
Interpolation Based Progressive Algebraic Chase
Decoding of Reed-Solomon Codes

Jiancheng Zhao †, Li Chen †, Xiao Ma †, Martin Johnston ‡
† School of Information Science and Technology, Sun Yat-sen University, Guangzhou, China

‡ School of Electrical and Electronic Engineering, Newcastle University, Newcastle-upon-Tyne, UK
Email: zhaojch2@mail2.sysu.edu.cn, chenli55@mail.sysu.edu.cn, maxiao@mail.sysu.edu.cn, martin.johnston@ncl.ac.uk

Abstract—This paper proposes an interpolation based pro-
gressive algebraic Chase decoding (PACD) algorithm for Reed-
Solomon (RS) codes. Based on the received information, 2η

(η > 0) interpolation test-vectors are constructed. They are
ordered using a reliability function, assessing their potential
of yielding the intended message. The decoding is performed
progressively granting priority to decode the test-vectors that
are more likely to yield the intended message, and it will be
terminated once the intended message is found. In the proposal,
the decoding of a later test-vector utilizes the interpolation
information that is generated during the decoding of the earlier
ones. It results in the binary tree that represents the evolution of
the interpolated polynomial sets growing in a depth-first-search
manner. The PACD algorithm has the advantage of adapting
its decoding computation to the channel condition, leveraging
the average decoding complexity. This channel dependent feature
will be validated by our simulation results which show that the
PACD algorithm is less complex than various interpolation based
algebraic decoding algorithms. We will also demonstrate that it
can achieve a high RS decoding performance.

Index Terms—Algebraic Chase decoding, complexity reduc-
tion, progressive decoding, Reed-Solomon codes.

I. INTRODUCTION

Reed-Solomon (RS) codes are widely used in storage and
communication systems. The conventional decoding algo-
rithms [1] produce a unique decoded message, with error-
correction capability limited by the half Hamming distance
bound. The Guruswami-Sudan (GS) [2] algebraic list decoding
algorithm was proposed to correct errors beyond the half dis-
tance bound by performing a curve-fitting process that contains
two major steps, the interpolation and the factorization. The
Koetter-Vardy (KV) soft-decision list decoding algorithm [3]
was later proposed by introducing a reliability transform
front-end. It significantly outperforms the GS and the unique
decoding algorithms with a polynomial-time complexity.

However, the complexity of the algebraic list decoding algo-
rithms remains much higher than that of the unique decoding
algorithms. This is mainly caused by the interpolation that
is an iterative polynomial construction process. To reduce the
interpolation complexity, the GS decoding has been formulated
as a rational curve-fitting problem utilizing the Berlekamp-
Massey (BM) decoding outcomes by [4], resulting in a reduced
interpolation multiplicity. The re-encoding approach [5] re-
duces the complexity by transforming the interpolation points
into having zero y-coordinates. Consequently, a large part
of iterative polynomial construction can be replaced by the

polynomial initialization. The low-complexity Chase (LCC)
decoding [6] reduces the complexity by exploiting the simi-
larity among several interpolation test-vectors. It is shown to
outperform the KV decoding with less computational cost. By
arranging the test-vectors in a way such that the adjacent test-
vectors have only one different point, the backward-forward
(BF) interpolation can be applied, resulting in a hardware
friendly BF-LCC decoding [7]. Moreover, a tree-based Chase
decoding approach that better defines the test-vector set was
recently reported in [8]. In order to adapt the algebraic decod-
ing computation to the quality of the received information, the
progressive algebraic soft decoding [9] was recently proposed.
By progressively enlarging the designed factorization output
list size (OLS), it deploys the least algebraic decoding effort
in finding the intended message. In a good channel condition,
most of the decoding events can deliver the intended message
with a small OLS value. As a result, the average complexity
of multiple decoding events can be reduced. Similarly, an
interpolation algorithm that adjusts its computation to the
number of instantaneous errors was proposed in [10].

In order to reduce the average decoding complexity while
maintain a high RS decoding performance, this paper proposes
the progressive algebraic Chase decoding (PACD) algorithm
which is empowered by both the progressive decoding and the
LCC decoding. A reliability function is defined to assess each
test-vector’s potential of yielding the intended message. The
test-vector with a higher potential is decoded prior to the less
potential one, and the decoding will be terminated once the
intended message is found. The proposed algorithm enables
the message to be found at an earlier Chase decoding stage,
saving efforts that would otherwise be deployed to decode
all the test-vectors. Consequently, average complexity of the
PACD algorithm can be reduced by improving the channel
condition. This channel dependent feature will be analyzed
and validated by our simulation results. We show that the
PACD algorithm is less complex than most of the interpolation
based algebraic decoding algorithms with maintaining a high
RS decoding performance. Its potential applications can be
found in RS coded data communication systems.

II. PRELIMINARIES

Let Fq be the finite field of size q and it is denoted as
Fq = {0, 1, 2, . . . , q− 1} for convenience. Let Fq[x, y] denote
the bivariate polynomial ring defined over Fq . We consider



an (n, k) RS code, where n (n = q − 1) and k (k < n)
are the length and the dimension of the code, respectively.
Given a message vector m = (m0,m1, . . . ,mk−1) ∈ Fk

q , the
corresponding message polynomial can be written as

m(x) =
k−1∑
u=0

mux
u. (1)

The RS encoding can be realized by

c = (c0, c1, . . . , cn−1) = (m(x0),m(x1), . . . ,m(xn−1)),
(2)

where {x0, x1, . . . , xn−1} ⊆ Fq \ {0}.
The PACD algorithm organizes monomials xayb using the

(1, -1)-lexicographic order (ord) [6]. Given a polynomial
Q =

∑
Qabx

ayb ∈ Fq[x, y], if xa
′
yb

′
is the leading monomial

with coefficient Qa′b′ ̸= 0, its leading order is lod(Q) =
ord(xa

′
yb

′
). For two polynomials (Q,Q′) ∈ Fq[x, y], it holds

that Q < Q′, if lod(Q) < lod(Q′).

III. THE PACD ALGORITHM

The PACD algorithm constructs a set of interpolation test-
vectors which will be ordered according to their potential
of yielding the intended message. For all the test-vectors,
interpolation of the common elements is performed once and
shared by them. Interpolation of the uncommon elements will
then be performed progressively granting priority to decode the
test-vectors that are more likely to yield the intended message.

A. Interpolation Test-Vectors and Their Ordering

Assuming an RS codeword c is transmitted over a dis-
crete memoryless channel, and the received vector R =
(R0,R1, . . . ,Rn−1) ∈ Rn is observed. The reliability matrix
Π ∈ Rq×n can be further obtained. By assuming the rows of
matrix Π are indexed by the elements of Fq , its entries πi,j
are the a posteriori probabilities defined as

πi,j = Pr[cj = i|Rj ], for i ∈ Fq and 0 ≤ j ≤ n− 1. (3)

Let i1j = argmaxi∈Fq{πi,j} and i2j = argmaxi∈Fq,i ̸=i1j
{πi,j}

denote the row indices of the largest and the second largest
entries of column j, respectively. The most and the second
most likely hard-decision results of cj are y1j = i1j and y2j =
i2j , respectively. The following metric is defined to assess the
reliability of the received information for cj

γj =
πi2j ,j

πi1j ,j
(4)

and γj ∈ [0, 1]. With γj approaches 1, the received information
is less reliable. While with γj approaches 0, the received
information is more reliable. Sorting all the γj values in
an ascending order yields a new symbol index sequence
j0, j1, . . . , jk−1, . . . , jn−1, which indicates γj0 < γj1 < · · · <
γjk−1

< · · · < γjn−1 . Let us define Θ = {j0, j1, . . . , jk−1}
as the index set of the k most reliable symbols, and Θc =
{jk, jk+1, . . . , jn−1}. Moreover, η least reliable symbols will
be selected from Θc and they can be realized as either y1j
or y2j . Let Φ = {jn−η, jn−η+1, . . . , jn−1} ⊆ Θc denote

the index set of the selected unreliable symbols, and Φc =
{j0, j1, . . . , jn−η−1}. The interpolation test-vectors can be
generally written as

Yv = (Yv,0,Yv,1, . . . ,Yv,n−1), (5)

where

Yv,j =

{
y1j , if j ∈ Φc,

y1j or y2j , if j ∈ Φ.
(6)

Since there are two decisions for each of the η unreliable
symbols, 2η interpolation test-vectors will be constructed and
v = 1, 2, . . . , 2η. By considering each test-vector consists of
n received symbols, the following metric is defined to assess
the reliability of the test-vectors

Ωv =

n−1∑
j=0

log(πYv,j ,j), (7)

where the base of the logarithm is ten. A higher Ωv value
indicates test-vector Yv is more reliable and it has a higher
potential of yielding the intended message. Therefore, all the
2η test-vectors will be ordered according to their reliability
function Ωv, and the one that has a larger Ωv value will be
decoded earlier. Since Ωv can also be written as

Ωv =
∑
j∈Φc

log(πYv,j ,j) +
∑
j∈Φ

log(πYv,j ,j), (8)

and all the reliability functions share a common part of∑
j∈Φc log(πYv,j ,j), the ordering metric can be simplified into

Ω′
v =

∑
j∈Φ

log(πYv,j ,j). (9)

Sorting all the 2η test-vectors according to their Ω′
v values

yields a new test-vector index sequence v1, v2, . . . , v2η , which
indicates Ωv1 > Ωv2 > · · · > Ωv2η . The PACD algorithm first
decodes Yv1 , then decodes Yv2 , and etc. Note that Yv1 is the
hard-decision received vector.

B. Common Element Interpolation

For a test-vector Yv, interpolation is to construct a minimal
polynomial Q(x, y) that satisfies Q(xj ,Yv,j) = 0 for all j.
Since all the interpolation test-vectors share the common sym-
bols y1j for j ∈ Φc, interpolation will be performed regarding
the common elements first. Its outcome will be shared by
all the test-vectors. In this paper, we will discuss the test-
vectors Yv in the content of Yv = (Yv,j0 ,Yv,j1 , . . . ,Yv,jn−1).
The interpolation order for the n points is (xj0 ,Yv,j0) →
(xj1 ,Yv,j1) → · · · → (xjn−1 ,Yv,jn−1).

The common element interpolation is assisted by the re-
encoding transform. The re-encoding polynomial is defined as

Ψ(x) =
∑
j∈Θ

y1jψj(x), (10)

where ψj(x) =
∏

(j,δ)∈Θ,j ̸=δ
x−xδ

xj−xδ
. The re-encoding poly-

nomial implies Ψ(xj) = y1j for j ∈ Θ. Therefore, given a



test-vector Yv, by performing the re-encoding transform

Y ′
v,j = Yv,j −Ψ(xj) (11)

for all of its entries, it can be transformed into Y ′
v =

(0, . . . , 0,Y ′
v,jk

, . . . ,Y ′
v,jn−1

). Interpolation for points (xj , 0)
where j ∈ Θ can be done by

V (x) =
∏
j∈Θ

(x− xj). (12)

Interpolation can then start by initializing the following poly-
nomial set G∗ = {g∗1(x, y), g∗2(x, y)} = {V (x), y}. Since
G∗ = {V (x) · 1, V (x) · y

V (x)}, the initialized polynomial set
can be further simplified into

G = {g1(x, y), g2(x, y)} = {1, y}, (13)

and the remaining interpolation points (xj ,Y ′
v,j) for j ∈ Θc

are transformed into

(xj ,Y ′′
v,j) =

(
xj ,

Y ′
v,j

V (xj)

)
. (14)

After the re-encoding transform, polynomials of G will further
interpolate points (xj ,Y ′′

v,j) for j ∈ Θc.
Since η 6 n − k, the test-vectors can share more

than k common symbols. Let us define Ac = Θc ∩
Φc = {jk, jk+1, . . . , jn−η−1} and Au = Θc ∩ Φ =
{jn−η, jn−η+1, . . . , jn−1}. In the common element interpo-
lation, polynomials of G will interpolate points (xj ,Y ′′

v,j) for
j ∈ Ac. For (xj ,Y ′′

v,j), the polynomials’ interpolation property
can be judged by g1(xj ,Y ′′

v,j) and g2(xj ,Y ′′
v,j) [2]. Let

f(x, y) = min{gi(x, y) ∈ G|gi(xj ,Y ′′
v,j) ̸= 0 and i = 1, 2},

(15)
and

g(x, y) = G \ {f(x, y)}. (16)

By performing the following bilinear modifications

g′(x, y) = g(x, y)−
g(xj ,Y ′′

v,j)

f(xj ,Y ′′
v,j)

· f(x, y), (17)

f ′(x, y) = (x− xj) · f(x, y), (18)

the updated polynomials would interpolate the point. Repeat-
ing the above process for all the points that are indexed by
Ac, an updated polynomial set G̃ will be obtained and

G̃ = {gi(x, y)|gi(xj ,Y ′′
v,j) = 0, ∀ j ∈ Ac and i = 1, 2}.

(19)
It will be utilized by the following progressive uncommon
element interpolation.

C. Progressive Uncommon Element Interpolation

The progressive uncommon element interpolation is first
performed for test-vector Y ′

v1
by interpolating points

(xj ,Y ′′
v1,j

) for j ∈ Au. If the intended message can be found
by factorizing the interpolation outcome, the decoding will be
terminated. Otherwise, it will be further performed for test-

vectors Y ′
v2

, Y ′
v3 , and etc. For a test-vector Y ′

v, we define

G(τ)
v = {gi(x, y)|gi(xj ,Y ′′

v,j) = 0, for j = jk,

jk+1, . . . , jn−η+τ−1 and i = 1, 2}. (20)

It is the polynomial set that has further interpolated τ points
(xj ,Y ′′

v,j) that are indexed by Au and 0 6 τ 6 η. When
τ = 0, G(0)

v = G̃ as all the test-vectors inherit the the common
element interpolation result. With this notation, the PACD
algorithm generates the polynomial sets in the following order:
G(1)
v1 → G(2)

v1 → · · · → G(η)
v1 , G(1)

v2 → G(2)
v2 → · · · → G(η)

v2 , . . .,
G(1)
v2η → G(2)

v2η → · · · → G(η)
v2η . In general, those polynomial

sets can be denoted as G(τ)
vϖ , where ϖ = 1, 2, . . . , 2η. If all

the 2η test-vectors are interpolated, η · 2η polynomial sets
will be generated. The following proposition shows that they
are not unique and the PACD algorithm reduces the decoding
computation utilizing this property.

Proposition 1: For any two test-vectors Y ′
vϖ and Y ′

vϖ′ , if
Y ′′
vϖ,j = Y ′′

vϖ′ ,j for j = jn−η, jn−η+1, . . . , jn−η+τ−1, then
G(1)
vϖ = G(1)

vϖ′ , G(2)
vϖ = G(2)

vϖ′ , . . . , G(τ)
vϖ = G(τ)

vϖ′ .

Without referring to the test-vector ordering, polynomial set
G(τ)
v is obtained by interpolating polynomials of G(τ−1)

v for
either of the following two points

P 1
τ =

(
xjn−η+τ−1 ,

y1jn−η+τ−1
−Ψ(xjn−η+τ−1)

V (xjn−η+τ−1)

)
,

P 2
τ =

(
xjn−η+τ−1 ,

y2jn−η+τ−1
−Ψ(xjn−η+τ−1)

V (xjn−η+τ−1)

)
.

If all the test-vectors are interpolated, the evolution of the
polynomial sets G(τ)

v with τ growing from zero to η can be
illustrated as a binary tree that is shown by Fig. 1. At layer
τ , there are 2τ distinct polynomial sets G(τ)

v , each of which
is shared by 2η−τ test-vectors. A complete path from G(0)

v

to G(η)
v indicates the uncommon element interpolation for a

particular test-vector Y ′
v. The LCC algorithm [6] grows the

binary tree in a layer-by-layer manner. Polynomial sets G(τ)
v

of layer τ are fully determined by interpolating the polynomial
sets G(τ−1)

v of layer τ − 1. Finally, 2η polynomial sets G(η)
v

will be generated. They correspond to the 2η test-vectors.

In contrast, the PACD algorithm grows the binary tree in a
depth-first-search manner. It first generates a completed path
from G(0)

v1 to G(η)
v1 . If the intended message can be found by

factorizing the minimal polynomial of G(η)
v1 , the decoding will

be terminated. Otherwise, it generates another path from G(0)
v2

to G(η)
v2 , and etc. Note that the maximum likelihood (ML)

criterion that is stated as Lemma 1 of [11] is utilized to validate
the factorization output. However, based on Proposition 1, it
can be realized that the interpolation of a later decoded test-
vector Y ′

vϖ with ϖ > 1 does not necessary need to start from
G(0)
vϖ . It can utilize the intermediate interpolation information

that is obtained and memorized during decoding the previous
ϖ−1 test-vectors. The intermediate interpolation information



Fig. 1. Binary tree representation of the uncommon element interpolation.

is defined as

Mϖ−1 = {G(τ)
vϖ′ , for 0 6 τ < η and 1 6 ϖ′ 6 ϖ−1}. (21)

Note that G(η)
vϖ′ does not need to be memorized since it only

corresponds to Y ′
vϖ′ . Hence, to decode a test-vector Y ′

vϖ , we
need to first assess its similarity with the decoded ones Y ′

vϖ′

where ϖ′ < ϖ. In the binary tree, let Ξϖ(ϖ′) denote the
number of layers shared by Y ′

vϖ
and Y ′

vϖ′ as

Ξϖ(ϖ′) = max{τ |Y ′′
vϖ,jn−η+τ′−1

= Y ′′
vϖ′ ,jn−η+τ′−1

,

for 0 ≤ τ ′ ≤ τ}. (22)

The decoded test-vectors Y ′
vϖ′ that share the maximal number

of layers with Y ′
vϖ

should be identified and denoted as

{Y ′
vϖ∗ : ϖ∗ = arg max

ϖ′<ϖ
{Ξϖ(ϖ′)}}. (23)

Note that there can be more than one decoded test-vector being
identified. One of them will be selected and denoted as Y ′

vϖ∗
.

Recalling Proposition 1, we know that G(τ)
vϖ = G(τ)

vϖ∗ for τ =

0, 1, . . . ,Ξϖ(ϖ∗), while G(0)
vϖ∗ , G

(1)
vϖ∗ , . . . , and G(Ξϖ(ϖ∗))

vϖ∗ are
the memorized information of Mϖ−1. Therefore, to generate
G(η)
vϖ , we will first initialize

G(Ξϖ(ϖ∗))
vϖ = G(Ξϖ(ϖ∗))

vϖ∗ . (24)

Polynomial set G(Ξϖ(ϖ∗))
vϖ will then interpolate points

(xj ,Y ′′
vϖ,j) for j = jn−η+Ξϖ(ϖ∗), . . . , jn−1, yielding poly-

nomial set G(η)
vϖ . The memorized information is updated into

Mϖ. The minimal polynomial of G(η)
vϖ , i.e.,

Q̃vϖ (x, y) = min{gi(x, y) ∈ G(η)
vϖ , i = 1, 2}, (25)

will be chosen. Since Q̃vϖ (x, y) = q̃vϖ,0(x)+y · q̃vϖ,1(x), and
polynomial V (x) has been extracted from set G∗ at the be-
ginning of the common element interpolation, the interpolated

polynomial Qvϖ (x, y) should be reconstructed by

Qvϖ (x, y) = q̃vϖ,0(x) · V (x) + y · q̃vϖ,1(x). (26)

It satisfies Qvϖ (xj ,Y ′
vϖ,j) = 0 for all j.

A message polynomial m′(x) that is in the form of (1) can
be obtained by factorizing Qvϖ (x, y) [12]. An estimation of
the intended message polynomial is further generated by

m̂(x) = m′(x) + Ψ(x). (27)

If the re-encoding of m̂(x) yields an ML codeword, the decod-
ing will be terminated. Otherwise, the next test-vector Yvϖ+1

will be decoded based on the memorized information Mϖ.
Summarizing the above descriptions, the PACD algorithm is
presented as in Algorithm 1.

Algorithm 1 The PACD algorithm for RS code
Input: η;
Initialization: ϖ = 1.
1: Construct 2η test-vectors Yv;
2: Calculate Ω′

v as in (9) and order the 2η test-vectors;
3: Perform the re-encoding transform as in (11);
4: Initialize the polynomial group G as in (13);
5: Interpolate points (xj ,Y ′′

v,j) for j ∈ Ac as in (15)-(18),
yielding G̃ of (19);

6: for test-vector Y ′
vϖ

do
7: if ϖ = 1 then
8: Let G(0)

v1 = G̃;
9: Interpolate points (xj ,Y ′′

v1,j
) for j ∈ Au as in (15)-

(18), yielding G(η)
v1 ;

10: else
11: Determine Ξϖ(ϖ′) as in (22);
12: Identify a decoded test-vector Y ′

vϖ∗ as in (23);
13: Let G(Ξϖ(ϖ∗))

vϖ = G(Ξϖ(ϖ∗))
vϖ∗ ;

14: Interpolate points (xj ,Y ′′
vϖ,j) for j = jn−η+Ξϖ(ϖ∗),

. . . , jn−1 as in (15)-(18), yielding G(η)
vϖ ;

15: end if
16: Find the minimal polynomial Q̃vϖ (x, y) of (25);
17: Restore polynomial Qvϖ (x, y) as in (26);
18: Factorize Qvϖ (x, y) to obtain m′(x);
19: Estimate m̂(x) as in (27);
20: Perform the re-encoding of m̂(x);
21: if the codeword satisfies the ML criterion then
22: Output m̂(x) and terminate the decoding;
23: else
24: Update ϖ = ϖ + 1 and go to step 6;
25: end if
26: end for

If none of the 2η message candidates yields an ML code-
word, the PACD algorithm results in a full growth of the binary
tree. Among all the message candidates, the one that yields
the most likely codeword will be selected. It should be pointed
out that the proposed Chase decoding has a certain memory
cost since its uncommon element interpolation requires the
intermediate information to be memorized.



Fig. 2. Performance of the (31, 27) RS code over the AWGN channel.

IV. PERFORMANCE AND COMPLEXITY ANALYSES

This section presents the decoding performance and com-
plexity analyses of the PACD algorithm. Decoding simulation
is performed for the (31, 27) RS code over the additive white
Gaussian noise (AWGN) channel using the BPSK modulation.
The complexity is measured as the average number of finite
field arithmetic operations in decoding an RS codeword, which
is averaged over 10000 decoding events per signal-to-noise
ratio (SNR). Performances of the interpolation based algebraic
decoding algorithms, including the GS, KV, LCC and BF-LCC
algorithms, are given as the comparison benchmarks. They are
all facilitated by the re-encoding transform.

A. Performance Analysis

Fig. 2 shows the frame error rate (FER) performance of
the (31, 27) RS code. By increasing η, more test-vectors
are decoded and performance of the PACD algorithm can be
improved. In particular, by increasing η from 1 to 4, 1 dB
coding gains can be further achieved for the (31, 27) RS code
at the FER of 10−4. With η = 2, the PACD algorithm starts
to outperform both of the GS and the KV algorithms. The
GS decoding is performed with an interpolation multiplicity
of one and it reaches the hard-decision list decoding bound
of n − ⌊

√
n(k − 1)⌋ − 1. The KV decoding is performed

with a designed factorization OLS of three. The theoretical
optimal KV decoding performance is also presented. Note that
with the same η, the PACD algorithm has the same decoding
performance as the LCC and the BF-LCC algorithms.

B. Complexity Analysis

Since the PACD algorithm may terminate after decoding any
one of the 2η test-vectors, its average complexity is channel
dependent. To further describe this channel dependent feature,
we define the worst case decoding event as when all the 2η

test-vectors have been decoded, while the best case decoding
event as when only one test-vector has been decoded. They
correspond to a full growth of the binary tree and a growth

Fig. 3. Average complexity of the PACD algorithm in decoding the (31, 27)
RS code.

of the root G(0)
v1 to leaf G(η)

v1 path, respectively. Let Cc denote
the complexity of the common element interpolation, and C(1)

u

denote the average complexity1 of determining a polynomial
set G(τ)

v based on G(τ−1)
v during the uncommon element

interpolation. Furthermore, let C(2)
u denote the complexity of

factorization and the ML validation for each test-vector. In the
worst case decoding event, there are 2(2η−1) polynomial sets
to be determined and 2η polynomials to be factorized. Hence,
the PACD algorithm’s complexity is

Cworst = Cc + 2(2η − 1) · C(1)
u + 2η · C(2)

u . (28)

In the best case decoding event, there are only η polynomial
sets to be determined and only one polynomial to be factor-
ized. The PACD algorithm’s complexity becomes

Cbest = Cc + η · C(1)
u + C(2)

u . (29)

The above analysis shows that the worst case complexity
grows exponentially with η and it is also the computational
cost of the LCC algorithm. While in the best case, there is
only one test-vector having been decoded. Its complexity will
be the same as that of the GS decoding with a multiplicity
of one. In order to validate this channel dependent feature,
Fig.3 compares the complexity of the PACD algorithm and
its prototypes, the LCC and the BF-LCC algorithms, as well
as the GS algorithm. It can be seen that by increasing the
SNR, the average complexity of the PACD algorithm can be
reduced significantly. In contrast, the average complexity of
the LCC and the BF-LCC algorithms is less sensitive to the
channel condition, since they always terminate after decoding
all the test-vectors. For the PACD algorithm, in the low SNR
region (≤ 2dB), the worst case decoding events dominate.
Hence, its average complexity is similar to that of the LCC
and the BF-LCC algorithms. While in the high SNR region
(≥ 7dB), the best case decoding events dominate. As a result,

1As τ grows, it is more complex to determine G(τ)
v , since the size of the

polynomials increases as the interpolation goes on.



TABLE I
COMPLEXITY COMPARISON IN DECODING THE (31, 27) RS CODE USING THE KV, PBF-LCC AND PACD ALGORITHMS

XXXXXXXXXXAlgorithms
SNR

0dB 1dB 2dB 3dB 4dB 5dB 6dB 7dB 8dB

KV (OLS = 3) 275 461 254 616 220 558 185 225 153 855 135 423 119 186 106 254 98 031
PBF-LCC (η = 4) 54 107 54 083 53 933 52 398 45 324 32 356 25 301 24 028 23 924

PACD (η = 4) 53 621 53 593 53 491 51 817 44 691 32 086 25 180 23 925 23 912

its average complexity converges to that of the GS algorithm.
Note that the BF-LCC algorithm is slightly more complex
than the LCC algorithm. This extra difference is incurred its
backward interpolation.

Table I further compares the average complexity of the
PACD algorithm with the KV algorithm. It vindicates the
PACD algorithm’s simplicity. With η = 4, Fig. 2 shows
that the PACD algorithm has 1dB coding gain over the KV
algorithm at the FER of 10−4. Hence, for the (31, 27) RS
code, the PACD algorithm outperforms the KV algorithm
with less computational cost. But it should be acknowledged
that the worst case complexity of the PACD algorithm grows
exponentially with η, while complexity of the KV algorithm is
polynomial-time. By increasing η, one could expect the worst
case complexity of the PACD algorithm will outweight the KV
algorithm. However, it is confined that η ≤ n−k. For the above
mentioned RS code, η ≤ 4 and the worst case complexity of
the PACD algorithm remains favorable.

Since the BF-LCC algorithm also delivers the polynomial
sets G(η)

v one by one, the authors have further integrated it with
the progressive decoding, resulting in the progressive BF-LCC
(PBF-LCC) algorithm. Similarly, the PBF-LCC algorithm ter-
minates once an ML codeword is found. It is ensured that the
first test-vector to be decoded is the hard-decision received
vector. Table I shows that its average complexity can also be
reduced with an increased SNR. The PACD algorithm is less
complex than the PBF-LCC algorithm. The reason has two
folds. First, the PACD algorithm does not require the backward
interpolation. Second, with a decoding order that is sorted
by the reliability function Ω′

v, the PACD algorithm is able
to find an ML codeword at an earlier Chase decoding stage.
Our simulation statistics indicates that the earlier decoded test-
vector is more likely to yield an ML codeword. This may not
be the case for the PBF-LCC algorithm. However, the authors
should acknowledge that the proposal offers an effective but
yet to be an optimal Chase decoding order. This reminds as
an open issue for future work.

Finally, as mentioned earlier, the PACD algorithm does have
a greater memory consumption. By assuming each polynomial
coefficient consumes one memory unit, memorizing all the
intermediate nodes of the binary tree requires at most 4(2η(n−
k − 1) + (η + 2)) memory units.

V. CONCLUSION

This paper has proposed an interpolation based PACD
algorithm for RS codes. In the proposal, each test-vector will
be sequentially decoded according to its potential of yielding

the intended message. It will be terminated once the intended
message is found. It can adapt the decoding computation
to the channel condition, leveraging the average decoding
complexity. Our simulation results have shown that the average
complexity of the PACD algorithm is channel dependent and it
is simpler than various interpolation based algebraic decoding
algorithms. Its error-correction performance has demonstrated
its capability of outperforming the GS and the KV algorithms.
Therefore, the proposal is an effective solution for achieving
high RS decoding performances.

ACKNOWLEDGMENT

This work is sponsored by the National Basic Research Pro-
gram of China (973 program) with project ID 2012CB316100,
the National Natural Science Foundation of China (NSFC)
with project ID 61372079 and the Fundamental Research
Funds for the Central Universities in China.

REFERENCES

[1] L. Welch and E. R. Berlekamp, “Error correction for algebraic block
codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Ste. Jovite, Canada,
Sept. 1983.

[2] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and
algebraic-geometric codes,” IEEE Trans. Inf. Theory, vol. 45, no.6, pp.
1757-1767, Sept. 1999.

[3] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-
Solomon codes,” IEEE Trans. Inf. Theory, vol. 49, no. 11, pp. 2809-2825,
Nov. 2003.

[4] Y. Wu, “New list decoding algorithms for Reed-Solomon and BCH
codes,” IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3611-3630, Aug.
2008.

[5] R. Koetter, J. Ma, and A. Vardy, “The re-encoding transformation in
algebraic list-decoding of Reed-Solomon codes,” IEEE Trans. Inf. Theory,
vol. 57, no. 2, pp. 633-647, Feb. 2011.

[6] J. Bellorado and A. Kavcic, “Low-complexity soft-decoding algorithms
for Reed-Solomon codes - Part I: an algebraic soft-in hard-out Chase
decoder,” IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 945-959, Mar.
2010.

[7] J. Zhu, X. Zhang, Z. Wang, “Backward interpolation architecture for
algebraic soft-decision Reed-Solomon decoding,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 17, no. 11, pp. 1602-1615, 2009.

[8] S. Tang and X. Ma, “A new Chase-type soft-decision decoding algorithm
for Reed-Solomon codes,” available at http://arxiv.org/abs/1309.1555.

[9] L. Chen, S. Tang and X. Ma, “Progressive algebraic soft-decision decod-
ing of Reed-Solomon codes,” IEEE Trans. Commum., vol. 61, no. 2, pp.
433-442, Feb. 2013.

[10] Y. Cassuto, J. Bruck and R. J. McEliece, “On the average complexity
of Reed-Solomon list decoders,” IEEE Trans. Inf. Theory, vol. 59, no. 4,
pp. 2336-2351, Feb. 2013.

[11] T. Kaneko, T. Nishijima, H. Inazumi, and S. Hirasawa, “An efficient
maximum-likelihood-decoding algorithm for linear block codes with
algebraic decoder,” IEEE Trans. Inf. Theory, vol. 40, no. 2, pp. 320-327,
Mar. 1994.

[12] R. Roth and G. Ruckenstein, “Efficient decoding of Reed-Solomon codes
beyond half the minimum distance,” IEEE Trans. Inf. Theory, vol. 46, no.
1, pp. 246-257, Jan. 2000.


