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Abstract—In this paper, we present a new class of spatially
coupled low-density parity-check (SC-LDPC) codes, which are
constructed by sending codewords of LDPC block code (LDPC-
BC) in a block Markov superposition transmission (BMST) man-
ner. Different from the conventional SC-LDPC codes, the pro-
posed SC-LDPC codes can have encoder/decoder implemented
with the basis of the hardware components of the corresponding
LDPC-BCs. The proposed SC-LDPC codes are also a special
class of BMST-LDPC codes. Distinguished from other types of
BMST codes, BMST-LDPC codes have lower error floors even
with an encoding memory of one and hence have lower decoding
latency. Also different from the original BMST codes, partial
superposition is implemented to alleviate error propagation. To
analyze the bit error rate (BER) performance, we present the
genie-aided (GA) bounds, which can be obtained by simulation
or estimated from the performance of the basic code. Numerical
results are presented to validate our analysis and demonstrate
the performance advantage of the BMST-LDPC codes over the
LDPC-BCs.

I. INTRODUCTION

Low-density parity-check convolutional codes, also known
as spatially coupled low-density parity-check (SC-LDPC)
codes, were first introduced in [1] and have capacity-
approaching performance over binary-input memoryless
symmetric-output (BMS) channels under iterative belief prop-
agation (BP) decoding [2]. This important feature is due to
threshold saturation [3] that the decoding performances of
SC-LDPC codes under BP decoding approach the maximum a
posteriori (MAP) decoding performances of uncoupled low-
density parity-check block codes (LDPC-BCs). The threshold
saturation has been proven for binary erasure channels [3]
and generalized to BMS channels [2, 4]. The SC-LDPC codes
can be decoded using a sliding window (SW) decoder [5,
6], which usually has low-complexity and yields a low mes-
sage recovery latency. As a result, the construction of SC-
LDPC codes has received significant attention in recent years.
The construction in [1] relies on a matrix-based unwrapping
procedure, while the construction in [7] exploits similarities
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between quasi-cyclic block codes and time-invariant convolu-
tional codes. These two constructions were shown in [8] to
be tightly connected via (proto)graph-cover construction. The
protograph-based construction was further investigated in [9],
where a series of uncoupled LDPC-BCs protographs are first
coupled into a single chain by the edge spreading procedure
and then lifted to a covering graph. All constructions above
can be carefully tailored to avoid short cycles and hence to
improve the performance especially in the error-floor region.
For example, a systematic protograph-based construction was
proposed in [10] such that the Tanner graph can have a
girth of eight, while the replicate-and-mask construction was
proposed in [11] to improve the performance in the finite-
length regime. In brief, most constructions focus on how
to derive convolutional parity-check matrices from those of
the LDPC-BCs. The performance of the SC-LDPC codes is
closely related to the underlying LDPC-BCs. However, the
hardware implementation of the encoder and decoder of the
SC-LDPC codes is usually loosely related to those of the
underlying codes. This somehow brings inconvenience for real
design and practical implementation.

In this paper, we propose a new class of SC-LDPC codes,
which can be implemented with the basis of the hardware
of the underlying LDPC-BCs. The basic idea is to send the
codewords of an LDPC-BC in a block Markov superposi-
tion transmission (BMST) manner, resulting in BMST-LDPC
codes. The construction is universal in the sense that it applies
to any existing LDPC-BCs. Distinguished from other BMST
codes [12], the BMST-LDPC codes have lower error floor even
with an encoding memory of one and hence inherit a lower
decoding latency. To avoid catastrophic error propagation
caused by the abrupt performance of the basic LDPC-BCs,
we propose to use partial superposition instead of full super-
position, in which only a portion of coded bits are randomly
selected and superimposed onto the adjacent codewords. To
analyze the bit error rate (BER) performance, we present the
genie-aided (GA) bounds, which can be obtained by simulating
an equivalent GA system or estimated from the performance
curve of the basic LDPC-BC. Numerical results show that the
proposed SC-LDPC codes can yield extra coding gain over
the underlying LDPC-BCs. Numerical results also reveal the



trade-offs between the performance and the decoding latency.

II. BMST-LDPC CODES

A. Preliminaries

Let C [n, k] be a binary LDPC code of length n and
dimension k, whose parity-check matrix and generator ma-
trix are denoted by H and G, respectively. Let u =
(u(0),u(1), · · · ,u(L−1)) be L blocks of information se-
quences to be transmitted, where u(t) ∈ Fk

2 for 0 ≤ t ≤ L−1.
At time slot t, the encoder of C [n, k] takes as input the
information sequence u(t) and delivers as output the coded
sequence v(t) = u(t)G ∈ Fn

2 . Assume that v(t) is modulated
by BPSK signaling and transmitted over an additive white
Gaussian noise (AWGN) channel, resulting in a received
vector y(t) ∈ Rn. Upon receiving y(t), the decoder delivers
an estimation û(t) of u(t).

Evidently, for LDPC-BC coded system, the transmission
of codewords at different time slots is independent and the
decoding latency is fixed to n (by definition). A question
arises: if the constraint on the decoding delay is relaxed, can
we improve the performance without changing too much the
structure of the encoder and the decoder? This can be realized
by introducing memory between the adjacent transmissions. In
the rest of this paper, the considered code C [n, k] is referred
to as the basic code, which is assumed to have an efficient
encoding algorithm and a soft-in-soft-out (SISO) decoding
algorithm.

B. Encoding of BMST-LDPC Codes

Different from the conventional BMST codes, we focus on
the case of encoding memory one. Such a setup is assumed
due to the following reasons. First, our construction is based
on well-constructed LDPC-BCs, which already have capacity-
approaching performance. Further increasing memory will
only lead to marginal performance improvement. Second, we
attempt to keep the complexity as low as possible. Also note
that, we consider BMST with partial superposition to alleviate
the error propagation.

Let α (0 < α ≤ 1) be a parameter (referred to as
superposition fraction) to be optimized. We define a random
matrix S as follows. First, a permutation matrix S of size n×n
is sampled uniformly at random from the set of all possible
permutation matrices. Second, n(1−α) out of n columns of S
are randomly chosen and set to all-zero columns. For a binary
vector v ∈ Fn

2 , vS is a vector that is an interleaving version
of v but with some bits being set to zero. Therefore, we may
call S a selection matrix, since it selects some bits for par-
tial superposition. Given u = (u(0),u(1), · · · ,u(L−1)) with
u(t) = (u0, u1, · · · , uk−1) ∈ Fk

2 , the encoding algorithm of
the BMST-LDPC codes with partial superposition is described
in Algorithm 1, see Fig. 1 for illustration.

1The real code rate is then k/n ∗ L/(L+ α) ≈ k/n for large L ≫ 1.
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Fig. 1. Normal graph of a BMST-LDPC code.

Algorithm 1 Encoding of the BMST-LDPC Codes

• Initialization: Set v(−1) = 0 ∈ Fn
2 .

• Recursion: For t = 0, 1, · · · , L− 1,
1) Encode u(t) into v(t) by the encoding algorithm of

the basic LDPC-BC, i.e., v(t) = u(t)G;
2) Compute c(t) = v(t) + v(t−1)S, which is taken as

the t-th block of transmission.
• Termination: Set c(L) = v(L−1)S, where only nα active

bits of c(L) need to be transmitted1.

C. Algebraic Description of BMST-LDPC Codes

In this subsection, the relations between the presented
codes and the existing codes are revealed by their algebraic
descriptions. With termination, a BMST of C [n, k] LDPC code
with a superposition fraction α can be treated as a linear block
code with dimension kL and length n(L+ 1). The generator
matrix of the BMST-LDPC code can be specified as an upper
banded block matrix,

GSC =


G GS

G GS
. . . . . .

G GS

 ,

where G is the generator matrix of the basic LDPC-BC and
S is a selection matrix.

In the case of full superposition (α = 1), the presented
construction is nothing more than a special class of the BMST
codes which take LDPC-BCs as basic codes and fix the
encoding memory to one. In this paper, we are more interested
in the case of partial superposition (α < 1), which is the main
difference as compared with the conventional BMST codes.
Introducing partial superposition is to alleviate the effect of
error propagation during decoding, where the superposition
fraction α can be optimized for this aim.

Similar to the derivation of [12], we can determine the
parity-check matrix of the BMST-LDPC code as a lower block



triangular matrix,

HSC =



H
HS1 H
HS2 HS1 H

...
...

...
. . .

HSL−1 HSL−2 HSL−3 · · · H
SL SL−1 SL−2 · · · S1 I


,

where H is the parity-check matrix of the basic LDPC-BC
and Si = (Si)T for i ≥ 1. By construction, we know that
the selection matrix S has n(1− α) zero columns and hence
n(1−α) zero rows. So, Si has at least n(1−α) zero columns,
and HSi is a low-density matrix. Hence, the presented BMST-
LDPC codes are also a special class of SC-LDPC codes.

Throughout this paper, we refer the presented codes to as
BMST-LDPC codes and SC-LDPC codes interchangeably.

III. DECODING ALGORITHM AND PERFORMANCE
ANALYSIS

A. Sliding Window Decoding Algorithm

With a low-density parity-check matrix HSC (see Sec. II-C),
BMST-LDPC codes can be decoded as an LDPC-BC. How-
ever, such a schedule has high decoding latency and is not
suitable for some applications. More awkwardly, such an
implementation is loosely related to the decoder of the basic
LDPC-BC. In this subsection, we introduce the SW decoding
algorithm, which integrates the SISO decoder of the basic
LDPC-BC in an iterative manner.

The SW decoding algorithm for the BMST-LDPC codes can
be described as an iterative message passing algorithm over
a normal graph [13], in which edges represent variables and
nodes represent constraints. Associated with each edge is a
message that is defined in this paper as the probability mass
function (pmf) of the corresponding variable. Fig. 1 shows
the high-level normal graph of a BMST-LDPC code, where
an edge represents a sequence of random variables and its
associated messages are collectively written in a sequence.
The iterative SW decoding algorithm with decoding window
of size d can be described as a message passing algorithm over
a subgraph containing d layers, where the decoding latency is
given by dn in terms of bits. Each decoding layer consists of
a node of type LDPC , a node of type = , a node of type S ,
and a node of type + . The decoding algorithm starts from
nodes of type + , which connect to the channel.

• Node + : It represents the constraint that the sum of all
connecting variables must be zero over F2. The message
updating rule at the node + is similar to that at the
check node in an LDPC-BC. The only difference is that
the messages associated with the half edges need to be
calculated from the channel observations.

• Node S : It represents the selection matrix, which simply
transfers the messages associated with the selected bits
between the node = and the node + .

• Node = : It represents the constraint that all connecting
variables must take the same value. The message updating

Algorithm 2 Iterative Sliding Window Decoding of the
BMST-LDPC Codes (window size d ≥ 1)

• Global initialization: Set a maximum global iteration
number Jmax > 0. For 0 ≤ t ≤ d − 2, compute the
a posteriori probabilities associated with c(t) from the
received vector y(t). All messages over the other edges
within and connecting to the t-th layer (0 ≤ t ≤ d − 2)
are initialized as uniformly distributed variables.

• Sliding window decoding: For t = 0, 1, · · · , L− 1,
1) Local initialization: If t + d − 1 ≤ L, compute the

a posteriori probabilities from the received vector
y(t+d−1) and all messages over other edges within
and connecting to the (t+d−1)-th layer are initialized
as uniformly distributed variables.

2) Iteration: For j = 1, 2, · · · , Jmax,
a) Forward recursion: For i = 0, 1, · · · , d−1, the (t+

i)-th layer performs a message passing algorithm
scheduled as

+ → = → LDPC → = → S .

b) Backward recursion: For i = d − 1, d − 2, · · · ,
0, the (t+ i)-th layer performs a message passing
algorithm scheduled as

= → LDPC → = → + → S .

c) Decisions: Decisions are made on v(t) resulting
in v̂(t). If Hv̂(t) = 0, exit the iteration. Notice
that the parity-check stopping criterion is also used
in the above recursions, where the node LDPC
performs an iterative BP decoding with a preset
maximum iteration number Imax.

3) Successive cancellation: Remove the effect of v̂(t) on
y(t+1) and output û(t) based on v̂(t).

rule at the node = is the same as that at the variable
node in an LDPC-BC.

• Node LDPC : It represents the basic LDPC-BC encoding
constraint, where v(t) must be a codeword corresponding
to u(t). The message updating at the node LDPC can
be implemented based on certain SISO decoder, say, the
iterative sum-product algorithm (SPA) with a maximum
iteration number Imax, of the basic LDPC-BC. The
extrinsic messages associated with u(t) can be used to
make decisions on the transmitted data.

The decoding algorithm is summarized in Algorithm 2.

B. Genie-Aided Bounds on BER Performance

Like other BMST codes, the BER performance of the
BMST-LDPC codes can be predicted by the GA bounds
especially in the high signal-to-noise ratio (SNR) region. The
basic idea behind the derivation of the GA bounds is simple as
restated in the following. For any given t ≥ 0, the decoding
error probability of v(t) cannot be lower than the decoding
error probability of the GA decoder that has the knowledge



of all v′ = (v(0), · · · ,v(t−1),v(t+1), · · · ,v(L−1)). The GA
bound can be obtained by simulating the GA decoder, or
equivalently, simulating a BMST-LDPC code with L = 1.

The above simulated GA bound is also adaptable to BMST
codes with higher order modulations. However, it does not
characterize explicitly the relation to the performance of the
basic code. For BPSK signaling over AWGN channels, we
have an estimated GA bound, which is simple and derived
from the performance of the basic LDPC-BC. Let pb =
fbasic(γb) and pb = fBMST-LDPC(γb) be the BER performance
functions of the basic LDPC-BC and the BMST-LDPC code,
respectively, where pb is the BER and γb = Eb/N0 in dB.
Since the assumption of GA decoder is equivalent to assuming
that each coded bit is transmitted on average 1+α times, we
then have the following estimated GA bound

fBMST-LDPC(γb) ≥ fbasic(γb+10 log10(1 + α)), (1)

which can be obtained by shifting the BER performance curve
of the basic code to left by 10 log10(1 + α) dB.

C. Complexity Analysis

To analyze the complexity, we take the basic LDPC-
BC as the comparison benchmark. We assume that the en-
coder/decoder of the basic LDPC-BC have been implemented.
For encoding of the SC-LDPC code, α extra binary additions
per coded bit are required to complete the superposition. For
decoding, let Jmax be the maximum number of iteration and let
the decoding window size be d. Without considering earlier
stopping, it is required to perform the decoding of LDPC-
BC dJmax times. From simulation, we see that both Jmax and
d can be small. We also note that, for the SC-LDPC code,
the component decoder in each layer can have less iterations
than that for independent transmission. So the increase in
complexity can be small compared with the basic LDPC-BC.

IV. NUMERICAL RESULTS

In this section, we give the numerical results of the BMST-
LDPC codes. We use rate 1/2 (3,6)-regular LDPC codes,
which are constructed by the progressive-edge-growth (PEG)
algorithm, as the basic LDPC-BCs in the BMST-LDPC codes.
The SW decoding algorithm (Algorithm 2) is employed for the
decoding of the BMST-LDPC codes, in which the maximum
global iteration number Jmax = 3. The embedded basic
LDPC-BCs are decoded by the SPA with a maximum iter-
ation number 20. For independent LDPC-BCs, the maximum
iteration number is 50. In all examples, earlier stopping is
activated with the parity-check based criterion. The encoder
terminates every L = 98 sub-blocks in all of the simulations.

Example 1 (GA Bounds): Consider an LDPC-BC with
length 1024 as the basic code. Codewords c(t) are transmitted
with BPSK modulation over AWGN channels. The BER per-
formance curve of the BMST-LDPC code with superposition
fraction α = 0.1 is depicted in Fig. 2. We also give the
simulated GA bound and the estimated GA bound. From the
figure, we see that the simulation results match well with the
GA bounds in the high SNR region.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8
Eb/N0(dB)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

B
E

R

10log
10

(1.1)

Fig. 2. BER performance and the GA bounds of the BMST-LDPC codes.
The basic code is a rate 1/2 (3,6)-regular LDPC-BC with length 1024. The
superposition fraction for encoding is α = 0.1, and the decoding window
size is d = 3.
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Fig. 3. BER performance of the BMST-LDPC codes with different α.
The basic code is a rate 1/2 (3,6)-regular LDPC-BC with length 1024. The
decoding window size is d = 3.

Example 2 (Fixed d and k, Varying α): Consider an LDPC-
BC with length 1024 as the basic code. Codewords c(t) are
transmitted with BPSK modulation over AWGN channels.
The BER performance curves of the BMST-LDPC codes with
different superposition fraction α are shown in Fig. 3. For
comparison, we also give the performance of the rate 1/2
LDPC-BC with length 1024. From the figure, we see that the
superposition fraction α affects the performance of the BMST-
LDPC codes. The BMST-LDPC codes with properly selected
superposition fraction α can achieve good performance. We
also see that the BER performance of BMST-LDPC (α = 0.3)
code exhibits 0.7 dB coding gain over the LDPC-BC, at the
BER of 10−5.

Example 3 (Comparison with Other LDPC Codes): Con-
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Fig. 4. BER performance of the BMST-LDPC codes, LDPC-BC and an SC-
LDPC code [10]. The basic codes are rate 1/2 (3,6)-regular LDPC-BCs with
length 1152 and 2400. The superposition fraction for encoding is α = 0.3,
and the decoding window sizes are d = 2, 3.

sider the LDPC-BCs with length 1152 and 2400 as the basic
codes. Codewords c(t) are transmitted with BPSK modulation
over AWGN channels. The BER performance comparison is
shown in Fig. 4. The rate 1/2 LDPC-BC with length 2304
and the SC-LDPC code [10] are chosen to be compared.
Fig. 4 shows that the BMST-LDPC code can outperform the
benchmark codes with the same decoding latency.

Example 4 (Fixed k and α, Increasing d): Consider an
LDPC-BC with length 2304 as the basic code. Codewords
c(t) are modulated using the 16-ary quadrature amplitude
modulation (16-QAM) constellation with Gray labelling and
transmitted over AWGN channels. For comparison, we also
give the performance of the bit-interleaved coded modulation
with LDPC (BICM-LDPC) code and delayed bit-interleaved
coded modulation with LDPC [14] (DBICM-LDPC) code with
the same LDPC-BC. The comparison is shown in Fig. 5.
The performance of the BMST-LDPC code can be improved
by increasing the window size d. In comparison with the
BICM-LDPC code, the BMST-LDPC code achieves 0.5 dB,
0.6 dB, and 0.7 dB coding gains at the BER of 10−5, by using
windows of sizes 2, 3, and 4, respectively.

V. CONCLUSIONS

This paper presented a new class of SC-LDPC codes, which
are constructed by sending codewords of an LDPC-BC in
a BMST manner with partial superposition. The proposed
SC-LDPC codes can be implemented with the basis of the
hardware of the corresponding LDPC-BCs. To analyze the
BER performance, we presented the GA bounds, which can be
obtained by simulation or estimated from the performance of
the basic code. Numerical results show that, the proposed SC-
LDPC codes can obtain a coding gain up to 0.7 dB compared
to the underlying LDPC-BCs.
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Fig. 5. BER performance of the BMST-LDPC codes with 16-QAM
constellation. The basic code is a rate 1/2 (3,6)-regular LDPC-BC with length
2304. The superposition fraction for encoding is α = 0.3, and the decoding
window sizes are d = 2, 3 and 4, respectively.
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