
Low-Complexity Chase Decoding of
Algebraic-Geometric Codes Using Koetter’s

Interpolation
Siyuan Wu †, Li Chen †, Martin Johnston ‡

† School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China, 510006
‡ School of Electrical and Electronic Engineering, Newcastle University, Newcastle-upon-Tyne, United Kingdom, NE1 7RU

Email: wusy7@mail2.sysu.edu.cn, chenli55@mail.sysu.edu.cn, martin.johnston@ncl.ac.uk

Abstract—Algebraic-geometric (AG) codes have long been
considered as a possible candidate to replace Reed-Solomon (RS)
codes. However, their decoding remains complex and infeasible to
implement. Addressing this challenge, our paper proposes a low-
complexity Chase (LCC) decoding algorithm for the most popular
class of AG codes - Hermitian codes. The LCC decoding is
realised by formulating decoding test-vectors, which allows Koet-
ter’s interpolation to be performed for common and uncommon
elements. This reduces redundant computations and also removes
the need to calculate the corresponding coefficients of a Hermitian
curve, thus facilitating message recovery. Our simulation results
show that significant coding gains can be achieved over the
conventional Koetter-Vardy (KV) soft decoding algorithm, but
with a much lower computational cost. Moreover, we also
show that in comparison with RS codes of a similar length,
Chase decoding has a more significant impact on enhancing the
performance of Hermitian codes.

Index Terms—Algebraic-geometric codes, Chase decoding, de-
coding complexity, Hermitian codes, interpolation

I. INTRODUCTION

Algebraic-geometric (AG) codes were first introduced by
Goppa [1] and are a class of linear block codes derived
from an algebraic curve. AG codes comprise a large family
including Hermitian codes, Elliptic codes and Reed-Solomon
(RS) codes. The widely used RS codes can be viewed as a
special class of AG codes since they are constructed from a
straight line. As a result, the length of an RS code cannot
exceed the size of the finite field in which it is defined,
limiting its minimum distance and therefore its error-correction
capability. Compared with RS codes, general AG codes have
larger codeword lengths in the same finite field, leading to
stronger error-correction capability.

For RS and AG codes, the conventional decoding algo-
rithms are unique decoding algorithms, i.e. they generate a
single unique decoded message. They are syndrome based and
achieve codeword recovery by calculating the error locations
and error magnitudes. The well-known Berlekamp-Massey
(BM) algorithm [2] and the Sakata algorithm [3–5] are used to
decode RS codes and Hermitian codes, respectively. However,
these unique decoding algorithms can only correct errors up
to half of the code’s minimum distance, i.e. the number of
correctable errors is τ ≤ ⌊(d−1)/2⌋, where d is the minimum
distance of the code. To achieve a better error-correction
capability for RS codes, Sudan’s pioneering curve-fitting list

decoding approach [6] can be deployed. However, its extra
error-correcting capabiltiy only applies to RS codes of rate
less than 1/3. Guruswami and Sudan later generalised this
improved decoding to both RS and AG codes of all rates and
it is often named the Guruswami-Sudan (GS) algorithm [7].
Based on the GS algorithm, Koetter and Vardy presented a
soft-decision list decoding algorithm for RS codes, namely
the KV algorithm [8]. Soft-decision list decoding of Hermitian
codes was later presented by Chen et al. [9] and Lee et al. [10],
independently. However, both the GS and KV algorithms are
much more complex than unique decoding algorithms. Recent-
ly, Bellorado et al. proposed a low-complexity Chase (LCC)
decoding algorithm for RS codes [11]. They showed that a
low list decoding complexity can be realised by exploiting
the similarity of interpolation test-vectors. Simulation results
of [11] also showed that the LCC algorithm outperforms
various RS decoding algorithms, including the KV algorithm.

The LCC decoding of general AG codes appears to have
not been considered in the literature. Therefore, our paper
presents the first LCC decoding algorithm for Hermitian codes.
With the formulation of the test-vectors, the interpolation can
be performed w.r.t. the common elements and the uncommon
elements, respectively. The former produces a common result
that will be shared by the complete interpolation of each test-
vector. The latter grows the interpolated polynomials in a
binary tree fashion, saving the redundant computations. Unlike
the KV algorithm, our proposed algorithm does not need to
pre-calculate the corresponding coefficients which are essential
to determining a polynomial’s interpolation condition [9],
saving decoding efforts. Our simulation results show that
LCC decoding of Hermitian codes can outperform the KV
decoding with a much lower complexity. It is also shown
that in comparison with an RS code of a similar length, LCC
decoding can achieve a greater coding gain by increasing the
Chase decoding parameter for AG codes.

II. PRELIMINARIES

This section presents background knowledge, including the
encoding of Hermitian codes and the GS list decoding.

A. Hermitian Codes

Let Fq = {0, 1, 2, . . . , q−1} denote the finite field of size q.
Let Fq[x, y] and Fq[x, y, z] denote the bivariate and trivariate
polynomial rings over Fq , respectively. Hermitian codes are
constructed from Hermitian curves. An affine Hermitian curve1

defined over Fq can be written as [12]

Hw(x, y) = xw+1 + yw + y, (1)

where w =
√
q and the curve has a genus g = w(w−1)

2 . The
designed minimum distance of the Hermitian code is d =
n− k − g + 1. There are n = w3 affine points pj = (xj , yj)
that satisfy Hw(xj , yj) = 0, and a point at infinity p∞. Let P
denote the set of affine points, P = {pj = (xj , yj), 0 ≤ j ≤
n− 1} and |P | = w3.

The pole basis Lw of a Hermitian curve comprises a
set of bivariate monomials ϕa(x, y) = xµyν with Lw =
{ϕa(x, y)|vp∞(ϕ−1

a (x, y)) < vp∞(ϕ−1
a+1(x, y)), a ∈ N}, where

vp∞(ϕ−1
a (x, y)) = w · µ+ (w+1) · ν is the pole order of ϕa.

For each affine point pj , the zero basis polynomials are

ψpj ,α = (x− xj)
λ[(y − yj)− xwj (x− xj)]

δ, (λ, δ) ∈ N, (2)

where α = λ+ (w+ 1)δ. ψpj ,α has a multiplicity of α at pj .
To construct an (n, k) Hermitian code, where n and k are

the length and dimension of the code, respectively, the message
polynomial f(x, y) ∈ Fq[x, y] is

f(x, y) = f0ϕ0 + f1ϕ1 + · · ·+ fk−1ϕk−1. (3)

The Hermitian codeword c = (c0, c1, . . . , cn−1) ∈ Fn
q can be

generated by

c = (f(p0), f(p1), . . . , f(pn−1)). (4)

B. GS Decoding of Hermitian Codes

For GS decoding of an (n, k) Hermitian code, the following
definitions are needed.

Definition I: Trivariate monomials ϕazb are ordered accord-
ing to their (1, wz)-weighted degree, that is

deg1,wz
ϕaz

b = vp∞(ϕ−1
a) + wzb, (5)

where wz = vp∞(ϕ−1
k−1). Consequently, the (1, wz)-

lexicographic order can be established as follows.
Given two monomials ϕa1z

b1 and ϕa2z
b2 , we claim

ord(ϕa1z
b1)< ord(ϕa2z

b2), if deg1,wz
ϕa1

zb1 < deg1,wz
ϕa2

zb2 ,
or deg1,wz

ϕa1
zb1 = deg1,wz

ϕa2
zb2 and b1 < b2.

Definition II: Given a polynomial Q(x, y, z) =∑
a,b∈NQabϕa(x, y)z

b, if ϕa′zb
′

with coefficient Qa′b′ ̸= 0
is the leading monomial, the (1, wz)-weighted degree of
Q is deg1,wz

Q = deg1,wz
ϕa′zb

′
and its leading order is

lod(Q) = ord(ϕa′zb
′
). Given two polynomials Q1 and Q2,

we claim Q1 < Q2, if lod(Q1) < lod(Q2).
The high complexity interpolation process builds an inter-

polated polynomial Q(x, y, z) based on the received word
r = (r0, r1, . . . , rn−1) ∈ Fn

q . It starts with a polynomial set G.

1Equation (1) is an affine component of a projective Hermitian curve
Hw(x, y, z) = xw+1 + ywz + yzw .

Each of its polynomials grows by iteratively interpolating the
n points (pj , rj), with a multiplicity of m. Finally, the minimal
polynomial in the set will be chosen as Q for factorisation,
which finds the z-roots as the decoded message candidates
f̂(x, y) [13].

With the received word r, we define the Hamming distance
between c and r as

dH(c, r) = |{j|cj ̸= rj ,∀j}|. (6)

Theorem 1: Given a polynomial Q ∈ Fq[x, y, z] that has a
zero of multiplicity m over the n points, if m(n − dH(c, r))
> deg1,wz

Q, then Q(x, y, f) = 0 or (z − f)|Q(x, y, z) [14].
The interpolation constraint for a polynomial in Fq[x, y, z]

is explained as follows. Given an interpolation point (pj , rj),
if polynomial Q can also be written as

Q(x, y, z) =
∑

α,β∈N

Q
(pj ,rj)
α,β ψpj ,α(x, y)(z − rj)

β , (7)

where Q(pj ,rj)
α,β ∈ Fq and Q(pj ,rj)

α,β = 0 for α+β < m, then Q
interpolates (pj , rj) with a multiplicity of m.

The relationship between a pole basis monomial ϕa and
zero basis polynomials ψpj ,α can be written as [15, 16]

ϕa =
∑
α∈N

γa,pj ,αψpj ,α, (8)

where γa,pj ,α ∈ Fq are the corresponding coefficients. More-
over, zb can be elaborated as

zb = (z − rj + rj)
b =

∑
β≤b

(
b

β

)
rb−β
j (z − rj)

β . (9)

Using equations (8) and (9), a polynomial Q =∑
a,b∈NQabϕaz

b can be written as

Q(x, y, z)

=
∑
a,b∈N

Qab

(∑
α∈N

γa,pj ,αψpj ,α

)(∑
β≤b

(
b

β

)
rb−β
j (z − rj)

β

)

=
∑

α,β∈N

(∑
a,b≥β

Qab

(
b

β

)
γa,pj ,αr

b−β
j

)
ψpj ,α(z − rj)

β. (10)

As a result, coefficients Q(pj ,rj)
α,β of (7) can be written as

Q
(pj ,rj)
α,β =

∑
a,b≥β

Qab

(
b

β

)
γa,pj ,αr

b−β
j . (11)

Therefore, to determine polynomial Q’s interpolation condi-
tion, the corresponding coefficients γa,pj ,α are essential. To
facilitate the interpolation, they need to be pre-calculated [9].
The following lemma shows an exception when m = 1.

Lemma 2: If the interpolation multiplicity m = 1, we have

Q
(pj ,rj)
0,0 =

∑
a,b

Qabϕa(xj , yj)r
b
j . (12)

Proof: When m = 1, α = β = 0. Based on (2), we know
ψpj ,0 = 1. Further based on (8), we have ϕa(x, y) = γa,pj ,0+
γa,pj ,1ψpj ,1 + γa,pj ,2ψpj ,2 + · · · . Since ψpj ,α(xj , yj) = 0 for

all α, then γa,pj ,0 = ϕa(xj , yj). This completes the proof.
Lemma 2 implies us that with a multiplicity of one, the

need to pre-calculate the corresponding coefficients is removed
and Q’s interpolation condition at (pj , rj) can be simply
determined by polynomial evaluation. The proposed algorithm
makes use of this advantage.

III. LOW-COMPLEXITY CHASE DECODING

LCC decoding starts by formulating a set of interpolation
test-vectors. With this formulation, common element interpo-
lation will be performed once and its outcome will be shared
by the following uncommon element interpolation. Utilising
the similarity among test-vectors, a reduction in interpolation
complexity can be achieved.

A. Test-vector Formulation

In this paper, it is assumed that a Hermitian codeword is
transmitted using BPSK over a memoryless channel, e.g., the
additive white Gaussian noise (AWGN) channel.

Given a received symbol vector R = (R0, R1, . . . , Rn−1)
∈ Rn, the reliability matrix Π ∈ Rq×n can be obtained. By
assuming its rows are indexed by elements of Fq , its entries
are defined as

πij = Pr[cj = i|Rj], i = 0, 1, . . . , q − 1, j = 0, 1, . . . , n− 1.
(13)

Let iIj = argmaxi∈Fq
{πij} and iIIj = argmaxi∈Fq,i ̸=iI

j
{πij}

denote the row indices of the largest and the second largest
entries of column j, respectively. We can denote the most
likely and second most likely (ML) hard-decisions for cj as
rI
j = i|πij=πI

j
and rII

j = i|πij=πII
j
, respectively. In order to

assess the reliability of each symbol’s decision, we define [11]

γj =
πII
j

πI
j

, (14)

where γj ∈ (0, 1). When γj approaches zero, it indicates
that the decision on cj is more reliable, and vice versa. By
sorting all the γj values in an ascending order, we obtain a
refreshed symbol index sequence j0, j1, . . . , jn−1, indicating
γj0 < γj1 < · · · < γjn−1 .

Choosing η (η < n) unreliable symbols, the n− η reliable
symbols are identified as

Θ = {j0, j1, . . . , jn−η−1}. (15)

Its complementary set Θc is

Θc = {jn−η, jn−η+1, . . . , jn−1}. (16)

With the above definitions, the interpolation test-vectors can
be constructed as

ru = (r
(u)
j0
, r

(u)
j1
, . . . , r

(u)
jn−η−1

, r
(u)
jn−η

, . . . , r
(u)
jn−1

) (17)

and

r
(u)
j =

{
rI
j , if j ∈ Θ,

rI
j or rII

j , if j ∈ Θc,
(18)

where u = 1, 2, . . . , 2η identifies a particular test-vector. This
test-vector formulation underpins the complexity reduction of
the LCC algorithm.

B. Common Element Interpolation

Since all the test-vectors share n − η common
symbols, interpolation for points (pj0 , rj0), (pj1 , rj1), . . . ,
(pjn−η−1 , rjn−η−1) can be performed once and shared.

At the beginning, a set of polynomials are initialised by

G = {Qλ+wδ = yλzδ, 0 ≤ λ < w, δ = 0 and 1}
= {1, y, . . . , yw−1, z, yz, . . . , yw−1z}. (19)

Note that |G| = 2w. For each point (pj , rj) and j ∈ Θ,
all polynomials’ interpolation conditions are tested. For a
polynomial Qt ∈ G, it can be denoted as

Qt(x, y, z) = Q̃t,0(x, y) + z · Q̃t,1(x, y). (20)

Based on Lemma 2, its interpolation condition can be tested
by ∆t = Qt(pj , rj) and

∆t = Q̃t,0(xj , yj) + rj · Q̃t,1(xj , yj). (21)

Those polynomials with ∆t = 0 interpolate the point and do
not need to be modified. The others with ∆t ̸= 0 do not hold
the interpolation property and modification will be needed.
For those polynomials with ∆t ̸= 0, we identify the minimal
polymomial as

t′ = argmin{Qt|∆t ̸= 0}. (22)

Afterwards, for the polynomials with ∆t ̸= 0 but t ̸= t′, they
are modified by

Q′
t = ∆tQt′ −∆t′Qt. (23)

If t = t′, it will be modified by

Q′
t′ = (x− xj)Qt′ . (24)

After the modifications, all polynomials of the set satisfy the
interpolation condition for point (pj , rj). After interpolating
all the points defined by Θ, we obtain

G={Qt|Qt(pj , rj)=0,∀j∈Θ and t=0, 1, . . . , 2w−1}. (25)

This will be utilised by the following uncommon element
interpolation.

C. Uncommon Element Interpolation

Uncommon element interpolation completes the building of
the interpolated polynomial Q for each test-vector. Because of
the binary decision on each unreliable symbol, it can also grow
the polynomial sets in a binary tree fashion. The uncommon
element interpolation is shown as in Fig.1. It starts with
the outcome of the common element interpolation, i.e., G(1)

0

inherits G of (25). Including G
(1)
0 , there are η + 1 layers

in the binary tree. We use G
(s′)
s to denote the polynomial

sets at layer s (s = 0, 1, . . . , η). s′ identifies a particular
polynomial set at that layer and s′ = 1, 2, . . . , 2s. In general,
based on G

(s′)
s , one can interpolate points (pjn−η+s , r

I
jn−η+s

) and

Fig. 1. Uncommon element interpolation.

(pjn−η+s , r
II
jn−η+s

), resulting in polynomial sets G
(2s′−1)
s+1 and

G
(2s′)
s+1 , respectively. By observing the polynomial structure

of (20), this process can be facilitated. For each polynomial
Qt of G

(s′)
s , its evaluation at points (pjn−η+s , r

I
jn−η+s

) and
(pjn−η+s , r

II
jn−η+s

) can be written as

∆t=Q̃t,0(xjn−η+s , yjn−η+s)+r
I
jn−η+s

·Q̃t,1(xjn−η+s , yjn−η+s) (26)

and

∆t=Q̃t,0(xjn−η+s , yjn−η+s)+r
II
jn−η+s

·Q̃t,1(xjn−η+s , yjn−η+s), (27)

respectively. Therefore, Q̃t,0(xjn−η+s , yjn−η+s) and Q̃t,1(xjn−η+s ,
yjn−η+s

) can be computed once and utilised by the evaluations
of (26) and (27). The remaining polynomial update will be
identical to that described by (22)-(24), yielding polynomial
sets G

(s′)
s+1.

After layer η has materialised, 2η polynomial sets G
(s′)
η

are obtained. They correspond to the 2η test-vectors defined
by (15)-(18). The minimal polynomial is chosen from each of
the sets as

Q(x, y, z) = min{Qt|Qt ∈ G(s′)
η }. (28)

They will then be factorised to retrieve the message candidates.
Among all the possible 2η candidates, the one that corresponds
to the ML codeword will be selected as the decoding output.

Summarising the above description, LCC decoding of Her-
mitian codes is presented as in Algorithm 1.

IV. PERFORMANCE AND COMPLEXITY ANALYSES

This section presents the performance and complexity anal-
yses for the LCC algorithm. The frame error rate (FER)
performance is obtained over the AWGN channel using BPSK
modulation. The complexity is measured as the average num-
ber of arithmetic finite field operations required to decode a
codeword frame.

Fig. 2 shows the LCC decoding performance for the (64, 49)
Hermitian code. The Sakata, GS (m = 1) and KV decoding

Algorithm 1 The LCC algorithm for Hermitian codes
Input: The reliability matrix Π and a positive integer η;
Output: The message candidate f̂(x, y);

1: Determine metrics γj as in (14) and define Θ and Θc as
in (15) and (16);

2: Initialise polynomial set G as in (19);
3: For points (pj , rj) with j ∈ Θ do
4: Testify the interpolation condition for each polyno-

mial of G as in (21);
5: Update the polynomials as in (22)-(24);
6: End for
7: Let G(1)

0 = G and s = 0;
8: While s < η do
9: Testify the interpolation condition for each polyno-

mial of G(s′)
s as in (26)-(27);

10: Update the polynomials as in (22)-(24);
11: Update s = s+ 1;
12: End while
13: Find polynomial Q of each set G(s′)

η as in (28);
14: Factorise all the 2η minimal polynomials and select the

message candidate f̂(x, y).

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

F
E

R

SNR (dB)

Sakata / GS (m = 1)

KV (l = 1)

KV (l = 3)

LCC (η = 1)

LCC (η = 3)

LCC (η = 4)

LCC (η = 6)

Fig. 2. Performance of the (64, 49) Hermitian code over the AWGN channel.

performances are given as comparison benchmarks. In partic-
ular, we compare the LCC algorithm and the KV algorithm
under the constraint that both of the soft decodings incur a
similar interpolation cost (the total number of interpolation
constraints) which is a good indicator for the complexity of
Koetter’s interpolation. For example, parameterised by the z
degree of Q, i.e., l = degzQ, KV decoding with l = 1 and
l = 3 has a similar interpolation cost as LCC decoding with
η = 1 and η = 3, respectively. As shown in Fig. 2, the LCC
decoding with η = 1 yields a better performance than the KV
decoding with l = 1. But KV decoding with l = 3 slightly
outperforms the LCC decoding with η = 3. However, it is
more complex as indicated by Table I. Table I shows that
the LCC decoding is far simpler than the KV decoding. For
example, LCC decoding with η = 3 remains far simpler than
KV decoding with l = 3. It is even simpler than KV decoding

TABLE I
DECODING COMPLEXITY FOR THE (64, 49) HERMITIAN CODE

Sakata GS (m = 1) KV (l = 1) KV (l = 3) LCC (η = 1) LCC (η = 3) LCC (η = 6)
2.00× 104 9.47× 104 3.01× 105 4.54× 106 1.04× 105 1.63× 105 6.46× 105

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8

F
E

R

SNR (dB)

Hermitian (64, 49) (η = 1)

Hermitian (64, 49) (η = 2)

Hermitian (64, 49) (η = 3)

Hermitian (64, 49) (η = 4)

RS (63, 49) (η = 1)

RS (63, 49) (η = 2)

RS (63, 49) (η = 3)

RS (63, 49) (η = 4)

Fig. 3. Comparison of LCC decoding of RS and Hermitian codes.

with l = 1, but performs better. In general, the LCC decoding
outperforms all the benchmarks and its performance can be
enhanced by increasing η, which leads to more interpolation
test-vectors. Of course, this is also at the cost of complexity
as shown in Table I.

Comparing with an RS code of a similar length and rate,
the Hermitian codebook has a much smaller cardinality due
to the fact that it is written over a smaller finite field. A
smaller codebook cardinality can favor Chase decoding which
is search oriented. Fig. 3 consolidates such a conjecture by
comparing the LCC decoding performance for the (63, 49)
RS code and the (64, 49) Hermitian code. The RS code is
defined in F64 while the Hermitian code is defined in F16.
Fig. 3 shows that by increasing η, greater coding gains can be
achieved for the Hermitian code. For example, by increasing η
from one to four, the LCC decoding achieves a 0.7 dB coding
gain for the Hermitian code. While for the RS code, it is only
0.4 dB. Note that this Hermitian code does not outperform
the RS code, since it is not maximal distance separable and
remains much shorter in bits.

V. CONCLUSIONS

This paper has introduced the first LCC decoding algorithm
for the most popular class of AG codes, the Hermitian codes.
The interpolation test-vectors are formulated by considering
both the most likely and the second most likely decisions
for the unreliable symbols. Such a formulation allows the
interpolation to grow the interpolated polynomials in a binary
tree fashion, reducing redundant computations. Moreover, our
proposed algorithm does not require the pre-calculation of the
corresponding coefficients, which is essential for determining
the interpolation condition. Our simulation results have shown
that significant performance gains can be achieved over the

Sakata, GS and KV algorithms. It is also far less complex than
the KV algorithm. Finally, we have also demonstrated that the
LCC decoding of a Hermitian code can obtain a greater Chase
decoding gain than an RS code of a similar length and rate.

ACKNOWLEDGEMENT

This work is sponsored by the National Basic Research Pro-
gram of China (973 program) with project ID 2012CB316100,
the National Natural Science Foundation of China (NSFC)
with project ID 61372079 and the Fundamental Research
Funds for the Central Universities in China.

REFERENCES

[1] V. D. Goppa, “Codes on algebraic curves,” Soviet Math, vol. Dol. 24,
pp. 170–172, 1981.

[2] J. L. Massey, “Shift-register synthesis and BCH decoding,” IEEE Trans.
Inform. Theory, vol. 15, no. 1, pp. 122–127, Jan. 1969.

[3] S. Sakata, J. Justesen, Y. Madelung, H. E. Jensen and T. Hoholdt, “Fast
decoding of algebraic-geometric codes up to the designed minimum
distance,” IEEE Trans. Inform. Theory, vol. 41, no. 5, pp. 1672–1677,
Sept. 1995.

[4] G. Feng and T. Rao, “Decoding algebraic-geometric codes up to the
designed minimum distance,” IEEE Trans. Inform. Theory, vol. 39, no. 1,
pp. 37–46, Jan. 1993.

[5] M. Johnston and R. Carrasco, “Construction and performance of
algebraic–geometric codes over AWGN and fading channels,” IEE Proc
Commun., vol. 152, no. 5, pp. 713–722, Oct. 2005.

[6] M. Sudan, “Decoding of Reed Solomon codes beyond the error-
correction bound,” J. Compl., vol. 13, no. 1, pp. 180–193, 1997.

[7] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon
and algebraic-geometry codes,” IEEE Trans. Inform. Theory, vol. 45,
no. 6, pp. 1757–1767, Sept. 1999.

[8] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-
Solomon codes,” IEEE Trans. Inform. Theory, vol. 49, no. 11, pp. 2809–
2825, Nov. 2003.

[9] L. Chen, R. Carrasco and M. Johnston, “Soft-decision list decoding of
Hermitian codes,” IEEE Trans. Commun., vol. 57, no. 8, pp. 2169–2176,
Aug. 2009.

[10] K. Lee and M. O’Sullivan, “Algebraic soft-decision decoding of Hermi-
tian codes,” IEEE Trans. Inform. Theory, vol. 56, no. 6, pp. 2587–2600,
Jun. 2010.

[11] J. Bellorado and A. Kavcic, “Low-complexity soft-decoding algorithms
for Reed–Solomon codes–Part I: An algebraic soft-in hard-out Chase
decoder,” IEEE Trans. Inform. Theory, vol. 56, no. 3, pp. 945–959,
Mar. 2010.

[12] I. Blake, C. Heegard, T. Hoholdt and V. Wei, “Algebraic-geometry
codes,” IEEE Trans. Inform. Theory, vol. 44, no. 6, pp. 2596–2618,
Oct. 1998.

[13] X. Wu and P. Siegel, “Efficient root-finding algorithm with application to
list decoding of algebraic-geometric codes,” IEEE Trans. Inform. Theory,
vol. 47, no. 6, pp. 2579–2587, Sept. 2001.

[14] T. Høholdt and R. R. Nielsen, “Decoding Hermitian codes with Su-
dan’s algorithm,” in Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes (Lecture Notes in Computer Science), vol. 1719, H.
I. N. Fossorier, S. Lin, and A. Pole, Ed. Berlin, Germany: Springer-
Verlag, 1999, pp. 260–269.

[15] R. R. Nielsen, List Decoding of Linear Block Codes. Lyngby, Denmark:
Tech. Univ. Denmark, 2001.

[16] L. Chen, R. Carrasco and M. Johnston, “Reduced complexity interpola-
tion for list decoding Hermitian codes,” IEEE Trans. Wireless Commun.,
vol. 7, no. 11, pp. 4353–4361, Nov. 2008.

