1 Pe,w Pe,w+1 · · ·Pe,N−1]. (7)

To approach the ML performance of TBC codes, the wrap
depth w needs to be sufficiently large [8], which cause an
additional decoding complexity. For example, the (2, 1, 6) TBC
code of message length 48 needs a wrap depth of 40 to
reach the optimal performance [9]. A wrap depth of 6(m+ 1)
for the TB-MAP decoder can yield a sufficiently superior
performance, which will be adopted in this paper.

B. ABP Decoding of the Outer RS Codes

Based on the a priori probabilities P ∗(ι)a , the log likelihood
ratio (LLR) of the j-th bit of the ι-th RS codeword is

L
(ι)
a,j = log

P
∗(ι)
a,j (0)

P
∗(ι)
a,j (1)

, (8)

where j ∈ {0, 1, . . . , ωn − 1}. At the beginning, the ABP
algorithm sorts the a priori LLR values based on their mag-
nitudes in an ascending order, yielding a refreshed bit indices
j0, j1, . . . , jωn−1. It indicates that

∣∣∣L(ι)
a,j0

∣∣∣ ≤ ∣∣∣L(ι)
a,j1

∣∣∣ ≤ · · · ≤∣∣∣L(ι)
a,jωn−1

∣∣∣. Let Θ(ι) = {j0, j1, . . . , jω(n−k)−1} denote the
index set of the ω(n − k) unreliable bits and Hb denote an
ω(n − k) × ωn binary parity-check matrix of the RS code.
Due to its density, Gaussian elimination will be needed to
reduce the columns indexed by Θ(ι) into weight-1, forming
an adapted parity-check matrix H′b [10]. By doing so, density
of Hb can be reduced, so as the number of short cycles.
Consequently, propagation of the unreliable information can
be alleviated, resulting in a better BP decoding performance
for RS codes. The BP decoding [10] based on H′b can be
described as follows.

Let hv,j denote the entry of H′b,

V(j) = {v|hvj = 1,∀v = 0, 1, . . . , ω(n− k)− 1} (9)

and
J(v) = {j|hvj = 1,∀j = 0, 1, . . . , ωn− 1}. (10)

The extrinsic LLR for each RS coded bit is determined [10]
by

L
(ι)
e,j =

∑
v∈V(j)

2 tanh−1

 ∏
j′∈J(v)\{j}

tanh

(
L

(ι)
a,j′

2

) . (11)

The a posteriori LLR of the each RS coded bit is further
determined by

L
(ι)
p,j = L

(ι)
a,j + ηL

(ι)
e,j , (12)

where η ∈ (0, 1] is the damping factor that downgrades the
extrinsic influence. Finally, the outputs of the ABP decoder,
P ∗(ι)p and P ∗(ι)e , can be determined by

P
∗(ι)
p,j (θ) =

1

1 + e(2θ−1)L
(ι)
p,j

, (13)

and
P
∗(ι)
e,j (θ) =

1

1 + e(2θ−1)L
(ι)
e,j

, (14)

respectively. It should be noted that the ABP decoder itself is
also iterative. By mapping

L(ι)
p 7→ L(ι)

a , (15)

another round of reliability sorting, Gaussian elimination and
BP iterations will be performed.

C. ML Criterion of the Outer Decoding Output

With the knowledge of the a posteriori probabilities P ∗p
from ABP decoding, the reliability matrix Π ∈ Rq×n w.r.t an
RS codeword Ĉ can be formed. Its entry πı, can be considered
as an a priori probability of an RS codeword symbol Ĉ
being the field symbol ρı where ı ∈ {0, 1, . . . , q − 1} and
 ∈ {0, 1, . . . , n− 1}. Let Ξı donate the binary representation
of field symbol ρı and

Ξı = [θ1θ2 . . . θω|ρı =
ω∑
ς=1

θςα
ω−ς , θς ∈ {0, 1}]. (16)

This symbol wise a posteriori probability πı, can be deter-
mined by

πı, = Pr{C = ρı} =
∏
θς∈Ξı

P ∗p,(−1)ω+ς(θς). (17)

The ML decoding is to find a codeword Ĉ that maximizes
metric

∑
0≤≤n−1 log(πζ,), where ζ = index{ζ|ρζ = Ĉ}.

Let π1st
 and π2nd

 denote the largest and the second largest
values in the -th column of Π, respectively, we have∑

0≤≤n−1

log(πζ,) =
∑

0≤≤n−1

log(π1st
 )−∑

:Ĉ 6=R̂

(log(π1st
 )− log(πζ,)), (18)
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TABLE I
STATISTICS OF THE ML VALIDATION.

RS codes Percentage of satisfying (21) Percentage of errors
(7, 5) 98.907% 1.04%

(15, 11) 99.450% 0.196%

where R̂ = [R̂0, R̂1, . . . , R̂n−1] is the hard-decision received
word estimated based on Π.

Therefore, the ML decoding is to find a codeword Ĉ that
minimizes the metric

l(R̂, Ĉ) =
∑

:Ĉ 6=R̂

(log(π1st
 )− log(πζ,)). (19)

Reordering all the elements in {log(π1st
 )− log(π2nd

 ) : Ĉ =

R̂} as log(π1st
1 )− log(π2nd

1 ) ≤ log(π1st
2 )− log(π2nd

2 ) ≤ . . . ,
we can define

l̃(R̂, Ĉ) =

dmin−d∑
ς=1

(log(π1st
ς )− log(π2nd

ς )), (20)

where dmin = n − k + 1 is the minimum Hamming distance
of the code and d is the Hamming distance between R̂ and Ĉ.
The following lemma [11] can be used to identify the most
likely transmitted codeword.

lemma 1:
If a codeword Ĉ satisfies

l(R̂, Ĉ) ≤ l̃(R̂, Ĉ), (21)

then there is no codeword which is more likely than Ĉ.

IV. ITERATIVE SOFT DECODING II

This research has noticed that when the RS codeword
length decreases, effectiveness of the above ML criterion also
degrades. That says a estimated codeword Ĉ that satisfies the
inequality of lemma 1 will exhibit a higher probability of not
matching the transmitted codeword. This will result in the fed
back deterministic probabilities being erroneous, affecting the
following iterations. Table I shows some statistics in validating
the RS code using the ML criterion of lemma 1 over the ad-
ditive white Gaussian noise (AWGN) channel at the signal-to-
noise ratio (SNR) of 4 dB. It can be seen that for both the (15,
11) and (7, 5) RS codes, there exhibits a similar percentage of
an ABP-BM output that satisfies the ML criterion. However,
for the shorter code, its percentage of a validated codeword not
matching the transmitted one is noticeably higher. This will
make the above ISD-I algorithm more likely to feedback the
erroneous deterministic probabilities. This will pose a negative
impact for the iterative decoding system.

Therefore, the ISD-II algorithm that is illustrated as in Fig. 4
is further proposed for RS-TBCC codes in which the outer
codes are short. In ISD-II, the inner TB-MAP decoding and
the outer ABP decoding iterate extrinsic probabilities of the RS
coded bits without accommodating the deterministic probabil-
ities in the iterations. Unlike the ISD-I that validates individual
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෨𝑃
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Re-
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NO

መ𝐶
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Π−1

ML 

Decision

Q-ary

Convertor

Π

Π

Fig. 4. Block diagram of the ISD-II.

RS codeword, it validates an entire RS-TBCC codeword once
all outer RS codes are decoded (the BM algorithm produces an
estimation). If the ML criterion that stated below is satisfied,
the decoding will be terminated. Otherwise, the TB-MAP and
ABP iteration continues. The decoding will also be terminated
if the maximum iteration number is reached.

We denote the reliability of the j-th RS-TBCC coded bit as
|φj | and the hard-decision of φj as rj , where φj = log

Pch,j(0)
Pch,j(1) ,

∀j = 0, 1, . . . , 2N − 1. The ML decoding of RS-TBCC codes
is to find a ĉ that maximizes∑
j:ĉj=r̂j

|φj | −
∑

j:ĉj 6=r̂j

|φj | =
∑

0≤j≤2N−1

|φj | − 2
∑

j:ĉj 6=r̂j

|φj |,

(22)
which is equivalent to minimize

l(r̂, ĉ) ,
∑

j:ĉj 6=r̂j

|φj |. (23)

We then reorder all the elements in {|φj | : ĉj = r̂j} as |φj1 | ≤
|φj2 | ≤ · · · ≤ |φjd̃−1

| and define

l̃(r̂, ĉ) =

d̃min−d̃∑
ς=1

|φjς |, (24)

where d̃min is the minimum Hamming distance of the RS-
TBCC code and d̃ is the Hamming distance between r̂ and
ĉ. We can use the following lemma [11] to identify the most
likely transmitted codeword.

lemma 2:
If a codeword ĉ satisfies

l(r̂, ĉ) ≤ l̃(r̂, ĉ), (25)

then there is no codeword which is more likely than ĉ.
It should be noted that the minimum Hamming distance of
the RS-TBCC code is approximated as the product of the
minimum Hamming distance of the RS codes and the TBC
code [14].

V. SIMULATION RESULTS

This section shows the performances of the RS-CC and RS-
TBCC codes over the AWGN channel using BPSK. The RS-
TBCC code is compared with the RS-CC code. We consider
the (15, 11) RS code and the (7, 5) RS code concatenated with
the TBC code of m = 10 with the generator polynomials of
[6472, 7542]8 (in octal form) [15]. For the convolutional code
of m = 10, its generator polynomials are [2473, 3217]8 [16].
In decoding the outer RS codes, there are 2 ABP iterations
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Fig. 5. ISD-I performance of RS-TBCC code.
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Fig. 6. ISD-I and ISD-II performance of RS-TBCC code.

and 2 BP iterations performed on each reduced matrix H′b
with a damping factor 0.3.

Fig. 5 shows the frame error rate (FER) of all simulated
codes with m = 10 and D = 4 using the (15, 11) RS
code as the outer codes. The RS-CC code would be decoded
by the Viterbi-BM decoder and the iterative soft decoder
(ISD), while the RS-TBCC code would be decoded by the
WAVA-BM decoder [8] and the proposed ISD-I. Fig. 5 shows
the iterative decoding algorithms can outperform their non-
iterative counterparts. E.g., for RS-TBCC codes, the ISD-I
outperforms the WAVA-BM with a performance gain improved
by increasing the maximal number of global iterations for the
concatenated code. Moreover, the RS-TBCC code can also
outperform the RS-CC code, due to its advantage in avoiding
rate loss.

Fig. 6 shows the FER of the RS-TBCC code with m = 10
and D = 8, using the (7, 5) RS code as the outer codes.
The RS-TBCC codes would be decoded by the ISD-I and
the ISD-II, respectively. Fig. 6 shows that the RS-TBCC code
can still outperform the RS-CC code. With a less iteration
number, the ISD-II algorithm substantially outperforms the
ISD-I algorithm. This demonstrates the fact that the ML
criterion of lemma 1 becomes less effective for assess the

BM decoding output of the (7, 5) RS code. The ISD-II
algorithm that assesses the ML property of the entire RS-
TBCC codeword will be more effective in decoding the RS-
TBCC code.

VI. CONCLUSION

This paper has proposed the ISD algorithms for RS-TBCC
codes in maximizing the codes’ performance. The iterative
decoders are constituted by the TB-MAP algorithm and the
ABP-BM algorithm for the inner code and the outer codes,
respectively. The primary ISD-I algorithm realizes iterative de-
coding gains for the RS-TBCC code and enables its advantage
over the RS-CC code. The secondary ISD-II algorithm has
been further designed for cases with very short outer codes.
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