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Abstract—Advancing from Reed-Solomon (RS) codes, the
length of algebraic-geometric (AG) codes can exceed the size
of finite field, resulting in a greater error-correction capability.
However, this is realized with a genus penalty. Usually, they
are not maximum distance separable (MDS) codes. One-point
elliptic codes are either MDS or almost MDS, yielding a good
tradeoff between codeword length and distance property. This
paper proposes the Guruswami-Sudan (GS) list decoding algo-
rithm for elliptic codes. To define the interpolated polynomial
Q(x, y, z), an explicit construction for the zero basis of each
affine point is introduced. Given an interpolation multiplicity m,
the error-correction capability τm and the maximum decoding
output cardinality lm of the GS algorithm are characterized. An
efficient interpolation algorithm is further presented for elliptic
codes. Performance of elliptic codes is shown for the first time,
demonstrating their advantage over RS codes.

Index Terms—Algebraic-geometric codes, elliptic codes, inter-
polation, list decoding

I. INTRODUCTION

Algebraic-geometric (AG) codes [1] are constructed based
on an algebraic curve. Their codeword length can exceed the
size of finite field, yielding a greater error-correction capability
than a similar rate Reed-Solomon (RS) codes defined over
the same finite field. However, they are usually not maximum
distance separable (MDS) codes due to a genus penalty. In
the AG family, elliptic codes are either MDS or almost MDS,
yielding a good tradeoff between codeword length and distance
property.

The early attempt to decode elliptic codes was made by
Driencourt [2]. The decoding can correct at most ⌊d∗−1

4 ⌋
errors, where d∗ is the designed minimum distance of the
code. Justesen et al. presented a decoding algorithm for a
class of AG codes based on plane curve [3], which can be
seen as a generalization of Peterson’s algorithm for BCH
and RS codes. Skorobogatov and Vladut further generalized
the algorithm to decode codes constructed from an arbitrary
algebraic curve [4]. For elliptic codes, the algorithm can
correct up to ⌊d∗−1

2 ⌋ errors. Feng and Rao introduced majority
voting [5] to determine the unknown syndromes and proposed
an algorithm that can decode AG codes also up to ⌊d∗−1

2 ⌋
errors. Sakata et al. presented an efficient decoding algorithm
for Hermitian codes using shift register synthesis [6]. Its
decoding performance has been later studied by Johnston and
Carrasco [7].

Another branch of decoding for AG codes is the interpola-
tion based list decoding, first proposed by Sudan for low rate
RS codes [8]. Shokrollahi and Wasserman generalized Sudan’s
algorithm for low rate AG codes [9]. Guruswami and Sudan
further improved it to decode all rate RS and AG codes, with
an error-correction capability beyond ⌊d∗−1

2 ⌋, called the GS
algorithm [10]. It constructs a minimum polynomial that has
a zero of multiplicity m over a set of points. The intended
message can be decoded by finding a root of the polynomial.
Since it produces a list of decoded candidates, the GS decoding
is also called the list decoding. Høholdt and Nielsen presented
a mathematical framework for GS decoding of Hermitian
codes [11]. Soft-decision list decoding of Hermitian codes
was later proposed by Chen et al. [12] and Lee et al. [13],
independently. Therefore, the interpolation based list decoding
has been well developed for Hermitian codes. Their codeword
length can be far greater than the size of finite field. But
Hermitian codes also suffer a large genus penalty. Trading
off the codeword length and distance property, elliptic codes
stand out as a promised candidate. Recently, list decoding
of elliptic codes has been considered by Zhang and Liu for
solving the elliptic curve discrete logarithm problem [14].
However, they only consider affine points with order greater
than interpolation multiplicity. To maximize the codeword
length, all affine points need to be considered and their zero
basis construction become complicated.

This paper proposes the GS list decoding algorithm for
one-point elliptic codes. To define the interpolated polynomial
Q(x, y, z), we present an explicit construction for the zero
basis of each affine point of the curve. Given an interpolation
multiplicity m, the error-correction capability τm and the max-
imum decoding output cardinality lm are further characterized.
Based on the above preparations, an efficient interpolation
algorithm to determine Q is proposed. Decoding performance
of elliptic codes is also shown for the first time, demonstrating
their advantage over RS codes.

II. BACKGROUND KNOWLEDGE

A. AG Codes

Let Fq denote a finite field of size q and χ denote a smooth
absolutely irreducible plane curve defined over Fq with a
degree θ. The curve has a genus of g = (θ−1)(θ−2)

2 . Let Fq(χ)
denote the algebraic function field of χ. Points on the curve
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χ with all their coordinates over Fq are called rational points.
They are either the affine points (denoted as Pi) or the points
of infinity (denoted as P∞). In this paper, we consider curves
with one point of infinity, i.e., P∞ = (0, 1, 0). Their affine
component is chosen for code construction. Hence, the affine
points can be denoted as Pi = (xi, yi).

Given h ∈ Fq(χ), its order at a rational point P is vP (h).
Definition I [15]. Let h ∈ Fq(χ) and h ̸= 0, the divisor

of h is defined as div(h) =
∑

P∈Pχ
vP (h)[P ]. div(h) is also

called the principle divisor of χ.
Definition II [16]. Given χ and one of its divisor D, the

finite dimensional vector space over Fq(χ) is defined as

L(D) = {h ∈ Fq(χ) \ {0} | div(h) +D ≽ 0} ∪ {0}, (1)

where “ ≽ ” indicates that the coefficients of div(h) +D are
nonnegative. If deg(D) > 2g − 2, the dimension of L(D) is
dim(D) = deg(D)− g + 1.

Note that L(u[P∞]) with u ≥ 0 contains the pole basis
ZP∞ = {ϕ0(x, y), ϕ1(x, y), . . .}, which is a set of bivariate
monomials with an increasing pole order at P∞, i.e.,

−vP∞(ϕa) < −vP∞(ϕa+1), a ∈ N, (2)

where N is the set of nonnegative integers. Moreover, for
each affine point Pi, there exists a zero basis ZPi =
{ψPi,0(x, y), ψPi,1(x, y), . . .} of L(u[P∞]) such that

vPi(ψPi,α) < vPi(ψPi,α+1), α ∈ N, (3)

where ψPi,α(xi, yi) = 0 and vPi(ψPi,α) = α. Note that

ϕa =
∑
α∈N

ξa,Pi,αψPi,α, (4)

where ξa,Pi,α ∈ Fq is the corresponding coefficient between
ϕa and ψPi,α [11] [17].

Given n distinct affine points P0, P1, . . . , Pn−1 of χ, we
have a divisor G =

∑n−1
i=0 [Pi]. Let f ∈ L(u[P∞]) with u < n

and
f(x, y) = f0ϕ0 + f1ϕ1 + · · ·+ fk−1ϕk−1 (5)

is the message polynomial, where f0, f1, . . . , fk−1 ∈ Fq are
message symbols and k = u− g+1 < n for u > 2g− 2. The
(n, k) one-point AG code constructed based on χ is

Cχ (G, u[P∞]) = {(f(P0), f(P1), . . . , f(Pn−1)) , ∀f}, (6)

where codeword c = (c0, c1, . . . , cn−1) = (f(P0), f(P1), . . . ,
f(Pn−1)). The code has length n and dimension k. It has a
minimum distance d ≥ d∗, where d∗ = n − k − g + 1 is the
designed minimum distance of the code.

B. The GS List Decoding

Let R =
∞∪
u=0

L(u[P∞]) ⊂ Fq(χ) and R[z] denote the

trivariate polynomial ring defined over R. The GS decod-
ing consists of interpolation and root-finding. Given r =
(r0, r1, . . . , rn−1) ∈ Fn

q as a received word, it is a variant
of c, as r = c + e where e ∈ Fn

q is an error vector. The

following n interpolation points can be formed

(P0, r0), (P1, r1), . . . , (Pn−1, rn−1). (7)

Interpolation constructs a minimum polynomial Q(x, y, z) ∈
R[z]. It interpolates the n points with a multiplicity of m.
Polynomial Q should satisfy C = n

(
m+1
2

)
interpolation con-

straints. Root-finding further decodes the message polynomial
f through finding its z-roots, i.e., Q(x, y, f) = 0.
Q can be written as Q =

∑
a,b≥0 Qabϕaz

b, where
Qab ∈ Fq . Let wz = −vP∞(ϕk−1) denote the weight of
z, the (1, wz)-weighted degree of ϕazb is deg1,wz

(ϕaz
b) =

−vP∞(ϕa) + wzb. Given two distinct monomials ϕa1z
b1

and ϕa2
zb2 , we have ord(ϕa1

zb1) < ord(ϕa2
zb2), if

deg1,wz
(ϕa1z

b1) < deg1,wz
(ϕa2z

b2), or deg1,wz
(ϕa1z

b1) =

deg1,wz
(ϕa2z

b2) and b1 < b2. Hence, the (1, wz)-
weighted degree and leading order of Q can be defined
as deg1,wz

(Q) = max{deg1,wz
(ϕaz

b) | Qab ̸= 0} and
lod(Q) = max{ord(ϕazb) | Qab ̸= 0}. For two distinct
polynomials Q1, Q2 ∈ R[z], Q1 < Q2, if lod(Q1) < lod(Q2).

Theorem 1 [10]. Given polynomial Q ∈ R[z] that inter-
polates the n points of (7) with a multiplicity of m, and a
polynomial h in the form of (5), if

m(n− |{i | h(Pi) ̸= ri, ∀i}|) > deg1,wz
(Q), (8)

then (z − h) | Q or Q(x, y, h) = 0.
Therefore, the message can be decoded by finding z-roots of

Q. Since f(Pi) = ri, if ri = ci, the GS algorithm corrects |{i |
f(Pi) ̸= ri, ∀i}| errors and this error-correction capability
can be improved by increasing m. Given an (n, k) AG code
constructed on a curve of genus g, the GS algorithm’s error-
correction capability is upper bounded by

τGS = n−
⌊√

n(k + g − 1)
⌋
− 1. (9)

III. ELLIPTIC CODES

The affine elliptic curve χEL can be written as y2+ a1xy+
a3y = x3+a2x

2+a4x+a6, where a1, a2, a3, a4, a6 ∈ Fq and
the discriminant is not null. Hence, elliptic curves have a genus
g = 1. Note that an (n, k) elliptic code will be an MDS code
if and only if for any {Pi1 , Pi2 , . . . , Pik} ⊆ supp(G), [Pi1 ] +
[Pi2 ]+ · · ·+[Pik ]−k[P∞] is not a principal divisor. Based on
the Hasse-Weil bound [16], the maximum number of rational
points on χEL is Nq(χEL) = q + 1 + 2

√
q. Therefore, curve

coefficients a1, a2, a3, a4, a6 are chosen such that the Hasse-
Weil bound can be reached. As a result, the codeword length
can be maximized. Given χEL, −vP∞(x) = 2, −vP∞(y) = 3
and −vP∞(xλyγ) = 2λ+ 3γ. The pole basis ZP∞ of R is

ZP∞ = {1, x, y, x2, xy, x3, x2y, x4, x3y, . . .}. (10)

In general, ϕa = xλyγ , where λ ∈ N and γ ∈ {0, 1}. It can
be seen that for elliptic codes, wz = −vP∞(ϕk−1) = k.

To construct an (n, k) elliptic code, let G = [P0] + [P1] +
· · · + [Pn−1] be the divisor of χEL, CχEL(G, k[P∞]) can be
generated following (5) and (6).

Rational points of χEL form an additive Abelian group with
P∞ as the identity element [15]. That says given two affine
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points P1 and P2, we can find P3 such that P1+P2 = P3. P1

and P2 define a line b1x+b2y+b3 = 0, where b1, b2, b3 ∈ Fq .
It also passes through −P3. Therefore, div(b1x+b2y+b3) =
[P1] + [P2] + [−P3] − 3[P∞]. Similarly, x − x3 = 0 passes
through P3 and −P3, div(x − x3) = [P3] + [−P3] − 2[P∞].
Therefore,

[P1] + [P2] = [P3] + [P∞] + div
(
b1x+ b2y + b3

x− x3

)
. (11)

Theorem 2 [15]. Given a divisor D of χEL, it is a principle
divisor if and only if deg(D) = 0 and sum(D) = P∞.

Therefore, the divisor of ψPi,α can be written as

div (ψPi,α) = α[Pi] + [−αPi]− (α+ 1) [P∞]. (12)

For any Pi of χEL, there exists a nonnegative integer δ such
that δPi = P∞, where δ is the order of Pi. Consequently,
div(ψPi,δ−1) = (δ − 1)[Pi] + [−(δ − 1)Pi] − δ[P∞] = (δ −
1)[Pi] + [Pi] − δ[P∞] = δ[Pi] − δ[P∞] and div(ψPi,δ) =
δ[Pi] + [−δPi] − (δ + 1)[P∞] = δ[Pi] − δ[P∞]. That says
vPi(ψPi,δ−1) = vPi(ψPi,δ), which contradicts the definition
of ZPi

. Hence, eq. (12) holds when α < δ − 1. A practical
channel code is often defined in a binary extension field, e.g.,
F64 and F256, in which m ≥ δ−1 holds for some affine points.
Since α ∈ [0,m], this can lead to α ≥ δ − 1. Consequently,
eq. (12) does not hold. The following Theorem redefines the
divisors of functions of ZPi .

Theorem 3. Given an affine point Pi of χEL, δPi = P∞.
Let ψPi,0 = 1. Divisors of ψPi,α(α > 0) are defined as (i)
div(ψPi,α) = α[Pi] + [−αPi] − (α + 1)[P∞], if 0 < α <
δ − 1; (ii) div(ψPi,α) = α[Pi] + [−(α − 1)Pi] + [−Pi] −
(α + 2)[P∞], if α = δ − 1; (iii) div(ψPi,α) = α[Pi] −
α[P∞], if α = δ; (iv) div(ψPi,α) = div(ψPi,(α−δ⌊α

δ ⌋)) +
⌊α
δ ⌋(δ[Pi]− δ[P∞]), if α > δ.

Proof: Based on Theorem 2, we know when 0 ≤ α ≤ δ,
function ψPi,α is a zero basis function. When α > δ and
0 < α−δ⌊α

δ ⌋ < δ−1, div(ψPi,(α−δ⌊α
δ ⌋)) = (α−δ⌊α

δ ⌋)[Pi]+
[−(α−δ⌊α

δ ⌋)Pi]− ((α−δ⌊α
δ ⌋)+1)[P∞] = (α−δ⌊α

δ ⌋)[Pi]+
[−αPi] − ((α − δ⌊α

δ ⌋) + 1)[P∞], then div(ψPi,(α−δ⌊α
δ ⌋)) +

⌊α
δ ⌋(δ[Pi] − δ[P∞]) = α[Pi] + [−αPi] − (α + 1)[P∞], i.e.,
vPi(ψPi,α) = α. The proof is similar for the rest zero basis
function with α > δ.

Example 1. Given χEL: y2 + y = x3, which is defined over
F4 = {0, 1, α, α2} and α is a primitive element satisfying
α2 = α + 1. Its affine points are: P0 = (0, 0), P1 = (0, 1),
P2 = (1, α), P3 = (1, α2), P4 = (α, α), P5 = (α, α2),
P6 = (α2, α) and P7 = (α2, α2). For P2, δ = 3. Based
on Theorem 3, the first five functions of ZP2 are ψP2,0 = 1,
ψP2,1 = x + 1, ψP2,2 = x2 + 1, ψP2,3 = y + x + α2 and
ψP2,4 = xy + x2 + y + αx+ α2.

IV. GS DECODING OF ELLIPTIC CODES

A. Parameterization

Given an interpolation multiplicity m, let lm = degz(Q)
and τm denote the error-correction capability, respectively.
Since the decoded candidates are z-roots of Q, lm is also
the maximum decoding output cardinality.

Theorem 4. Given an (n, k) elliptic code, then

lm =

⌊√
nm(m+ 1)

k
+

1

4
− 1

2

⌋
. (13)

Proof: Interpolating n points with a multiplicity of m im-
poses n

(
m+1
2

)
interpolation constraints. Polynomial Q should

contain at least n
(
m+1
2

)
+ 1 coefficients so that the linear

system will have a nonzero solution. Therefore,

lm = max
{
l | ord(zl) ≤ n

(
m+ 1

2

)}
.

Since wz = k and ord(zl) = ord(zl−1) + |{ϕazb | (l − 1)k <
deg1,k(ϕaz

b) ≤ lk}| = ord(zl−1) + lk, ord(zl) = (1 + 2 +

· · · + l)k = kl(l+1)
2 . Substituting it into the above equation

will lead to the conclusion.
Theorem 5. For an (n, k) elliptic code, if m(n − τm) −

klm ̸= 1,

τm = n−
⌊
1

m
+
lmk

2m
+

(m+ 1)n

2(lm + 1)

⌋
− 1. (14)

Otherwise,

τm = n− 1 + klm
m

. (15)

Proof: Given r, τm = |{i | f(Pi) ̸= ri, ∀i}|. Based
on Theorem 1, we know if m(n − τm) > deg1,k(Q),

Q(x, y, f) = 0. Hence, the monomial ϕazb of Q should satisfy
deg1,k(ϕaz

b) < m(n− τm), and deg1,k(ϕa) < m (n− τm)−
kb. Since b = 0, 1, . . . , lm, when m(n − τm) − klm ̸= 1,
|{ϕazb | deg1,k(ϕaz

b) < m(n− τm)}| =
∑lm

b=0(m(n− τm)−
kb−1) = m(lm+1)(n−τm)− klm(lm+1)

2 − lm−1. Therefore,
when

m(lm + 1)(n− τm)− klm(lm + 1)

2
− lm − 1 > n

(
m+ 1

2

)
,

the linear system has a nonzero solution. Solving the above
inequality leads to (14). When m(n − τm) − klm = 1, (15)
can be straightforwardly reached.

Example 2. Applying Theorems 4 and 5, we give the
decoding parameters for the (80, 27) and the (288, 163)
elliptic codes, respectively. The listed multiplicities are the
minimum values that yield the corresponding τm. The two
codes are constructed based on: y2 + y = x3 defined over
F64, and y2 + y = x3 + a6 defined over F256, respectively,
where a6 satisfies a2

0

6 + a2
1

6 + · · ·+ a2
7

6 = 1.
TABLE I

DECODING PARAMETERS OF THE (80, 27) ELLIPTIC CODE

m 1 2 3 4 7 21
lm 1 3 5 7 12 36
τm 25 29 30 31 32 33

B. The Interpolation Constraints

Given an interpolation multiplicity m, we define R[z]lm =
{Q ∈ R[z] | degz(Q) ≤ lm}. An interpolated polynomial
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TABLE II
DECODING PARAMETERS OF THE (288, 163) ELLIPTIC CODE

m 1 3 4 5 6 8 12 21 83
lm 1 4 5 6 8 10 16 28 110
τm 61 63 65 66 67 68 69 70 71

Q ∈ R[z]lm can be written as

Q =
∑
a∈N

∑
b≤lm

Qabϕaz
b, (16)

For point (Pi, ri), (4) holds and zb = (z − ri + ri)
b

=∑
β≤b

(
b
β

)
rb−β
i (z − ri)

β
. Q can be further derived as

Q =
∑
a∈N

∑
b≤lm

Qab

(∑
α∈N

ξa,Pi,αψPi,α

)

·

∑
β≤b

(
b

β

)
rb−β
i (z − ri)

β


=

∑
α,β∈N

(
D(Pi,ri)

αβ (Q)
)
ψPi,α (z − ri)

β
, (17)

where

D(Pi,ri)
αβ (Q) =

∑
a∈N

lm∑
b=β

Qab

(
b

β

)
ξa,Pi,αr

b−β
i (18)

is the evaluation of the (α, β)-Hasse derivative of Q at (Pi, ri).
Note that Q(Pi, ri) = 0, Q interpolates (Pi, ri). Furthermore,
if D(Pi,ri)

αβ (Q) = 0, ∀ α+β < m, Q has a zero of multiplicity
m at (Pi, ri). Eq. (18) implies an interpolation constraint
on Q (coefficients Qab should satisfy (18)). Since there are(
m+1
2

)
pairs of (α, β) that satisfy α + β < m, interpolating

n points implies n
(
m+1
2

)
interpolation constraints. Eq. (18)

also shows the corresponding coefficients ξa,Pi,α are critical in
determining the interpolation property of a polynomial. With
ZP∞ and ZPi , they can be determined prior to the construction
of Q using Algorithm 6.1 of [17]. Consequently, the following
interpolation can be facilitated.

C. The Interpolation Algorithm

It is now sufficient to introduce the interpolation algorithm
for constructing Q. Given χEL, we know R = Fq[X,Y ]/ <
Y 2 + a1XY + a3Y −X3 − a2X

2 − a4X − a6 >= Fq[x, y],
which is a free module over Fq[x] of rank 2 with a free basis
{1, y}, where x and y denote the residue classes of X and Y ,
respectively. Therefore, R[z]lm can be seen as a free module
of rank 2(lm + 1) over Fq[x]. At the beginning, a group of
polynomials can be initialized as

G = {Qµ+2ν = yµzν | µ = 0, 1, ν = 0, 1, . . . , lm}
= {1, y, z, yz, . . . , zlm , yzlm}. (19)

For each polynomial Qt (t = 0, 1, . . . , 2lm + 1), its (α, β)-
Hasse derivative evaluation D(Pi,ri)

αβ (Qt) will be determined as

in (18). If D(Pi,ri)
αβ (Qt) = 0, Qt satisfies the current constraint.

It does not need to be modified. For those with D(Pi,ri)
αβ (Qt) ̸=

0, the minimum one will be picked up as

t′ = index
(

min{Qt | D(Pi,ri)
αβ (Qt) ̸= 0}

)
(20)

and let
Q∗ = Qt′ . (21)

For polynomials Qt with D(Pi,ri)
αβ (Qt) ̸= 0 and t ̸= t′, they

are updated by

Q′
t = D(Pi,ri)

αβ (Qt)Q∗ −D(Pi,ri)
αβ (Q∗)Qt. (22)

Note that D(Pi,ri)
αβ (Q′

t) = D(Pi,ri)
αβ (Qt)D(Pi,ri)

αβ (Q∗) −
D(Pi,ri)

αβ (Q∗)D(Pi,ri)
αβ (Qt) = 0. Q′

t satisfies the current con-
straint. For Qt′ , it will be updated by

Q′
t′ = (x− xi)Q∗. (23)

Again, D(Pi,ri)
αβ (Q′

t′) = D(Pi,ri)
αβ (xQ∗) − xiD(Pi,ri)

αβ (Q∗) =

xiD(Pi,ri)
αβ (Q∗)− xiD(Pi,ri)

αβ (Q∗) = 0.

The above test-and-update process iterates n
(
m+1
2

)
times

so that all interpolation constraints are satisfied. Finally, the
minimum polynomial of the updated group is chosen as the
interpolated polynomial Q as

Q = min{Q′
t | Q′

t ∈ G}. (24)

Summarizing the above description, the interpolation algorith-
m for GS decoding of elliptic codes is stated as follows.

Algorithm 1 The Interpolation Algorithm
Input: r and m;
Output: Q;

1: Initialize G as in (19);
2: For each interpolation constraint do
3: Compute D(Pi,ri)

αβ (Qt), ∀Qt ∈ G as in (18);
4: For Qt with D(Pi,ri)

αβ (Qt) ̸= 0 do
5: Pick up Q∗ as in (20) and (21);
6: Update them as in (22) and (23);
7: End for
8: End for

This is Koetter’s iterative polynomial construction approach
[18]. Based on Theorem 1, the message polynomial f can be
further decoded by finding the z-roots of Q, i.e., Q(x, y, f) =
0. This can be implemented by the root-finding algorithm
of [19], which determines fk−1, fk−2, . . . , f0 in a recursive
manner.

V. DECODING PERFORMANCE

GS decoding of elliptic codes have been simulated over the
additive white Gaussian noise (AWGN) channel using BPSK
modulation. They are compared with similar rate RS codes that
are defined over the same finite field. In our simulations, the
decoding is considered to be successful if message polynomial
f is included in the decoding output list.
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Figs.1 and 2 show the frame error rate (FER) performance
of the (80, 27) and the (288, 163) elliptic codes, respectively.
They have been introduced in Example 2. Our results show
with the same interpolation multiplicity, an elliptic code can
outperform a similar rate RS code. This is because the elliptic
codes have a greater error-correction capability, also yielding
a better asymptotic FER performance. For RS codes, the
minimum multiplicities are chosen for the GS decoding. Over
the finite field, elliptic codes are longer yielding a greater error-
correction capability. It is interesting to point out that this also
enables the elliptic codes achieve a similar performance as RS
codes but with a smaller decoding complexity. Section IV.C
shows there are C = n

(
m+1
2

)
iterations for constructing Q. Its

complexity can be approximated as 5
2 (lm+1)(C2+C). Hence,

C defines the interpolation complexity. Fig.1 shows decoding
the (80, 27) elliptic code with m = 4 performs similarly as
decoding the (63, 21) RS code with m = 5. However, for
the elliptic code C = 800 and for the RS code C = 945.
A similar phenomenon can also be observed in Fig.2. Note
that the optimal GS decoding performances are obtained by
assuming the algorithm can decode τGS errors, where τGS is
defined by (9). For RS codes, g = 0.
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Fig. 1. Performance of the (80, 27) elliptic code and the (63, 21) RS code.
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Fig. 2. Performance of the (288, 163) elliptic code and the (255, 144) RS code.

VI. CONCLUSION

This paper has proposed the GS list decoding algorithm
for elliptic codes. An explicit zero basis construction has

been proposed for each affine point of the curve, so that the
interpolated polynomial can be defined. The error-correction
capability and the maximum decoding output cardinality have
also been characterized. Finally, an efficient interpolation
algorithm has been proposed. Our simulation results have
demonstrated elliptic codes can outperform the similar rate RS
codes, offering a new option for data communication systems.
This work also underpins the development of more advanced
decoding for elliptic codes, e.g., the soft-decision list decoding.
This will be the authors’ future work.
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