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Abstract—This paper proposes an iterative multistage soft
decoding (IMSD) for multilevel Reed-Solomon (MRS) codes,
achieving both high decoding performance and transmission
spectrum efficiency. The proposed IMSD algorithm performs
soft-in soft-out (SISO) decoding of each level RS code in a
multistage mechanism. The RS decoding is realized by cascading
the adaptive belief propagation (ABP) algorithm that produces
the extrinsic probabilities for the coded bits and the Berlekamp-
Massey (BM) algorithm that estimates the message. The earlier
decoding outputs help a later one by providing better a priori
information for its decoding. Armed with the IMSD algorithm,
the MRS codes are designed by analyzing the equivalent channel
capacity of each coded level, leading to the heterogeneous
structure for MRS codes. Our simulation results demonstrate
the performance advantages of the IMSD algorithm as well as
the designed MRS codes.

I. INTRODUCTION

Multilevel coding [1], introduced by Imai and Hirakawa,

integrates multiple error-correction codes and a high-order

modulation. The error-correction codes are called the com-

ponent codes and they determine the transmitted symbols. For

multilevel codes, decoding can be performed in a multistage

mechanism which implies level-by-level message recovery.

Consequently, a later decoding can be benefited from the

outputs of the earlier ones. To exploit the decoding potential,

iterative multistage decoding (IMD) of multilevel codes has

been proposed by Martin et al. [2] and Isaka et al. [3]. With the

iterative decoding, a multilevel code design using the extrinsic

information transfer function has been considered in [4]. The

above multilevel codes employ the binary channel codes, such

as turbo codes and convolutional codes, as their component

codes. In comparison, Reed-Solomon (RS) codes are nonbina-

ry maximum distance separable codes. They have a competent

burst error correction capability, making them popular in data

communications and storage systems. Therefore, multilevel

RS (MRS) codes are important coded modulation schemes

[5] [6]. However, the existing decoding algorithms for MRS

codes are hard-decision oriented with limited performance.

The iterative multistage soft decoding (IMSD) for MRS codes

has not been developed. This is mainly due to the difficulty in

realizing the soft-in soft-out (SISO) decoding for RS codes.

Among the existing RS SISO decoding approaches [7]–[9], the

adaptive belief propagation (ABP) algorithm [9] produces the

extrinsic information of the coded bits with a polynomial-time

complexity, making the IMSD of MRS codes feasible.

This paper proposes an IMSD algorithm for MRS codes,

where the RS SISO decoding is realized by the ABP algorithm.

The Berlekamp-Massey (BM) algorithm [10] further estimates

the message based on the a posteriori probabilities provided by

the ABP algorithm. In the IMSD scheme, the earlier decoding

outputs help provide better a priori information for the later

decoding, improving the decoding performance significantly.

Iterating the extrinsic information of RS coded bits, the IMSD

algorithm is able to achieve remarkable iterative decoding

gains. We further investigate the design of MRS codes by

analyzing the equivalent channel capacity of each coded level,

leading to the heterogeneous structure for MRS codes that

achieves a substantial performance improvement. Merits of our

proposals will be verified by simulations.

II. MRS CODES

Fig. 1 shows the structure of an MRS code. It integrates

m RS codes and an M -ary modulation, where m = log2 M .

Every m RS coded bits that are respectively produced by the

m component codes are mapped in an M -ary constellation

symbol.
Let F2p = {0, 1, α1, α2, . . . , α2p−2} denote a finite field

of size 2p, where p is a positive integer and α is a primitive

element of the field. In an MRS coding scheme, an (nt, kt) RS

code defined over F2p is utilized at level t (t = 0, 1, . . . ,m−
1), where nt = 2p − 1 and kt are the length and dimension

of the codeword, respectively. Using the BM algorithm, it can

correct at most �nt−kt

2 � symbol errors. Since the RS codes of

all levels maintain the same length, let n = nt, ∀ t. Generator

polynomial of the (n, kt) RS code can be defined as

gt(x) = (x− α1)(x− α2) · · · (x− αn−kt). (1)

At level t, given a message vector as U (t) = [U
(t)
0 , U

(t)
1 , . . . ,

U
(t)
kt−1] ∈ F

kt
2p , the message polynomial U (t)(x) is

U (t)(x) = U
(t)
0 + U

(t)
1 x+ · · ·+ U

(t)
kt−1x

kt−1. (2)

The codeword can be generated by

C(t)(x) = xn−ktU (t)(x) + xn−ktU (t)(x) mod gt(x)

= C
(t)
0 + C

(t)
1 x+ · · ·+ C

(t)
n−1x

n−1. (3)

The codeword is C(t) = [C
(t)
0 , C

(t)
1 , . . . , C

(t)
n−1] ∈ F

n
2p . For

an MRS code, if k0 = k1 = · · · = km−1, all levels exhibit a

homogeneous structure. It is therefore called the homogeneous

2018 IEEE Information Theory Workshop (ITW), Guangzhou, China, November 25-29, 2018

978-1-5386-3599-5/18/$31.00©2018 IEEE 300



 D
em

od
ul

at
io

n 
 

 M
odulation 

ABP BM 

ABP BM 

BM ABP 

)( )0(
DEC, jd cP

)( )1(
DEC, jd cP

)( )1(
DEC,

�m
jd cP

)( )1(
DEM, je cP

)( )1(
DEM,

�m
je cP

)( )0(
DEC, je cP

)( )1(
DEC, je cP

)( )1(
DEC,

�m
je cP

jy

)( )1(
DEC, jp cP

)( )1(
DEC,

�m
jp cP

RS 0 

RS 1 

RS m    1    

Channel 

)0(
jc

)1(
jc

)1( �m
jc

jx

�

)( )0(
DEC, jp cP)( )0(

DEM, je cP

Fig. 1. MRS code and the IMSD scheme.

MRS (HoMRS) code. Otherwise, it is called the heterogeneous

MRS (HeMRS) code. Let

R(t) =
kt
n

(4)

denote the rate of the level t RS code. The rate of the MRS

code is

R =
1

m

m−1∑
t=0

R(t). (5)

For HoMRS codes, R(t) = R, ∀ t.

For an (n, kt) RS code, its parity-check matrix Ht can be

defined as

Ht =

⎡
⎢⎢⎢⎣

1 α · · · αn−1

1 α2 · · · α2(n−1)

...
...

. . .
...

1 αn−kt · · · α(n−kt)(n−1)

⎤
⎥⎥⎥⎦ . (6)

Let A further denote the companion matrix of F2p , which is

a p × p binary matrix. The binary parity-check matrix Ht of

the RS code can be generated by replacing the entries α� of

Ht by A�, where � = 0, 1, . . . , 2p − 2.

Given an M -ary constellation symbol set S = {s0, s1, . . . ,
sM−1}, symbol si (i = 0, 1, . . . ,M − 1) is mapped from

a bit array [θ0, θ1, . . . , θm−1], where θt ∈ {0, 1}. In order

to map the RS codewords into constellation symbols, each

codeword C(t) needs to be converted into its binary ver-

sion c(t) = [c
(t)
0 , c

(t)
1 , . . . , c

(t)
np−1]. Let M(·) and M−1(·)

denote the mapping and demapping functions, respective-

ly, such that M(θ0, θ1, . . . , θm−1) = si and M−1(si) =
[θ0, θ1, . . . , θm−1]. We further denote [M−1(si)]t = θt.
Therefore, the m RS coded bit sequences are mapped into M -

ary constellation symbols by xj = M(c
(0)
j , c

(1)
j , . . . , c

(m−1)
j ),

resulting in the modulated symbols x0, x1, . . . , xnp−1, where

xj ∈ S and j = 0, 1, . . . , np − 1. After the channel, the

received symbols are y0, y1, . . . , ynp−1.

III. ITERATIVE MULTISTAGE SOFT DECODING

The proposed IMSD scheme for MRS codes is also shown

in Fig. 1. Let Pa,DEM(c
(t)
j ), Pe,DEM(c

(t)
j ) and Pp,DEM(c

(t)
j )

denote the a priori, the extrinsic and the a posteriori probabil-

ities of c
(t)
j produced by the demapper, respectively. Similarly,

let Pa,DEC(c
(t)
j ), Pe,DEC(c

(t)
j ) and Pp,DEC(c

(t)
j ) denote the a

priori, the extrinsic and the a posteriori probabilities of c
(t)
j

produced by the decoder, respectively.

At level t, the RS decoding consists of two stages. The

ABP decoding yields both the Pe,DEC(c
(t)
j ) and Pp,DEC(c

(t)
j ),

where hard decision of c
(t)
j will be made based on

Pp,DEC(c
(t)
j ). With a hard-decision received word, the BM

algorithm decodes the message. If the BM decoding succeeds,

we obtain the coded bits’ estimations as ĉ
(t)
0 , ĉ

(t)
1 , . . . , ĉ

(t)
np−1.

The decoder will feed back the deterministic probabili-

ty Pd,DEC(c
(t)
j ), where Pd,DEC(c

(t)
j = ĉ

(t)
j ) = 1 and

Pd,DEC(c
(t)
j = 1 − ĉ

(t)
j ) = 0. Otherwise, the extrinsic proba-

bility Pe,DEC(c
(t)
j ) will be fed back. The decoding feedback

provides a priori information for the next level demapping.

At the level m − 1, Pd,DEC(c
(m−1)
j ) (or Pe,DEC(c

(m−1)
j ))

will be fed back for the demapping of level 0. The next

round multistage demapping and decoding begin. This iter-

ative demapping-decoding terminates when codes of all levels

are decoded or a predefined maximum number of iterations

(denoted as NGLO) is reached.

A. SISO Demapping

The demapping and decoding are performed successively

for each level RS code. In general, for level t RS code,

Pp,DEM(c
(t)
j ) is determined by

Pp,DEM(c
(t)
j = θ) =

∑
si∈St,θ

P (yj | si)P (si), (7)

where P (yj | si) is the channel observation and St,θ = {si |
[M−1(si)]t = θ and si ∈ S}. The symbol probability P (si)
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is defined as

P (si) =
m−1∏
t=0

Pa,DEM(c
(t)
j = [M−1(si)]t). (8)

Note that at the beginning, Pa,DEM(c
(t)
j = 0) = Pa,DEM(c

(t)
j

= 1) = 0.5, ∀ (j, t). In order to constitute an iterative

demapping-decoding mechanism, the coded bit’s extrinsic

probability is needed, which can be determined by

Pe,DEM(c
(t)
j ) =

Pp,DEM(c
(t)
j )

Pa,DEM(c
(t)
j )

. (9)

Based on (7) - (9), Pe,DEM(c
(t)
j ) can be determined by

Pe,DEM(c
(t)
j = θ)

=
∑

si∈St,θ

P (yj | si)
m−1∏

t′=0,t′ �=t

Pa,DEM(c
(t′)
j = [M−1(si)]t′).

(10)

Pe,DEM(c
(t)
j ) will be utilized by the following RS decoding.

B. SISO Decoding

For the level t RS code, its SISO decoding starts with the

following mapping

Pe,DEM(c
(t)
j ) �→ Pa,DEC(c

(t)
j ). (11)

The a priori log-likelihood ratio (LLR) of c
(t)
j can be deter-

mined by

La(c
(t)
j ) = ln

Pa,DEC(c
(t)
j = 0)

Pa,DEC(c
(t)
j = 1)

. (12)

Subsequently, the a priori LLR vector of level t RS code is

L(t)
a = [La(c

(t)
0 ), La(c

(t)
1 ), . . . , La(c

(t)
np−1)]. (13)

Entries of L(t)
a will be sorted based on their magni-

tudes |La(c
(t)
j )|, resulting in a refreshed index sequence

j0, j1, . . . , j(n−kt)p−1, . . . , jnp−1. It indicates |La(c
(t)
j0
)| <

|La(c
(t)
j1
)| < · · · < |La(c

(t)
j(n−kt)p−1

)| < · · · < |La(c
(t)
jnp−1

)|.
Bits c

(t)
j0
, c

(t)
j1
, . . . , c

(t)
j(n−kt)p−1

are considered as the (n− kt)p
least reliable bits, where their indices are collected in Θt =
{j0, j1, . . . , j(n−kt)p−1}.

In order to perform the BP decoding, Gaussian elimination

is needed to reduce the density of Ht. This will be carried out

based on the above sorting outcome. In Ht, columns that are

indexed by Θt will be reduced to weight one, forming an (n−
kt)p× (n−kt)p identity submatrix. Doing so, we cannot only

reduce the density of Ht, but also minimize the propagation

of the unreliable information during the BP process. Note that

it is not guaranteed all columns that are indexed by Θt can be

reduced to weight one. In this case, we will reduce columns

j(n−kt)p, j(n−kt)p+1 and etc. The above process results in the

adapted parity-check matrix H′
t.

The following BP decoding will be performed based on H′
t.

Let hvj denote the entry of H′
t. We define

V(j) = {v | hvj = 1, ∀ 0 ≤ v ≤ (n− kt)p− 1}, (14)

J(v) = {j | hvj = 1, ∀ 0 ≤ j ≤ np− 1}. (15)

The extrinsic LLR of c
(t)
j is determined by

Le(c
(t)
j ) =

∑
v∈V(j)

2 tanh−1

( ∏
j′∈J(v)\j

tanh

(
La(c

(t)
j′ )

2

))
.

(16)

The a posteriori LLR of c
(t)
j is further determined by

Lp(c
(t)
j ) = La(c

(t)
j ) + ηLe(c

(t)
j ), (17)

where η ∈ (0, 1) is a damping factor. Note that matrix H′
t

remains dense for the BP decoding. It still contains many short

circles that affect the reliability of the extrinsic information.

Hence, η is needed to downgrade the extrinsic influence.

All RS coded bits can be estimated based on the a posteriori
LLR vector

L(t)
p = [Lp(c

(t)
0 ), Lp(c

(t)
1 ), . . . , Lp(c

(t)
np−1)]. (18)

The BM decoding is further performed to estimate the mes-

sage (and codeword). If the BM decoding succeeds, ĉ
(t)
j can

be obtained and Pd,DEC(c
(t)
j ) will be fed back to update

Pa,DEM(c
(t)
j ) by

Pd,DEC(c
(t)
j ) �→ Pa,DEM(c

(t)
j ). (19)

Otherwise, Pe,DEC(c
(t)
j ) will be fed back to update

Pa,DEM(c
(t)
j ) by

Pe,DEC(c
(t)
j ) �→ Pa,DEM(c

(t)
j ). (20)

Note that Pe,DEC(c
(t)
j ) can be obtained by

Pe,DEC(c
(t)
j = 0) =

1

1 + e−Le(c
(t)
j )

, (21)

Pe,DEC(c
(t)
j = 1) =

1

1 + eLe(c
(t)
j )

. (22)

The updated Pa,DEM(c
(0)
j ), Pa,DEM(c

(1)
j ), . . . , Pa,DEM(c

(t)
j )

are used to calculate Pe,DEM(c
(t+1)
j ) using (10) for next level

decoding.

Note that the ABP algorithm is also iterative, implying there

can be multiple Gaussian eliminations. In this case, L(t)
p will

be mapped to L(t)
a , triggering another round of sorting and

Gaussian elimination. The decoding at level t will terminate

either when the message is decoded or when the maximum

number of ABP iteration (denoted as NABP) is reached. In

this work, each level RS decoding outcome is validated by

the maximum likelihood criterion [11].

IV. DESIGN OF MRS CODES

With the multilevel coding scheme, the transmission of a

symbol xj over the channel can be decomposed into parallel
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transmission of m individual bits (c
(0)
j , c

(1)
j , . . . , c

(m−1)
j ) over

m equivalent channels (0, 1, . . . ,m− 1). We can analyze the

capacity of each equivalent channel and design the code rate

of each level accordingly [12]. With a competent decoding

algorithm, this design approach can achieve error-free trans-

mission over each equivalent channel. As a result, the overall

IMSD performance can be enhanced.

Let C(t) denote the capacity of equivalent channel t. For an

MRS coded transmission, the overall capacity C is

C =

m−1∑
t=0

C(t). (23)

Given a competent decoding mechanism, when R(t) = C(t),

the MRS code can approach capacity C. Let X(t) and Y
denote the transmitted and received variables at equivalent

channel t, respectively. The capacity of equivalent channel

t can be determined as the conditional mutual information

I(Y ;X(t) | X(0) · · ·X(t−1)) 1. Based on the chain rule for

mutual information [13]

I(Y ;X(0) · · ·X(m−1)) =
m−1∑
t=0

I(Y ;X(t) | X(0) · · ·X(t−1)),

(24)

the capacity of equivalent channel t can be determined by

C(t) = I(Y ;X(t) · · ·X(m−1) | X(0) · · ·X(t−1))

− I(Y ;X(t+1) · · ·X(m−1) | X(0) · · ·X(t)). (25)

Let C(B) denote the channel capacity that is associated with

a modulated symbol set B. Given an M -ary constellation and

the knowledge of bits θ0, . . . , θt−1, we can define the symbol

set

S(θ0 · · · θt−1) = {si | [M−1(si)]τ = θτ , ∀ 0 ≤ τ ≤ t− 1}.
(26)

Since there are 2t permutations of [θ0, . . . , θt−1] and their

associated symbol sets S(θ0 · · · θt−1),

I(Y ;X(t) · · ·X(m−1) | X(0) · · ·X(t−1))

=
1

2t

∑
S(θ0···θt−1)

C(S(θ0 · · · θt−1)). (27)

Similarly,

I(Y ;X(t+1) · · ·X(m−1) | X(0) · · ·X(t))

=
1

2t+1

∑
S(θ0···θt)

C(S(θ0 · · · θt)). (28)

Based on (25), the capacity of equivalent channel t is

C(t) =
1

2t

∑
S(θ0···θt−1)

C(S(θ0 · · · θt−1))

− 1

2t+1

∑
S(θ0···θt)

C(S(θ0 · · · θt)). (29)

1It is assumed that I(Y ;X(t) | X(0) · · ·X(t−1)) is maximized by an
appropriate distribution of X(t).

In particular, over the additive white Gaussian noise

(AWGN) channel, capacity C(B) can be determined by

C(B) = 1

|B|
∑
si∈B

∫
yj

P (yj | si) log2
(

P (yj | si)
1
|B|

∑
sξ∈B

P (yj | sξ)
)
dyj ,

(30)

in which it is assumed that each symbol of B is equiprobable

for transmission.
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Fig. 2. Equivalent channel capacities of the SP 16-QAM constellation.

Therefore, we can design the level t RS code by adjusting

its rate R(t) as closed to C(t) as possible. Fig. 2 shows the

equivalent channel capacities of the set partitioning (SP) 16-

QAM constellation over the AWGN channel. The SP con-

stellation is designed by progressively enlarging the intraset

minimum Euclidean distance of the partitioned subsets. It

can therefore maximize the multistage decoding performance

for MRS codes. It can be seen that to achieve an overall

capacity of 3 bits/sym., the equivalent channel capacities are

C(0) = 0.29 bits/sym., C(1) = 0.75 bits/sym., C(2) = 0.96
bits/sym. and C(3) = 1 bit/sym., respectively. This indicates

when using the SP 16-QAM, the HeMRS codes should be

employed to achieve the channel capacity.

V. PERFORMANCE ANALYSIS

We now show the bit error rate (BER) performance of MRS

codes using the IMSD algorithm. The simulation results are

obtained over the AWGN channel using the SP 16-QAM. In

our simulations, we let NABP = 3 and η = 0.12. Three BP

iterations are performed based on each adapted parity-check

matrix H′
t.

Fig. 3 shows the IMSD performance of the HoMRS code

which employs the (63, 47) RS codes as the component

codes. The proposed IMSD algorithm is compared with the

conventional IMD algorithm in which the RS codes are de-

coded by the BM algorithm. It iterates hard decisions between

different levels. We can see that the proposed IMSD algorithm
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Fig. 3. IMSD performance of the HoMRS code using SP 16-QAM.

outperforms the hard-decision IMD algorithm. The decoding

performance can be enhanced by increasing the maximum

iteration number (NGLO). In contrast, the conventional IMD

algorithm yields no performance improvement by increasing

its iteration number beyond five. Fig. 3 also compares the

performance of the HoMRS code with a single (63, 47)

RS code that employs the same modulation. It shows that

without iteration, the HoMRS coded transmission performs

worse than a signal RS code. This is because in the MRS

coding scheme, m bits of m individual codes are bundled

for transmission. If the channel introduces an error, the error

may reside at all levels, degrading the decoding performance.

However, when the decoding starts to iterate, performance

advantage of multilevel coding becomes remarkable.
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Fig. 4 compares the IMSD performance of the HeMRS and

the HoMRS codes when employing the SP 16-QAM. The

HeMRS code is designed based on the equivalent channel

capacities shown in Fig. 2. To achieve an overall capacity of

3 bits/sym., component codes at levels 0, 1 and 2 are the (63,

17), the (63, 47) and the (63, 59) RS codes, respectively, while

level 3 is uncoded. The HoMRS code employs the (63, 47) RS

codes as its component codes. Fig. 4 shows that the HeMRS

code outperforms its homogeneous counterpart. Fig. 2 shows

that to realize a capacity of 3 bits/sym., a signal-to-noise ratio

(SNR) of 9.32dB is needed for the SP 16-QAM. Fig. 4 shows

the HeMRS code can approach this limit. This demonstrates

the effect of our proposed MRS code design.

VI. CONCLUSIONS

This paper has proposed an IMSD for MRS codes, achieving

both high decoding performance and transmission spectrum

efficiency. The RS decoding is realized by the ABP-BM

algorithm, delivering either the extrinsic or the deterministic

probabilities for the coded bits. Over a multistage decoding

mechanism, the earlier decoding outputs facilitate the later

decoding events. We have further proposed the design of MRS

codes based on analyzing the equivalent channel capacity of

each coded level, leading to the HeMRS codes. Our simulation

results have verified the performance advantage of the IMSD

algorithm and the designed MRS codes can approach the

channel capacity.
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