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Abstract—Algebraic-geometric (AG) codes have long been
identified as a possible candidate to replace Reed-Solomon (RS)
codes for error-correction. This paper proposes an iterative soft-
decision decoding algorithm for one of the most popular AG codes
– Hermitian codes. The algorithm is designed by integrating the
legacy belief propagation (BP) algorithm and the Koetter-Vardy
(KV) soft-decision list decoding algorithm. The BP algorithm
performs iterative decoding based on an adapted parity-check
matrix whose density has been reduced, namely the adaptive
BP (ABP) algorithm. It enhances the reliability of the received
information, with which the KV algorithm performs soft-decision
list decoding to obtain the intended message. Since the matrix
adaptation is bit reliability oriented, re-grouping of the unreliable
bits is introduced to assist the ABP algorithm. Geometric analysis
of the ABP algorithm is presented, demonstrating the necessity
of performing matrix adaptation and integrating the ABP and
KV algorithms. The performance evaluation shows the proposed
iterative decoding algorithm is an advanced decoding approach
that outperforms the existing decoding algorithms for Hermitian
codes. It can also outperform ABP-KV decoding of RS codes.

Index Terms—Adaptive belief propagation, algebraic-
geometric codes, Hermitian codes, iterative decoding, Koetter-
Vardy algorithm.

I. INTRODUCTION

Hermitian codes are the most celebrated algebraic-
geometric (AG) codes, which are believed to have the potential
to replace Reed-Solomon (RS) codes for error-correction.
Compared with the RS codes that are defined over the same
finite field, the Hermitian codes are longer and hence inherit
a better error-correction capability [1] [2].

The pioneer work on efficient decoding of Hermitian codes
was proposed by Sakata et al. [3]. Combined with the ma-
jority voting algorithm [4], the Sakata algorithm can correct
symbol errors up to half of the code’s designed minimum
distance. Guruswami and Sudan [5] proposed a hard-decision
list decoding algorithm (or the so-called GS algorithm) for
both RS and AG codes, correcting symbol errors beyond the
half distance bound. Hard-decision list decoding of Hermitian
codes was proposed by Hoholdt et al. [6], followed by an
efficiency improved decoding proposed by Chen et al. [7].
Recently, soft-decision list decoding of Hermitian codes was
introduced by Chen et al. [2] and Lee et al. [8] independently.

In the meantime, soft-decision decoding of RS codes is an
active area of research. Related works include the maximal
likelihood (ML) decoding [9], the ordered statistics decod-
ing [10] and the Koetter-Vardy (KV) list decoding [11].
Recently, iterative soft-decision decoding of RS codes using

the adaptive belief propagation (ABP) algorithm was proposed
by Jiang et al. [12]. By incorporating the ABP and KV algo-
rithms, El-Khamy et al. [13] proposed an improved iterative
soft-decision decoding algorithm for RS codes. It is shown
that the ML decoding performance bound is approached with
a moderate decoding complexity.

However, iterative soft-decision decoding of Hermitian
codes is yet to be developed. So far, their best error-correction
performance was achieved by the KV algorithm [2] [8]. To
explore the error-correction potential of Hermitian codes, more
advanced decoding approach would be desirable. This paper
proposes the first iterative soft-decision decoding algorithm
for Hermitian codes, namely the ABP-KV algorithm. The
ABP algorithm performs the first stage decoding to enhance
the reliability of the received information. They will then
be passed to the second stage decoding, the KV algorithm.
The parity-check matrix of Hermitian codes is defined and its
Gaussian elimination will be deployed based on the knowledge
of bit reliabilities. It reduces the density of the matrix and
eliminates part of its short cycles. To improve the performance,
re-grouping of the unreliable bits is also introduced. Geometric
analysis of the ABP algorithm is presented, demonstrating the
necessity of performing the matrix adaptation and integrating
the ABP and KV algorithms. Performance evaluation of the
proposed algorithm will also be provided, comparing it with
the existing decoding approaches for Hermitian codes and the
ABP-KV decoding of RS codes.

II. CONSTRUCTION OF HERMITIAN CODES

Let Fq denote the finite field of size q and Fq =
{0, 1, α, α2, . . . , αq−2}, where α is a primitive element. In this
paper, it is assumed that q is a square such that q = 2ϖ where
ϖ is an even number. Let Fq[x], Fq[x, y] and Fq[x, y, z] denote
the rings of univariate, bivariate and trivariate polynomials
defined over Fq, respectively. The Hermitian curve that is
defined in Fq can be written as [7]:

Hw(x, y, z) = xw+1 + ywz + yzw, (1)

where w =
√
q. The construction of a Hermitian code can be

elaborated from its affine component Hw(x, y, 1). There are
n = w3 affine points pj = (xj , yj , 1) (1 ≤ j ≤ n) and a point
at infinity p∞ = (0, 1, 0) [7]. Point p∞ defines a pole basis
Φw that consists of bivariate monomials ϕa = xδyλ (0 ≤ δ ≤
w, λ ≥ 0) with increasing pole orders which are defined as

υp∞(ϕ−1
a ) = υp∞((xδyλ)−1) = wδ + (w + 1)λ. (2)
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Consequently, the pole basis Φw is [7]:

Φw = {ϕa(x, y) | υp∞(ϕ−1
a ) < υp∞(ϕ−1

a+1), a ∈ N}, (3)

where N is the set of nonnegative integers. E.g., Φ2 =
{1, x, y, x2, xy, y2, x2y, xy2, y3, . . .}. Pole basis Φw collects
all the bivariate monomials that define Fq[x, y] and Fq[x, y, z].

Since all the affine points can be distinguished by their x and
y components, they can be simplified as pj = (xj , yj). Based
on the affine points pj and the pole basis Φw, the generator
matrix G ∈ Fk×n

q of an (n, k) Hermitian code is defined as:

G =


ϕ0(p1) ϕ0(p2) · · · ϕ0(pn)
ϕ1(p1) ϕ1(p2) . . . ϕ1(pn)

...
...

. . .
...

ϕk−1(p1) ϕk−1(p2) . . . ϕk−1(pn)

 , (4)

where n and k are the length and dimension of the code,
respectively. Given a message vector F = [F1, F2, . . . , Fk] ∈
Fk
q , the codeword C can be generated by:

C = [C1, C2, . . . , Cn] = F ·G, (5)

where C ∈ Fn
q . Vector F can be represented by a polynomial

F (x, y) =
∑k

j=1 Fjϕj−1. The encoding process can be
interpreted as evaluating the n affine points over the message
polynomial. The length of Hermitian codes is n = q3/2 which
is larger than that of the RS code defined over Fq. Its parity-
check matrix H ∈ F(n−k)×n

q is defined as:

H =


ϕ0(p1) ϕ0(p2) · · · ϕ0(pn)
ϕ1(p1) ϕ1(p2) . . . ϕ1(pn)

...
...

. . .
...

ϕn−k−1(p1) ϕn−k−1(p2) . . . ϕn−k−1(pn)

 .

(6)
With a valid codeword C, we have C · HT = 0 where
0 represents the all-zero vector resulting from the matrix
product. In order to perform ABP decoding of Hermitian
codes, the binary image of its parity-check matrix is required.
Let σ(x) ∈ F2[x] be a primitive polynomial of Fq and
A ∈ Fϖ×ϖ

2 is the corresponding companion matrix. For any
field element αt (t = 0, 1, 2, . . . , q − 2), mapping αt 7→ At

is applied. Consequently, the binary image of a parity-check
matrix can be generated by replacing its entries αt by their
corresponding matrices At. We use Hb to denote such a binary
parity-check matrix and Hb ∈ F(N−K)×N

2 , where N = nϖ
and K = kϖ. Let c̄ denote the binary representation of
codeword C as c̄ = [c1, c2, . . . , cN ], we have c̄ ·HT

b = 0.

III. ITERATIVE SOFT-DECISION DECODING

The iterative decoding approach consists of two decoding
stages. The first decoding stage is the ABP algorithm, which
supplies the improved bit reliabilities. They are then converted
into symbol reliabilities that are utilized by the second decod-
ing stage, the KV algorithm. The improved bit reliabilities
will also be given as feedback to the next round of ABP
decoding process. The KV algorithm determines a list of
output candidates P (x, y) that are in the form of F (x, y), and
store them in the global list L. In the end, the ML selection

criterion is applied to L and pick out the candidate that has
the minimal Euclidean distance to the received vector.

A. The ABP Decoding

The ABP algorithm will first perform Gaussian elimination
on parity-check matrix Hb based on the bit reliability values.
It yields an adapted parity-check matrix H′

b, based on which
the iterative BP algorithm is carried out.

It is assumed the channel is memoryless and ȳ ∈ R is the
received vector observed from the channel. The log-likelihood
ratio (LLR) of bit cγ(γ = 1, 2, . . . , N) is determined by:

L(cγ) = ln
Pr[cγ = 0|ȳ]
Pr[cγ = 1|ȳ]

, (7)

where Pr[cγ = 0|ȳ] and Pr[cγ = 1|ȳ] are the a posteriori
probability (APP) values. The LLR vector L that collects all
the LLR values of the coded bits is:

L = [L(c1), L(c2), . . . , L(cN−K), . . . , L(cN )]. (8)

With the magnitude |L(cγ)| being higher, bit cγ is more
reliable. Hence, all the magnitudes |L(cγ)| will be sorted
in an ascending order, yielding a new bit index sequence
γ1, γ2, . . . , γN−K , . . . , γN that implies |L(cγ1)| < |L(cγ2)| <
. . . < |L(cγN−K

)| < · · · < |L(cγN
)|. Consequently, the sorted

LLR vector can be organized as:

Lsrt = [L(cγ1), L(cγ2), . . . , L(cγN−K ), · · · , L(cγN )]. (9)

The bits that correspond to the first N−K LLR values of Lsrt

are considered as the unreliable bits. Gaussian elimination will
be performed on the columns w.r.t. the unreliable bits. Let Υγ

denote the weight-1 column vector with 1 at its γth entry and
0 elsewhere. Gaussian elimination will first reduce column γ1
to Υ1, then reduce column γ2 to Υ2 and etc. It attempts to
reduce the first N −K independent columns implied by Lsrt

to the weight-1 columns. This process is called the matrix
adaptation, resulting in an updated binary parity-check matrix
H′

b.
Let hβγ denote the entry of matrix H′

b. The conventional
BP algorithm will now be applied to H′

b. Let us define

B(γ) , {β | hβγ = 1, ∀ hβγ ∈ H′
b}, (10)

Γ(β) , {γ | hβγ = 1, ∀ hβγ ∈ H′
b}. (11)

Let matrices V, U ∈ R(N−K)×N with entries vβγ and uβγ ,
respectively. At the beginning, matrix V is initialized as:

vβγ = L(cγ) · hβγ ,∀ 1 ≤ β ≤ N −K, 1 ≤ γ ≤ N. (12)

First, the horizontal step will be performed as:

uβγ = 2 tanh−1
( ∏

τ∈Γ(β)\γ

tanh
(vβτ

2

))
. (13)

Then, the vertical step will be performed as:

vβγ = L(cγ) + η
∑

τ∈B(γ)\β

uτγ , (14)

where 0 < η ≤ 1 is the damping factor [12] [13]. The extrinsic
information of bit cγ is given by:

Lext(cγ) =
∑

τ∈B(γ)

uτγ . (15)
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Calculations of (13)-(14) define one iteration of BP decoding.
Let NBP denote the predefined number of BP iterations. Once
NBP is reached, the LLR value of bit cγ is updated by:

L′(cγ) = L(cγ) + ηLext(cγ). (16)

As a result, the updated LLR vector L
′

can be formed as:
L
′
= [L′(c1), L

′(c2), . . . , L
′(cN−K), . . . , L′(cN )]. (17)

In the proposed ABP-KV algorithm, multiple matrix adap-
tations can be performed and each of them contains NBP BP
iterations. Given NADP as the number of matrix adaptations,
the total number of BP iterations becomes NADPNBP. If the
next round of matrix adaptation is to be carried out, the
LLR sorting process will be performed based on the updated
LLR vector L

′
. Through matrix adaptation, the density of the

original parity-check matrix Hb is reduced and part of its short
cycles are eliminated, making it more suitable for BP decod-
ing. More importantly, since the columns w.r.t. the unreliable
bits are reduced to weight-1, it prevents the propagation of the
unreliable information during the BP decoding process.

B. The KV Decoding
After every NBP BP iterations, each updated LLR value

L′(cγ) will be converted back to a pair of bit APP values as:

Pr[cγ = 0|ȳ] = 1

1 + e−L′(cγ)
and Pr[cγ = 1|ȳ] = 1

1 + eL
′(cγ)

.

(18)
They are then utilized to generate the reliability matrix Π
whose entries πij are symbol wise APP values defined as:

πij = Pr[Cj = ρi | ȳ]. (19)
Let Λi denote the binary representation of symbol ρi:

Λi = [θ1 θ2 · · · θϖ | ρi =
ϖ∑

κ=1

θκ · αϖ−κ and θκ ∈ [0, 1]].

(20)
For example, in F8, ρ7 = α2 + 1 and Λ7 = [101]. Hence, the
symbol wise APP values πij can be determined by:

πij =

ϖ∏
κ=1,θκ∈Λi

Pr[c(j−1)ϖ+κ = θκ | ȳ]. (21)

In general, every ϖ consecutive pairs of bit APP values will
be multiplied as (21) in q different permutations, generating
a column of matrix Π. It will then be transferred into a
multiplicity matrix M whose entries mij represent the inter-
polation multiplicity for points (pj , ρi), where 1 ≤ i ≤ q and
1 ≤ j ≤ n.

Interpolation will be performed based on M, yielding an
interpolated polynomial Q ∈ Fq[x, y, z] as:

Q(x, y, z) =
∑
a,b∈N

Qabϕa(x, y)z
b. (22)

There are in total C(M) = 0.5
∑

i,j mij(mij+1) interpolation
constraints [7] that polynomial Q needs to satisfy. Factoriza-
tion will then be performed to find out the z-roots of Q [14]:

{P (x, y) | Q(x, y, P (x, y)) = 0}. (23)
Let degw Q denote the weighted degree [7] of polynomial
Q, factorization can produce at most l = ⌊ degw Q

vp∞ (ϕ−1
k−1)

⌋ output
candidates. Again, they will be stored in the global list L.

                        

Sort LLR Matrix adaptation BP decoding KV decoding 
In the first matrix adaptation, generate )(gsrtL  

L srtL )( /gsrtsrtLL H’b 
Hb 

Π 
'L

),( yxP  

Fig. 1. Decoding parameters exchange of the ABP-KV algorithm.

C. Re-grouping of Unreliable Bits

The above description shows the ABP algorithm enables
the columns w.r.t. the unreliable bits to be reduced to weight-
1, and those bits are more likely to be corrected. However,
it is possible that the reliable bits are wrongly estimated by
their LLR values. Enabling their corresponding columns to
be reduced can enhance the chance of them being corrected.
Therefore, after the initial sorting process, vector Lsrt can
be restructured, creating different groups of bits whose corre-
sponding columns will be reduced.

Let NGR denote the designed number of groups of unreliable
bits and r = ⌊N/NGR⌋. The original sorted LLR vector Lsrt

can be expressed as [13]:

Lsrt = [L(cγ1), . . . , L(cγr ), L(cγr+1), . . . , L(cγ2r ), . . . ,

L(cγ(g−1)r+1
), . . . , L(cγgr ), . . . , L(cγN

)], (24)

where 1 ≤ g ≤ NGR is the group index. L
(g)
srt is used to

denote the restructured LLR vector of group g. For group 1,
L

(1)
srt = Lsrt since no restructuring is needed. While for group

g with g > 1, vector Lsrt will be restructured to:

L
(g)

srt = [L(cγ(g−1)r+1
), . . . , L(cγgr ), L(cγ1), . . . ,

L(cγ(g−1)r
), L(cγgr+1), . . . , L(cγN

)]. (25)

Again, matrix adaptation will be performed on the first N−K

independent columns implied by L
(g)

srt.
Given NADP matrix adaptations, the LLR vector restructur-

ing process should only be performed prior to the first matrix
adaptation of the ABP algorithm. Hence, the first adaptation
is performed based on L

(g)

srt, while the rest of the matrix
adaptations are performed based on the updated LLR vector
L
′
. Generalizing this section, Fig. 1 illustrates the decoding

parameters exchange between different steps of the ABP-
KV algorithm. Notice that with NGR unreliable groups, the
ABP-KV decoding process will be deployed NGR times, each
of which inherits a specific restructuring pattern for L

(g)

srt.
Summarizing this section, the proposed ABP-KV decoding
algorithm is presented as Algorithm 1.

IV. GEOMETRIC ANALYSIS OF ABP DECODING

The conventional BP decoding can be seen as a gradient
descent decoding problem [12] [15]. The coded bit LLR values
L(cγ) can be normalized to the region of [−1,+1] by the
following mapping function:

ξ(L(cγ)) = tanh
(L(cγ)

2

)
=

eL(cγ) − 1

eL(cγ) + 1
. (26)
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Algorithm 1 ABP-KV decoding of Hermitian codes
1: for each group g do
2: Let L

′
= L;

3: for each parity-check matrix adaptation do
4: Generate a sorted LLR vector Lsrt based on L

′
;

5: if it is the first matrix adaptation then
6: Restructure the sorted LLR vector to L

(g)

srt;
7: Generate matrix H′

b based on L
(g)

srt.
8: else
9: Generate matrix H′

b based on Lsrt;
10: end if
11: Initialize matrix V as in (12);
12: for each BP iteration do
13: Perform the horizontal step as in (13);
14: Perform the vertical step as in (14);
15: end for
16: Determine the extrinsic information of bit cγ as in

(15) and update its LLR value as in (16);
17: Form the updated LLR vector L

′
as in (17);

18: Generate N pairs of bit APP values as in (18);
19: Determine the reliability matrix Π as in (21);
20: Transfer matrix Π into matrix M;
21: Perform interpolation to determine Q of (22);
22: Perform factorization to find out P (x, y) of (23);
23: end for
24: end for

Again, with the magnitude |ξ(L(cγ))| being higher, bit cγ
is more reliable. By normalizing all the LLR values of a
codeword as in (26), we can form vector T as:

T = [T1, T2, . . . , TN ] = [ξ(L(c1)), ξ(L(c2)), . . . , ξ(L(cN ))].
(27)

It corresponds to an estimated codeword that satisfies all the
checks. With matrix H′

b and vector T , the potential function
P(H′

b, T ) of a Hermitian code can be defined as [12] [15]:

P(H′
b, T ) = −

N−K∑
β=1

∏
γ∈Γ(β)

Tγ . (28)

The quantization of P(H′
b, T ) describes the reliability of

vector T . Consequently, the LLR updates of (16) can be seen
as the gradient descent update as follows:

T ′
γ = Tγ − η

∂P(H′
b, T )

∂Tγ
= Tγ + η(

N−K∑
β=1

∏
τ∈Γ(β)\γ

Tτ ). (29)

With all the checks of matrix H′
b being satisfied, a valid

codeword is reached if |Tγ | = 1 for γ = 1, 2, . . . , N .
Consequently, min{P(H′

b, T )} = −(N − K). Therefore,
finding an estimated codeword using the BP algorithm can
be interpreted as identifying the vertex at which the potential
function is minimized.

Without performing matrix adaptation, the gradient descent
decoding is easily hindered at some pseudo-equilibrium points
which prevent the potential function from reaching its mini-
mum. Fig. 2 shows the convergence behavior of the potential
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Fig. 2. Convergence of the potential function of the (64, 47) Hermitian code.

function of the (64, 47) Hermitian code, which is measured
in the additive white Gaussian noise (AWGN) channel. It
shows without matrix adaptation, the potential function cannot
converge to its minimum. By increasing the signal-to-noise
ratio (SNR), a valid codeword is reached with fewer iterations.
However, the matrix adaptation can only reduce the density of
H′

b to around 37%, which is not sparse enough for the BP
algorithm to produce a reliable error-correction performance.
Without making a hard-decision on its decoding outputs, the
ABP algorithm will have to be integrated by a conventional
algebraic decoding algorithm. In order to fully utilize its soft
output, the KV algorithm becomes an obvious choice.

V. PERFORMANCE EVALUATIONS

The section presents the ABP-KV decoding performance
for Hermitian codes. The results are obtained in the AWGN
channel using BPSK modulation. The ABP-KV algorithm
is parameterized by the ternary tuple (NGR,NADP,NBP). It
implies the algorithm will perform NGRNADP Gaussian elim-
inations and KV decodings, and NGRNADPNBP BP iterations.
The KV algorithm is parameterized by the interpolation cost
C that defines the scale of list decoding complexity.

1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01

2 3 4 5 6 7 8 9SNR (dB)

BER

Sakata/GS (optimal)KV (optimal)ABP-KV (C=500) (1, 10, 2)ABP-KV (C=500) (2, 5, 2)ABP-KV (C=3000) (10, 5, 2)ABP-KV (C=3000) (50, 5, 3)Damping factor = 0.1

                        

Fig. 3. Performance of ABP-KV decoding of (64, 52) Hermitian code.

Fig. 3 shows the ABP-KV decoding performance of the
(64, 52) Hermitian code. The performances of the Sakata
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algorithm and the optimal GS and KV algorithms are shown as
comparison benchmarks. It can be seen that ABP-KV decoding
achieves significant performance improvements over the exist-
ing decoding algorithms. Notice that ABP-KV decoding with
(C = 500)(2, 5, 2) outperforms that with (C = 500)(1, 10, 2).
However, these two sets of parameters indicate a similar
decoding complexity. It implies that given a budget on the
amount of Gaussian eliminations, it is beneficial to deploy
them among different unreliable groups. Further performance
improvements can be made by increasing the decoding pa-
rameters, such as the results associated with parameters (C =
3000)(10, 5, 2) and (C = 3000)(50, 5, 3).

1.E-06
1.E-05
1.E-04
1.E-03
1.E-02
1.E-01

1 2 3 4 5 6 7 8 9 10SNR (dB)

BER

Herm (64,47), KV (optimal)Herm (64,47), ABP-KV (C=1000) (1, 3, 3)Herm (64,47), ABP-KV (C=1000) (10, 5, 3)RS (15,11), KV (optimal)RS (15,11), ABP-KV (C=1000) (1, 3, 3)RS (15,11), ABP-KV (C=1000) (20, 10, 3)Damping factor = 0.10 for Hermitian codeDamping factor = 0.30 for RS code

                        

Fig. 4. Performance comparison of the Hermitian code and the RS code.

Fig. 4 compares the ABP-KV decoding performance be-
tween the (64, 47) Hermitian code and the (15, 11) RS code.
They are defined over F16 and have a similar code rate.
It can be seen that with the same decoding parameter, i.e.,
(C = 1000)(1, 3, 3), the Hermitian code prevails. Such a
performance advantage is due to the size of the Hermitian
code. Its size is about 4 times of the RS code. Since the
decoding complexity is proportional to the size of the code,
ABP-KV decoding of the Hermitian code would be more
complex. In order to compare the performance based on a
similar decoding complexity, we further compare ABP-KV
decoding of the Hermitian code with (C = 1000)(10, 5, 3)
and the RS code with (C = 1000)(20, 10, 3). For the RS code,
the numbers of Gaussian eliminations, KV decodings and BP
iterations are 4 times of those for the Hermitian code. Such a
setting compensates the complexity advantage of the RS code
due to its shorter length. However, the Hermitian code still
outperforms the RS code with 0.5dB coding gain at bit error
rate (BER) of 10−5. Hence, with a similar decoding complex-
ity, the Hermitian code still has a performance advantage.

VI. CONCLUSIONS

This paper has proposed the iterative ABP-KV decoding
algorithm for Hermitian codes. With the ABP algorithm to
improve the reliability of the received information, the KV
algorithm performs the polynomial-time list decoding to re-
trieve the intended message. Re-grouping of the unreliable

bits that triggers a different ABP decoding process has been
introduced to enhance the error-correction performance. Ge-
ometric analysis of the ABP algorithm has been presented,
demonstrating the necessity of performing parity-check matrix
adaption and integrating the ABP and KV algorithms. Our
performance evaluations show that the proposed algorithm is
so far the most advanced decoding approach for Hermitian
codes. With a similar decoding complexity, ABP-KV decoding
of Hermitian code outperforms that of RS code. Therefore, the
proposed iterative decoding scheme can be considered for a
wider range of applications.
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