
A Protograph-Based Design of Quasi-Cyclic
Spatially Coupled LDPC Codes

Li Chen †, Shiyuan Mo †, Daniel J. Costello, Jr. ‡, David G. M. Mitchell §, Roxana Smarandache ‡
† School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China
‡ Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA

§ Klipsch School of Electrical and Computer Engineering, New Mexico State University, Las Cruces, NM, USA
Emails: chenli55@mail.sysu.edu.cn, moshiy@mail2.sysu.edu.cn, {costello.2, rsmarand}@nd.edu, dgmm@nmsu.edu

Abstract—Spatially coupled (SC) low-density parity-check
(LDPC) codes can achieve capacity approaching performance
with low message recovery latency when using sliding window
(SW) decoding. An SC-LDPC code constructed from a pro-
tograph can be generated by first coupling a chain of block
protographs and then lifting the coupled protograph using per-
mutation matrices. This paper introduces a systematic design of
SC-LDPC codes to eliminate 4-cycles in the coupled protograph.
Using a quasi-cyclic (QC) lifting, we obtain QC-SC-LDPC codes
of girth at least eight. Coupling a chain of block protographs
implies spreading edges from one protograph to the others.
Our protograph-based design can be viewed as guiding the
edge spreading and also the graph-lifting process. Simulation
results show the design leads to improved decoding performance,
particularly in the error floor, compared to random designs.

Index Terms—Cycles, LDPC codes, protographs, spatially
coupled codes, sliding window decoding.

I. INTRODUCTION

Since the original work of Thorpe [1], it has been recog-
nized that protographs provide an efficient method of con-
structing low-density parity-check (LDPC) codes. Analyzing
the iterative decoding thresholds and minimum distance prop-
erties of small protographs sheds light on constructing code
ensembles with good asymptotic properties by applying a
graph-lifting procedure [2]. If the permutation matrices used in
the lifting procedure are circulants (shifted identity matrices),
a quasi-cyclic (QC) ensemble results, a desirable property for
practical implementation. Another important aspect of code
design is to maximize the girth of the Tanner graph. For
protograph-based constructions of QC-LDPC codes, this can
be accomplished by applying the Fossorier condition [3] to
the graph-lifting. The protograph-based method has also been
used to construct good spatially coupled LDPC (SC-LDPC)
codes [4]. An edge-spreading procedure is first applied to a
chain of block protographs in order to introduce memory.
This results in a two-step code design procedure, first the
edge spreading and then the graph-lifting, to achieve good
asymptotic properties and a large girth, respectively.

Several constructions for QC-SC-LDPC codes have been
proposed in [5]–[8]. In this paper, we take a new protograph-
based systematic design approach to insure large girth for QC-
SC-LDPC codes. The idea depends on the fact that the girth
of a lifted graph is lower bounded by the girth of its base
graph. Hence, starting from a block protograph with good
asymptotic properties, we design the edge spreading in two

stages to maximize the girth and minimize the number of
short cycles in the SC protograph. Then, in the lifting phase,
we use circulants to further improve the girth by applying
the Fossorier condition. Besides improving our ability to find
protographs with large girth and a small number of short
cycles, the two-stage approach makes it easier to apply the
Fossorier condition, since the SC protograph has already been
designed to achieve these objectives.

The edge-spreading procedure can be interpreted as decom-
posing a base matrix B (corresponding to a block protograph)
into a number of submatrices, which are used to form an SC
base matrix BSC. In our approach, we identify several compo-
nent blocks of BSC that guide the design of the submatrices,
leading to an SC protograph with good girth properties. By
further performing a graph-lifting of BSC using the Fossorier
condition to generate an SC parity-check matrix HSC, we show
that it is possible to achieve a girth of at least eight. Simulation
results show that substantial performance gains, particularly
in the error floor, are achieved using the two-stage design
approach compared to random designs.

II. SC-LDPC CODES

The construction of a protograph-based SC-LDPC code
can be described as a two-step procedure – first protograph
coupling and then lifting [4]. A protograph [1] is a small
bipartite graph with nc check nodes and nv variable nodes,
where nc < nv . It can be represented by a base matrix

B = [B(r, s)]nc×nv
, (1)

where B(r, s) is the row-r column-s entry, 1 ≤ r ≤ nc and
1 ≤ s ≤ nv . The entries represent the number of edges that
connect check node r to variable node s in the protograph. For
example, Fig. 1(a) shows a protograph defined by B = [3 3].
We first replicate the protograph as an infinite chain as shown
in Fig. 1(b), then spread edges from the variable nodes of the
protograph at time instant t by connecting them to check nodes
at time instants t+1 to t+ω. Replicating this spreading over all
protographs yields an SC protograph with coupling width ω,
as shown in Fig. 1(c). This edge spreading can be interpreted
as decomposing B into ω + 1 submatrices of the same size,
i.e., B0,B1, . . . ,Bω , such that

B(r, s) =
ω∑
i=0

Bi(r, s), (2)

2017 IEEE International Symposium on Information Theory (ISIT)

978-1-5090-4096-4/17/$31.00 ©2017 IEEE 1683

Fig. 1. (a) Block protograph for B = [3, 3], (b) an infinite chain of block
protographs, (c) coupling the protographs with ω = 2, and (d) a finite chain
of L coupled protographs.

so the coupled protograph maintains the check node and
variable node degrees of the original protograph. If the original
protograph has a regular structure that exhibits uniform check
node and variable node degrees, as in Fig. 1(a), the constructed
SC protograph will also be regular. In practice, an SC-LDPC
code has finite length. It can be obtained from a finite number
L of coupled block protographs, where L is called the coupling
length. The coupled protograph contains Lnv variable nodes
and (L + ω)nc check nodes, as shown in Fig. 1(d), and the
corresponding SC base matrix is

B
(L)
SC =



B0

B1 B0

...
...

. . .
Bω Bω−1 · · · B0

.
Bω Bω−1 · · · B0

. . .
...

Bω Bω−1
Bω


. (3)

Note that the first and last ωnc check nodes have reduced
degrees, which is an important feature to realize the excellent
thresholds of SC-LDPC codes [4], [10].

Let Pa denote an a × a binary permutation matrix and Ia
denote the a× a identity matrix. Furthermore, let I

(θ)
a denote

the shifted identity matrix with each row of Ia cyclically
shifted to the left by θ positions. Finally, let Ξa×b denote
an a × b binary matrix with a minimum row weight of one
and with as small a maximum column weight as possible.

The parity-check matrix H
(L)
SC of an SC-LDPC code can

be obtained by an M -fold matrix expansion from B
(L)
SC that

corresponds to an M -fold graph-lifting of the coupled proto-
graph [9]. In the lifted graph, each check node and variable
node is replaced by M copies of the original node and each
edge is replaced by M edges connecting M pairs of check and
variable nodes. For B

(L)
SC = [B

(L)
SC (r, s)](L+ω)nc×Lnv

, H
(L)
SC is

generated by replacing each nonzero entry in B
(L)
SC by a sum of

B
(L)
SC (r, s) permutation matrices PM and replacing each zero

entry by the M ×M all zero matrix. The constraint length
and design rate of the code are Mnv(ω + 1) and R

(L)
SC =

1 − (L+ω)nc

Lnv
, respectively, where limL→∞R

(L)
SC = 1 − nc

nv
.

H
(L)
SC defines the Tanner graph of a particular SC-LDPC code.

This lifting approach leads to the following characterization
for the girth (denoted g) of the Tanner graph.

Lemma 1. The girth of the Tanner graph of H
(L)
SC is lower

bounded by girth of the protograph of B
(L)
SC .

This lemma motivates the design in Section III.

III. DESIGN OF QC-SC-LDPC CODES

Based on Lemma 1, the proposed approach aims to first
eliminate (or reduce the number of) 4-cycles in B

(L)
SC . Then,

using a systematic lifting, we try to construct H
(L)
SC with g ≥

8. Due to the diagonal nature of B
(L)
SC (see (3)), a careful

examination of its structure is needed in the design.

A. Preliminaries

We consider the common case when the base matrix is
all one, i.e., B = 1nc×nv

, e.g., B = 13×6. A 4-cycle in
a coupled protograph or Tanner graph corresponds to four
nonzero entries that form a rectangular array in B

(L)
SC or H

(L)
SC ,

respectively. This leads to the following lemma.
Lemma 2. In B

(L)
SC , 4-cycles may exist in the following

patterns: 1) one of its submatrices; 2) two submatrices that
appear in the same row or the same column of B

(L)
SC ; 3) four

submatrices that appear in a rectangular array of B
(L)
SC .

Lemma 2 defines the various patterns in which 4-cycles can
appear in B

(L)
SC . We now decompose B

(L)
SC as follows:

• The representative block BR is defined as

BR ,


Bω Bω−1 · · · B0

Bω · · · B1

. . .
...

Bω

 , (4)

with size (ω + 1)nc × (ω + 1)nv . Any combination of one,
two, or four submatrices in B

(L)
SC described by conditions 1),

2), or 3) in Lemma 2, respectively, will also appear in BR.
Therefore, if BR does not contain 4-cycles, neither will B

(L)
SC .

The following two definitions are based on BR.
• A constituent block BC is defined as

BC ,

Bβ−1 · · · B1 B0

...
. . .

...
...

Bω · · · Bα Bα−1

 , (5)

where ω = α + β − 2 and α, β > 1, with size αnc × βnv .
BC is obtained by forming a rectangular matrix from BR that
contains B0 in the upper right corner and one of the Bω

submatrices along the diagonal (excepting the upper left and
lower right corners) in the lower left corner. Hence, there are
ω − 1 choices for BC, and when ω = 2, BC is unique. Note
that each possible constituent block includes every submatrix.
We define the weight wt(Bi) of a submatrix Bi as the number
of times Bi is included in a particular BC.
• Excluded patterns B

(j)
E are defined as

2017 IEEE International Symposium on Information Theory (ISIT)

1684

B
(1)
E =

[
Bω B0

]
, B

(2)
E =

[
B0

Bω

]
,

B
(j)
E =

[
Baj Bbj

Bcj Bdj

]
, j = 3, 4, . . . , nE, (6)

where aj , bj , cj , dj ∈ {0, 1, . . . , ω}. Block B
(1)
E (resp. B

(2)
E)

is the nc × 2nv (resp. 2nc × nv) single row (resp. column)
“pattern” (submatrix) that appears in BR but not BC. Similarly,
B

(j)
E , j = 3, 4, . . . , nE, are the 2nc× 2nv rectangular patterns

appearing in BR but not BC. The number of excluded patterns
nE depends on ω and the chosen BC, while the particular set
of excluded patterns depends on the chosen BC. Note that
when ω = 2, there are only two excluded patterns B

(1)
E and

B
(2)
E , since all 2nc × 2nv rectangular patterns appear in BC.

The following example illustrates the above definitions.
Example 1. When ω = 3, we have

BR =


B3 B2 B1 B0

B3 B2 B1

B3 B2

B3

 .
BC can be defined as

BC =

[
B2 B1 B0

B3 B2 B1

]
,

where wt(B0) = wt(B3) = 1 and wt(B1) = wt(B2) = 2.
The excluded patterns are

B
(1)
E =

[
B3 B0

]
, B

(2)
E =

[
B0

B3

]
, B

(3)
E =

[
B1 B0

B3 B2

]
.

Note that BC can also be of size 3nc×2nv , which also results
in three excluded patterns.

The above definitions lead to the following theorem.
Theorem 3. The coupled protograph of B

(L)
SC does not

have any 4-cycles if the chosen BC and associated B
(j)
E , j =

1, 2, . . . , nE, do not contain any 4-cycles.
Proof: The result follows directly from Lemma 2. For

condition 1), BC includes all possible submatrices. For condi-
tions 2) and 3), BC and B

(j)
E contain all possible patterns of

submatrices that can result in 4-cycles in B
(L)
SC .

B. Design of B
(L)
SC - Stage 1

Design Rule 1 Initialize the Submatrices (Stage 1)
1.1: Let B0 = [Inc Ξnc×(nv−nc)].
1.2: Initialize Bω such that there is no 4-cycle in B

(2)
E ,

the minimum row weight of Bω is two, and the maximum
column weight of Bω is one.
1.3: Initialize B1,B2, . . . ,Bω−1 such that

1) B(r, s) =
∑ω
i=0 Bi(r, s), i.e., (2) is satisfied;

2) There is no 4-cycle in any of these submatrices or in
the excluded patterns B

(j)
E (j = 3, 4, . . . , nE).

Based on Theorem 3, we aim to design the submatrices such
that neither the chosen BC nor its associated B

(j)
E contain any

4-cycles. The proposed design includes two stages: Stage 1
initializes the submatrices based on B

(j)
E ; Stage 2 modifies

the submatrices based on BC.
Given a base matrix B = 1nc×nv

and coupling width ω,
the Stage 1 design is given in Design Rule 1. It insures the
submatrices and the excluded patterns do not contain any 4-
cycles. Step 1.1 insures the minimum row weight of B0 is
two and its maximum column weight is one if nv − nc ≥
nc. If nv − nc < nc, some columns of B0 will have weight
greater than one. The design of Bω in Step 1.2 also insures
that B

(1)
E does not contain any 4-cycles. Requiring B0 and

Bω to have a minimum row weight of two is due to the fact
that they are the only submatrices in the top and bottom rows
of B

(L)
SC , respectively, and a row weight of at least two is

needed to assist the startup and termination of sliding window
(SW) decoding [10], [11]. Also, if possible, restricting the
maximum column weight of Bω to one simplifies the design
of Step 1.3 for the cases where Bω is included in B

(j)
E (j =

3, 4, . . . , nE). The remaining submatrices B1,B2, . . . ,Bω−1
are then initialized based on B

(j)
E (j = 3, 4, . . . , nE), B0, and

Bω . The following example illustrates the procedure.
Example 2. Given B = 13×6 and ω = 3, BR, BC, B

(1)
E ,

B
(2)
E , and B

(3)
E are given in Example 1. We can employ Design

Rule 1 to initialize the submatrices. First, we can let

B0 = [I3 Ξ3×3] =

1 0 0 0 1 0
0 1 0 1 0 0
0 0 1 0 0 1

 .
Placing B0 into B

(2)
E , we can initialize

B3 =

0 1 1 0 0 0
1 0 0 0 0 1
0 0 0 1 1 0


so that neither B

(1)
E nor B

(2)
E contain any 4-cycles. In order

to initialize B1 and B2, we place both B0 and B3 into B
(3)
E .

To satisfy (2), we must place zeros into certain positions in
B1 and B2, leaving 12 unspecified positions in B

(3)
E . We can

then initialize B1 and B2 as

B1 =

0 0 0 1 0 1
0 0 1 0 1 0
1 1 0 0 0 0

 , B2 =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,
where this choice insures B

(3)
E does not contain any 4-cycles.

Finally, we place the initialized submatrices into BC to
check if it contains any 4-cycles. If not, the coupled protograph
of B

(L)
SC has g ≥ 6, and the design is complete. Otherwise, we

proceed to Stage 2 to eliminate (or reduce the number of)
4-cycles that remain in BC.

C. Design of B
(L)
SC - Stage 2

This stage modifies the initialized submatrices to remove
the remaining 4-cycles in BC. In order to distinguish between
an entry in BC and one in Bi, we use BC(x, y) to denote its
row-x column-y entry, for 1 ≤ x ≤ αnc and 1 ≤ y ≤ βnv .
The Stage 2 design is given in Design Rule 2.

2017 IEEE International Symposium on Information Theory (ISIT)

1685

Design Rule 2 Modify the submatrices (Stage 2)
2.1: Identify a 4-cycle in BC with entries

BC(x1, y1) = 1, BC(x1, y2) = 1,

BC(x2, y1) = 1, BC(x2, y2) = 1.

2.2: Say the four entries belong to submatrices Bi1 , Bi2 ,
Bi3 , and Bi4 , where (i1, i2, i3, i4) ∈ {0, 1, . . . , ω}. Denote
these entries as

Bi1(r1, s1) = 1, Bi2(r1, s2) = 1,

Bi3(r2, s1) = 1, Bi4(r2, s2) = 1.

2.3: Among these four entries, identify those that
have not previously been flipped. Pick one that be-
longs to a submatrix of highest weight and denote it
Bi′(r

′, s′), where i′ ∈ {i1, i2, i3, i4} and (r′, s′) ∈
{(r1, s1), (r1, s2), (r2, s1), (r2, s2)}. Further, denote the
appearance of Bi′(r

′, s′) in BC as BC(x
′, y′), where

(x′, y′) ∈ {(x1, y1), (x1, y2), (x2, y1), (x2, y2)}. Flip down
both Bi′(r

′, s′) and BC(x
′, y′) such that

Bi′(r
′, s′) : 1 → 0, (7)

BC(x
′, y′) : 1 → 0. (8)

Also flip down all other entries in B
(j)
E (j = 1, 2, . . . , nE)

and BC that correspond to entry Bi′(r
′, s′).

2.4: Flip up Bi(r
′, s′) in one of the other submatrices

Bi(r
′, s′) : 0 → 1, (9)

where i = 0, 1, . . . , ω and i 6= i′, conditioned on
1) The entry has not been previously flipped;
2) The flipping does not create new 4-cycles in Bi or in

any B
(j)
E that includes Bi;

3) The number of 4-cycles contained in BC does not
increase after a complete flipping (down and up) process.
Also flip up all other entries in B

(j)
E (j = 1, 2, . . . , nE) and

BC that correspond to entry Bi(r
′, s′).

2.5: If the flipping of Step 2.4 succeeds, go to Step 2.6; else,
reflip BC(x

′, y′) and Bi′(r
′, s′) to their original values, i.e.,

BC(x
′, y′) : 0 → 1, (10)

Bi′(r
′, s′) : 0 → 1. (11)

Also reflip all other entries in B
(j)
E (j = 1, 2, . . . , nE) and

BC that correspond to entry Bi′(r
′, s′), and go to Step 2.3.

2.6: Repeat Steps 2.1 to 2.4 until all 4-cycles are removed
or there are no more eligible bits to flip.

In Step 2.2, i1, i2, i3 and i4 do not need to be distinct. In
Step 2.3, we prioritize the “flipping down” of a nonzero entry
of an identified submatrix that has the highest weight in BC. In
doing so, we remove the most nonzero entries in BC, so that
more 4-cycles are likely to be removed. However, it is possible
that none of the four entries allows a complete flipping, in
which case the remaining 4-cycle is labelled dormant. It will
be targeted again if some other complete flipping occurs and
this dormant 4-cycle still exists. But for small coupling widths

Fig. 2. A 3× 3 grid of nonzero entries corresponding to a 6-cycle in B
(L)
SC ,

where r1 < r2 < r3 and s1 < s2 < s3.

ω, it may not be possible to eliminate all 4-cycles in BC.
Intuitively, the above design can be seen as spreading the ncnv
ones in B over the ω + 1 submatrices in such a way that 4-
cycles are eliminated. With a larger ω, it is easier to design
a BR that does not contain any 4-cycles. For a particular set
of initial submatrices B0,B1, . . . ,Bω designed in Stage 1, if
the Stage 2 design does not eliminate 4-cycles in BC, or if
it results in a B0 and/or Bω with minimum row weight less
than two, the design can be repeated with a different set of
initial submatrices. Although for ω > 2, there are multiple
choices for BC, each of which is associated with a different
set of excluded patterns, our experience has shown that the
choice of BC does not affect whether or not 4-cycles can be
eliminated, but a different set of initial submatrices may help.

D. QC Lifting Based on B
(L)
SC

Given a designed B
(L)
SC , we can employ a systematic lifting

using circulants in an attempt to further increase the girth. In
this paper, we pay particular attention to the removal of all 6-
cycles (and any remaining 4-cycles) so that the resulting H

(L)
SC

is QC and has g ≥ 8. Note that any 6-cycle can be represented
by a 3×3 grid of nonzero entries in B

(L)
SC , as shown in Fig. 2.

To remove a 2k-cycle, k = 2, 3, . . ., circulants can be chosen
according to the Fossorier condition (Theorem 2.1 of [3]). For
example, if the six nonzero entries that constitute a 6-cycle in
Fig. 2 (indicated by the solid circles) are lifted with different
circulants I

(θ)
M , where the shifting factors satisfy

(θ1 − θ7) 6= (θ2 − θ5) + (θ6 − θ9) mod M, (12)

then there are no 6-cycles in the lifted subgraph associated
with this grid. In this case, we say that the cycle in the
protograph is “removed”. There are another five possible
configurations of 6-cycles, and similar constraints on their
shifting factors can be employed to remove the cycles.

To proceed, we first identify all the nonzero entries that
result in cycles we wish to remove. (The remaining nonzero
entries can be lifted by randomly generated circulants.) Then,
the identified cycles are removed sequentially by selecting
circulants according to the the Fossorier condition. However,
since nonzero entries in the protograph often participate in
multiple cycles, care is needed to make sure that cycle removal
does not create cycles elsewhere in the graph. In our design,
the entries and shifting factors are recorded after removing a
cycle. When the next cycle is targeted, we first check to see
if any of its nonzero entries have been previously lifted. If
so, they are not changed, and the shifting factors of the other
nonzero entries are chosen such that the Fossorier condition
is satisfied (if possible). For sufficiently large M , our study
has found that there is enough freedom to choose the shifting
factors to construct QC-SC-LDPC codes with g ≥ 8.

2017 IEEE International Symposium on Information Theory (ISIT)

1686

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

B
E

R

SNR (dB)

Undesigned (M = 300, g = 4)

Designed (M = 100, g = 6)

Designed (M = 100, g = 8)

W = 10

W = 12

W = 20FSD

ω = 3

L = 30

Fig. 3. Performance of SC-LDPC codes with (nc, nv) = (3, 6).

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

B
E

R

SNR (dB)

Undesigned (M = 100, g = 4)

Designed (M = 100, g = 6)

Designed (M = 100, g = 8)

W = 10

W = 15

W = 20
FSD

ω = 4

L = 30

Fig. 4. Performance of SC-LDPC codes with (nc, nv) = (3, 8).

IV. SIMULATION RESULTS

We compare the performance of our designed SC-LDPC
codes and undesigned (randomly chosen) codes. The designed
codes have girth six and eight, obtained by a random lifting
and a QC lifting, respectively, so the designed codes with
g = 8 are QC-SC-LDPC codes. Simulations were performed
over the AWGN channel using BPSK modulation. SW de-
coding [10], [11] with different window sizes W was used,
the maximum iteration number per window position was 100,
and the soft bit error rate (BER) stopping rule threshold was
1 × 10−6. When W = L, the decoding window covers the
entire Tanner graph of the code and SW decoding is equivalent
to standard flooding schedule decoding (FSD). The FSD was
simulated with a maximum iteration number of 1000.

Fig. 3 shows the performance of designed and undesigned
SC-LDPC codes with (nc, nv) = (3, 6) and ω = 3. The unde-
signed code was constructed from the base matrix B = [3 3]
with B0 = [1 1], B1 = [1 0], B2 = [0 1], and B3 = [1 1], and
M = 300 and 100 for the undesigned and designed codes,
respectively, so they have the same overall frame length. Base
matrix and associated submatrices of the designed codes are
given in Example 2. L = 30 and R(L)

SC = 0.45 in all cases. The
results show that the designed codes substantially outperform

the undesigned code, particularly in the error floor, and that
performing a QC lifting further improves the performance.
Fig. 4 shows the performance of designed and undesigned
SC-LDPC codes with (nc, nv) = (3, 8) and ω = 4. For the
undesigned code, the 3 × 8 binary submatrices were chosen
such that B0 and B4 have a minimum row weight of two,
while B1, B2, and B3 were chosen randomly to satisfy (2),
and in this case R

(L)
SC = 0.575. Again, the results show

the designed codes outperform the undesigned code. When
W = 10, the designed codes outperform only in the error
floor. This is because the window covers only two constraint
lengths, which is too small for SW decoding to be effective.

V. CONCLUSIONS

This paper presented a protograph-based systematic design
of QC-SC-LDPC codes, resulting in a girth g ≥ 8 for the
lifted codes. The SC base matrix is decomposed into a set
of blocks to guide the design of edge spreading. Excluded
patterns were utilized to initialize the submatrices, while the
constituent block was utilized to modify them. Unless the
coupling width ω is too small, an SC base matrix with g ≥ 6
can be obtained. For large enough lifting factor M , and a
systematic QC lifting, an SC parity-check matrix with g ≥ 8
can be obtained. Simulation results show our design leads to
significantly improved performance, particularly in the error
floor.

ACKNOWLEDGMENT

This is supported by the National Natural Science Founda-
tion of China (NSFC) under grants 61372079 and 61671486.

REFERENCES

[1] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from
protographs,” Jet Propulsion Laboratory, Pasadena, CA, INP Progress
Report 42-154, Aug. 2003.

[2] D. Divsalar, S. Dolinar. C. Jones and K. Andrews, “Capacity-approaching
protograph codes,” IEEE J. Sel. Areas Commun., vol. 27, no. 6, pp. 876-
888, Aug. 2009.

[3] M. Fossorier, “Quasi-cyclic low-density parity-check codes from circulant
permutation matrices,” IEEE Trans. Inf. Theory, vol. 50, no. 8, pp. 1788-
1793, Aug. 2004.

[4] D. Mitchell, M. Lentmaier and D. Costello, Jr., “Spatically coupled LDPC
codes constructed from protographs,” IEEE Trans. Inf. Theory, vol. 61,
no. 9, pp. 4866-4889, Sept. 2015.

[5] J. Li, S. Lin, K. Abdel-Ghaffar, W. Ryan and D. Costello, Jr., LDPC Code
Designs, Constructions and Unification, Cambridge Press, 2016.

[6] K. Liu, M. El-Khamy and J. Lee, “Finite-length algebraic spatially
coupled quasi-cyclic LDPC codes,” IEEE J. Sel. Areas Commun., vol.
34, no. 2, pp. 329-344, Feb. 2016.

[7] M. Zhang, Z. Wang, Q. Huang and S. Wang, “Time-invariant quasi-cyclic
spatially coupled LDPC codes based on packings,” IEEE Trans. Commun.,
vol. 64, no. 12, pp. 4936-4945, Dec. 2016.

[8] J. Cho and L. Schmalen, “Construction of protographs for large-girth
structured LDPC convolutional codes,” Proc. IEEE ICC, London, UK,
Jun. 2015.

[9] A. Pusane, R. Smarandache, P. Vontobel and D. Costello, Jr., “Deriving
good LDPC convolutional codes from LDPC block codes,” IEEE Trans.
Inf. Theory, vol. 57, no. 2, pp. 835-857, Feb. 2011.

[10] M. Lentmaier, A. Sridharan, D. Costello, Jr. and K. Sh. Zigangirov,
“Iterative decoding threshold analysis for LDPC convolutional codes,”
IEEE Trans. Inf. Theory, vol. 56, no. 10, pp. 5274-5289, Oct. 2010.

[11] A. Iyengar, M. Papaleo, P. Siegel, J. Wolf, A. Vanelli-Coralli and
G. Corazza, “Windowed decoding of protograph-based LDPC convolu-
tional codes over erasure channels,” IEEE Trans. Inf. Theory, vol.58, no.
4, pp. 2303-2320, Apr. 2012.

2017 IEEE International Symposium on Information Theory (ISIT)

1687

