
Improved Sliding Window Decoding of Spatially
Coupled Low-Density Parity-Check Codes

Shiyuan Mo, Li Chen

School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China, 510006
Email: moshiy@mail2.sysu.edu.cn, chenli55@mail.sysu.edu.cn

Abstract—Spatially coupled low-density parity-check (SC-
LDPC) codes can achieve capacity approaching performance with
a small message recovery latency due to the sliding window de-
coding (SWD). Using a partial Tanner graph, the SWD performs
iterative message passing until the average error probability Pe

of the target symbols falls below a threshold or the maximum
iteration number is reached. However, Pe does not decrease
monotonically as iteration progresses. This implies the symbol
likelihoods that were yielded when the decoding terminates
may not be optimal for making decisions. Therefore, this paper
proposes an improved SWD (ISWD) for SC-LDPC codes. The
proposal monitors the achievable minimum of Pe and stores its
associated likelihoods, so that when the decoding terminates the
target symbols will be estimated based on the stored likelihoods.
Our research shows the ISWD is able to enhance the decoding
performance, especially in the waterfall region. It exhibits an
asymptotic convergence to the SWD performance. A complexity
reducing variant of the ISWD is also proposed to facilitate the
decoding but at the cost of error-correction performance.

Index Terms—Belief propagation, LDPC codes, protographs,
spatially coupled codes, sliding window decoding.

I. INTRODUCTION

Spatially coupled low-density parity-check (SC-LDPC)
codes [1] [2] have galvanized recent interest by its capacity-
approaching performance and low message recovery latency.
It can be constructed from a block protograph by the so called
graph coupling and lifting processes [3] [4]. Its parity-check
matrix has the same structure as LDPC convolutional codes [5]
such that the code has memory and can be unterminated. For
SC-LDPC codes, the iterative belief propagation (BP) decod-
ing threshold can reach the maximum a posteriori (MAP)
decoding threshold when the codeword length is sufficiently
large [1] [6]. Moreover, the code’s minimum distance grows
linearly with the codeword length contributing to the removal
of error floor [7].

Parity-check matrix of SC-LDPC codes exhibits a diagonal
band of nonzero entries, giving way to perform the sliding
window decoding (SWD) [6] [8]. After receiving a portion of
the entire codeword, BP decoding can start by using the code’s
partial Tanner graph. The decoding window slides along the
diagonal band, estimating codeword symbols set-by-set and
featuring a low message recovery latency. The set of symbols
that are estimated by a decoding window are called the
target symbols of the window. A decoding window terminates
once the average error probability Pe of the target symbols
falls below a threshold or the maximum iteration number

is reached. In order to reduce the SWD complexity, non-
uniform schedules for BP updates have been proposed in [9]
where symbols that show little sign of their soft bit error rate
(BER) [10] improvement will be skipped for updates. So far,
the existing SWD techniques estimate the target symbols based
on the final likelihoods that are yielded when the decoding
terminates. However, our recent research has shown that the
average error probability Pe does not decrease monotonically
with the BP iterations. It implies when a window terminates by
reaching the maximum iteration number, Pe may not converge
to a minimum value. Consequently, the decisions that are made
based on those final likelihoods may not be optimal.

Motivated by this decoding phenomenon, we introduce an
improved SWD (ISWD) that monitors the achievable mini-
mum of the average error probability Pe. Symbol likelihoods
that produce the minimum value will be stored by the decoding
system. When the maximum iteration number is reached, the
target symbols will be estimated based on their memorized
likelihoods. Since a set of symbols will be monitored once
it is included by a window, the likelihoods are sampled over
several decoding windows. Intuitively, they can yield a more
accurate estimation. Our simulation results show the ISWD
outperforms the SWD, especially in the BER curve’s waterfall
region. It converges to the SWD performance as the signal-
to-noise ratio (SNR) increases. A complexity reducing variant
of the ISWD is also proposed to facilitate the decoding.

II. PRELIMINARIES

This section introduces the preliminaries of the paper,
including the construction of SC-LDPC codes and the SWD.

A. SC-LDPC Codes

The construction of an SC-LDPC code can start from a
block protograph [4] [11]. Given the block protograph of the
(ρ, κ) regular LDPC codes, where ρ and κ are the column
weight and row weight, respectively, we can first replicate and
label it in a finite series with time instants t = 0, 1, 2, . . . , L−
1. For example, Fig. 1(a) shows the block protograph of the
(3, 6) regular LDPC codes and Fig. 1(b) shows the series
of L labeled block protographs. Edge spreading among the
L block protographs is then performed to generate a coupled
protograph. In particular, edges of the block protograph at time
instant t are emanated from its variable nodes and connected to
the check nodes of block protographs at time instants t, t+1,

. . ., t + w, where w is called the coupling width. Fig. 1(c)
shows this process with w = 2. Applying this edge spreading
to all of the L block protographs, we can obtain a coupled
protograph that is shown in Fig. 1(d), where L can now be
called the coupling length. In the coupled protograph, extra w
check nodes are required for terminating the spreading edges.

Fig. 1. (a) Block protograph of the (3, 6) regular LDPC codes, (b) a series
of L block protographs, (c) edge spreading with w = 2 at time t, and (d)
coupled protograph of the terminated SC-LDPC codes with w = 2.

A block protograph with α check nodes and β variable
nodes can be represented by a base matrix B = [B(i, j)]α×β ,
where 1 ≤ i ≤ α, 1 ≤ j ≤ β and entry B(i, j) indicates
the number of edges connecting check node i and variable
node j. For example, the block protograph of Fig. 1(a) can
be represented by matrix B = [3 3]. Consequently, spreading
edges among w + 1 block protographs can be described by
decomposing B into w+1 submatrices of the same size and

B(i, j) =
w∑

µ=0

Bµ(i, j). (1)

As a result, the coupled protograph can be represented by the
so called SC base matrix

BSC =

B0

B1 B0

...
...

. . .
Bw Bw−1 · · · B0

.
Bw Bw−1 · · · B0

. . .
...

...
Bw Bw−1

Bw

. (2)

It defines a terminated SC-LDPC code ensemble. The above
BSC shows the first and last wα check nodes have reduced
degrees, which can also be seen in the coupled protograph of
Fig. 1(d). This is an important feature to realize the excellent
BP decoding thresholds of SC-LDPC codes [4] [6].

Let BSC = [BSC(i, j)](L+w)α×Lβ , where 1 ≤ i ≤ (L+w)α
and 1 ≤ j ≤ Lβ. Parity-check matrix HSC of an SC-LDPC
code can be further obtained by lifting BSC with a factor of M .
In particular, if BSC(i, j) = 0, it will be replaced by a M×M

all zero matrix. Otherwise, it will be replaced by a summation
of BSC(i, j) permutation matrices of size M×M . As a result,
the size of HSC is (L + w)Mα × LMβ. Design rate of the
SC-LDPC code is RSC = 1− (L+w)Mα

LMβ = 1− (L+w)α
Lβ . Similar

to BSC, HSC exhibits a diagonal band of nonzero entries. The
maximum width of this diagonal band is (w + 1)Mβ, which
is called the code’s constraint length.

B. Sliding Window Decoding

Assume that codeword c = (c1, c2, . . . , cN) is transmitted
over a discrete memoryless channel using BPSK modulation,
where N = LMβ. Let y = (y1, y2, . . . , yN) denote the
received symbol sequence. With yj , the log-likelihood ratio
(LLR) of each codeword symbol cj can be initialized by

γj = ln

(
Pr (yj | cj = 0)

Pr (yj | cj = 1)

)
, (3)

where Pr (yj | cj = 0) and Pr (yj | cj = 1) are the channel
observations.

Let HSC = [HSC(i, j)](L+w)Mα×LMβ , where 1 ≤ i ≤ (L+
w)Mα and 1 ≤ j ≤ LMβ. Subsequently, I(j) and J(i) are
defined as I(j) = {i | HSC(i, j) = 1, ∀ i} and J(i) =
{j | HSC(i, j) = 1, ∀ j}, respectively. In order to specify
the iterative BP decoding output, let γj(u) denote the LLR of
cj that is yielded by iteration u. At the beginning, they are
initialized as

γj(0) = γj , ∀ j. (4)

At iteration u (u > 0), the extrinsic LLR w.r.t. channel input
is determined by [12]

Φj(u) =
∑

i∈I(j)

2tanh−1

 ∏
j′∈J(i)\j

tanh
(
γj′ (u− 1)

2

) .

(5)
The a posteriori LLR of cj can be further determined by

γj(u) = γj +Φj(u). (6)

They can be transformed into the a posteriori probabilities
(APPs) as

Pj,0(u) =
1

1 + e−γj(u)
,Pj,1(u) =

1

1 + eγj(u)
, (7)

which denote the APPs of cj being 0 and 1, respectively.
Decision will be made based on the APPs such as ĉj = 0
if Pj,0(u) > Pj,1(u), or ĉj = 1 otherwise. Since the SWD
estimates a portion of the entire codeword at a time, we cannot
use HSC to validate the decoding estimation so as to terminate
the decoding. The following describes the SWD.

Let W denote the size of decoding window which contains
W block protographs, where w + 1 6 W 6 L. In HSC, the
decoding window covers WMα rows and WMβ columns as
shown in Fig. 2 which illustrates the SWD mechanism. The
SWD is performed based on the partial Tanner graph framed
by the window. That says in calculating the extrinsic LLR of
(5), only the check nodes that are included by the window
will be considered. The first Mβ symbols of the window are
its target symbols. They are associated with the first block

Fig. 2. SWD of an SC-LDPC code with w = 2 and L = 15. Window size
W = 3 and the gray area indicates the nonzero diagonal band in the HSC.

protograph in the window. After iteration u, error probability
of cj is determined by

Pe,j(u) = min {Pj,0(u),Pj,1(u)} . (8)

Hence, the average error probability Pe,t(u) of the target
symbols will be

Pe,t(u) =
1

Mβ

Mβ(t+1)∑
j=Mβt+1

Pe,j(u), (9)

where t identifies the set of target symbols and 0 ≤ t ≤ L−1.
Note that the decoding window slides along the coupled
protograph block-by-block. Time instant of a block protograph
also indicates the time instant of a decoding window. For the
SWD, a decoding window will be terminated once Pe,t(u)
falls below a predetermined threshold or the maximum it-
eration number is reached. Estimation of the target symbols
cMβt+1, cMβt+2, . . . , cMβ(t+1) will be made based on their
likelihoods when the decoding terminates. Afterwards, the
window will slide to decode the next Mβ symbols with its
time instant updated by t = t+1. With HSC, this process can
be seen as sliding along its nonzero diagonal band, which is
also demonstrated by Fig. 2. Notice in this paper, we employ
the flooding schedule for BP updates.

III. THE IMPROVED SLIDING WINDOW DECODINGS

This section introduces the ISWD and its complexity reduc-
ing variant.

A. The ISWD

In the ISWD, the BP decoding outputs of a set of symbols
will be monitored once they are included by a window. Given
a window size W , the BP decoding at time instant t calculates
the LLRs of W sets of codeword symbols. Let

Sτ = {cMβτ+1, cMβτ+2, . . . , cMβ(τ+1)} (10)

denote a particular symbol set in the window, where τ =
t, t+1, . . . , t+W − 1. Among them, St is the target symbol
set. The ISWD monitors the achievable minimums of

Pe,t(u),Pe,t+1(u), . . . ,Pe,t+W−1(u), (11)

respectively. The symbol likelihoods that are associated with
the minimums will also be stored. When the maximum it-
eration number is reached, decision of the target symbols
will be made based on the stored likelihoods. Note that
when t ≥ W − 1, each symbol set will be included by W
sliding windows. Hence, its average error probability will be
monitored over W window decoding events. This distinguishes
the proposal with the SWD in which Pe,t(u) will only be
monitored by the window at time instant t.

Let P∗
e,τ denote the minimum of the average error proba-

bility Pe,τ (u) that is monitored during the period when Sτ

is included by a decoding window. Once Sτ is included by
a decoding window, it will be initialized as P∗

e,τ = 1. At
time instant t, the average error probability Pe,τ (u) of the W
symbol sets will be monitored by (8) and (9). If

Pe,τ (u) < P∗
e,τ , (12)

P∗
e,τ will be updated by

P∗
e,τ = Pe,τ (u) (13)

and the BP decoding likelihoods of symbol set Sτ will also
be stored. Since the current window aims to estimate symbol
set St, the decoder will only assess whether P∗

e,t falls below a
predetermined error probability threshold (denoted as Ξ). If so,
the current window will terminate. Otherwise, the BP iteration
continues. The decoding window will also be terminated once
the maximal iteration number (denoted as Υ) is reached. When
the decoding terminates, estimation on the target symbols
cMβt+1, cMβt+2, . . . , cMβ(t+1) will be made based on their
stored likelihoods. The window will then slide to decode the
next set of target symbols by updating the time instant as
t = t+1. The above mentioned ISWD process is summarized
as in Algorithm 1.

Like the SWD, the ISWD starts after receiving the first
WMβ symbols. When the window slides to the next time
instant t (t > 0), symbol set St+W−1 is newly included and
their LLRs will be initialized as in (3) and (4). Meanwhile,
LLRs of the other symbol sets St, St+1, . . ., St+W−2 will
be inherited from the previous window decoding outcomes.
Compared to the SWD algorithm, the above ISWD algorithm
will not incur extra iterations in each decoding window. But
it requires extra memory since the decoder needs to store
likelihoods of WMβ codeword symbols.

B. A Complexity Reducing Variant
The above description shows that for a symbol set St

where t ≥ W − 1, they will start to be monitored by the
decoding window at time instant t−W +1. This implies once
they become the target symbols at a later time instant, their
minimum average error probability P∗

e,t and the associated
likelihoods are already available. The decoding complexity
can be reduced by assessing whether P∗

e,t < Ξ before the BP

Algorithm 1 The ISWD Algorithm
Parameters: Ξ, Υ and W ;
1: Initialize t = 0 and u = 0;
2: While t < L do
3: While u < Υ do
4: Perform the BP decoding as in (5) and (6);
5: Update u = u+ 1;
6: For τ = t to t+W − 1 do
7: Determine Pe,τ (u) as in (8) and (9);
8: If Pe,τ (u) < P∗

e,τ , update P∗
e,τ as in (13)

and store the likelihoods of Sτ ;
9: End for

10: If P∗
e,t < Ξ, terminate the decoding window

and goto 12;
11: End while
12: Estimate St based on the stored likelihoods;
13: Update t = t+ 1 and restore u = 0;
14: End while

iterations start. If so, the window will further slide to decode
the next symbol set St+1 without any dedicated BP operations
for set St. As a result, the average iteration number in each
decoding window can be reduced.

However, it should be pointed out that skipping BP oper-
ation of a certain decoding window might affect the iterative
convergence of the later windows, especially when the window
size is too small. For example, Fig. 2 shows the sliding window
decoding with w = 2 and W = 3. If P∗

e,t+1 < Ξ at the
beginning of the window decoding at time instant t + 1, the
window will further slide into time instant t+2, skipping any
BP operations at t + 1. As a result, the stored likelihoods of
St+1 will be calculated without considering the check equa-
tions in the shadow area. Those check nodes have not been
updated either. This will affect the reliability of the decoding
likelihoods, which would in turn incur more iterations for
the later windows. Therefore, a sufficiently large window size
should be chosen in order to realize this complexity reduction
of ISWD. In the following section, numerical results will be
provided to demonstrate this requirement.

IV. SIMULATION RESULTS AND DISCUSSIONS

This section presents our simulation results and discussions
of the ISWD algorithm and its complexity reducing variant.
Decoding performances were obtained over the additive white
Gaussian noise (AWGN) channel using BPSK modulation.
The simulated SC-LDPC codes were constructed from the
B = [3 3] base matrix with L = 50 and w = 2. The maximum
BP iteration number is 100 for each decoding window and the
termination threshold is 1×10−6. In this session, we refer the
ISWD algorithm and its complexity reducing variant as the
ISWD-I and the ISWD-II algorithms, respectively.

Figs. 3 and 4 show the BER performance of two (3, 6) SC-
LDPC codes that were constructed with a lifting factor of 100
and 500, respectively. Their codeword length are 10000 and
50000, with an actual code rate 0.48 for both. They show

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

B
E

R

SNR(dB)

SWD (W = 6)

ISWD-I (W = 6)

ISWD-II (W = 6)

SWD (W = 10)

ISWD-I (W = 10)

ISWD-II (W = 10)

SWD (W = 20)

ISWD-I (W = 20)

ISWD-II (W = 20)

SWD (W = 50)

ISWD-I (W = 50)

Υ = 100

Ξ =

Fig. 3. Performance of the (3, 6) SC-LDPC code with N = 10000.

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

B
E

R

SNR(dB)

SWD (W = 6)

ISWD-I (W = 6)

SWD (W = 12)

ISWD-I (W = 12)

SWD (W = 20)

ISWD-I (W = 20)

SWD (W = 50)

ISWD-I (W = 50)

Υ = 100

Ξ =

Fig. 4. Performance of the (3, 6) SC-LDPC code with N = 50000.

the ISWD-I algorithm outperforms the conventional SWD
algorithm with various window sizes W . The performance
improvement is especially significant in the BER curves’
waterfall region. Note that the ISWD-I algorithm’s advantage
is realized when the maximum BP iteration number is reached
such that estimation of the target symbols will be made based
on potentially more reliable LLRs. This happens more often
in the waterfall region. As the SNR increases, the ISWD-I
performance converges to the SWD performance since most
of the window decoding events will terminate without reaching
the maximum iteration number. In this case, the two decodings
are identical. Note that by increasing the window size W ,
the ISWD-I algorithm achieves a less significant performance
improvement. This is because with a larger window size, the
SWD yields a better performance, making it harder to be
improved. With W = L, performance difference between the
ISWD-I and SWD diminishes. As for the complexity reducing
ISWD-II algorithm, Fig. 3 shows it also outperforms the SWD
algorithm in the waterfall region but suffers a severer error
floor. Overall, the two proposals do not show an asymptotic
performance advantage over the SWD algorithm.

TABLE I
COMPLEXITY COMPARISON BETWEEN THE ISWD-I AND ISWD-II ALGORITHMS

Parameters w = 2,W = 3 w = 2,W = 10
SNR (dB) 3.5 4.0 4.5 5.0 5.5 6.0 6.5 1.6 1.8 2.0 2.2 2.4 2.6 2.8
ISWD-I (Ω) 286 242 126 45 15 6 4 50 23 16 13 12 11 10
ISWD-II (Ω) 286 242 126 46 21 12 6 50 23 15 12 10 9 8

0%

20%

40%

60%

80%

100%

-9 -8 -7 -6 -5 -4 -3 -2 -1 0

P
er

ce
n
ta

g
e

Window ID

SNR = 1.2

SNR = 1.4

SNR = 2.8

Fig. 5. Decoding statistics of the ISWD-I algorithm. Window IDs of 0 ∼ −9
represent the decoding windows at time instants t ∼ t− 9, respectively.

We now provide more insights of the improved SWDs.
Fig. 5 shows the decoding statistics on the percentage of how
many sets of stored LLRs (used for decision) were produced
by different decoding windows in the ISWD-I algorithm. It
was obtained by simulating the above SC-LDPC code with
N = 10000 using W = 10. Therefore, besides the first two
symbol sets, the others will be monitored by 10 decoding
windows. Fig. 5 shows that most of the stored LLRs are
either produced when the symbol set is targeted (window
ID of 0) or when they start to be monitored (window ID
of -9). When the SNR = 1.2dB, 64% of the stored LLRs
are produced when the corresponding symbols are targeted
and 23% are produced when they start to be monitored. This
verifies the ISWD-I algorithm’s performance advantage shown
in the waterfall region. Note that in low SNRs the received
information is unreliable. Performing more BP iterations will
not help improve the decoding estimation. This explains why
most of the intermediate windows cannot produce the stored
LLRs. As the SNR increases, most of the stored LLRs are
produced when the corresponding symbols are targeted. In
this case, the ISWD-I and SWD become the same and their
performances converge. This implies to reduce the monitoring
effort, we can monitor a symbol set when they are included
by the first and last decoding windows.

Table I further compares the decoding complexity between
the ISWD-I and the ISWD-II algorithms. Their decoding com-
plexity is reflected by the average iteration number (denoted
as Ω) for decoding each symbol set. Again, this statistics was
obtained by simulating the above SC-LDPC code. It shows
as the SNR increases, the decoding converges earlier. It also
shows that the ISWD-II algorithm cannot reduce the average
iteration number with W = 3. This is because when W = 3,
skipping BP operations of a certain decoding window affects
the convergence of the later windows.

V. CONCLUSIONS

This paper has proposed two improved SWD algorithms
that are featured by monitoring the average error probability
Pe,t(u) of a symbol set St when it is included by a number of
decoding windows. Symbols of St are estimated based on the
stored LLRs that produce the minimum value of Pe,t(u). Our
simulation results show the ISWD algorithm outperforms the
conventional SWD algorithm, especially in the BER curve’s
waterfall region. It exhibits an asymptotic convergence to the
SWD performance. The complexity reducing variant of ISWD
algorithm can also outperform the SWD algorithm in the
waterfall region, but suffers a severer error floor.

VI. ACKNOWLEDGMENT

This is supported by the National Natural Science Founda-
tion of China (NSFC) under grants 61372079 and 61671486.

REFERENCES

[1] S. Kudekar, T. Richardson and R. Urbanke, “Threshold saturation via
spatial coupling: why convolutional LDPC ensembles perform so well
over the BEC,” IEEE Trans. Inf. Theory, vol. 57, no. 2, pp. 803–834,
Feb. 2011.

[2] D. Costello, Jr., L. Dolecek, T. Fuja, J. Kliewer, D. Mithchell and R.
Smarandache, “Spatially coupled sparse codes on graphs: Theory and
Practice,” IEEE Commun. Mag., vol. 52, no. 7, pp. 168–176, Jul. 2014.

[3] D. Divsalar, S. Dolinar. C. Jones and K. Andrews, “Capacity-
approaching protograph codes,” IEEE J. Sel. Areas Commun., vol. 27,
no. 6, pp. 876–888, Aug. 2009.

[4] D. Mitchell, M. Lentmaier and D. Costello, Jr., “Spatially coupled LDPC
codes constructed from protographs,” IEEE Trans. Inf. Theory, vol. 61,
no. 9, pp. 4866–4889, Sept. 2015.

[5] A. Felstrom and K. Zigangirov, “Time-varying periodic convolutional
codes with low-density parity-check matrix,” IEEE Trans. Inf. Theory,
vol. 45, no. 6, pp. 2181–2191, Sept. 1999.

[6] M. Lentmaier, A. Sridharan, D. Costello, Jr. and K. Zigangirov, “Iterative
decoding threshold analysis for LDPC convolutional codes,” IEEE Trans.
Inf. Theory, vol. 56, no. 10, pp. 5274–5289, Oct. 2010.

[7] D. Mitchell, A. Pusane and D. Costello, Jr., “Minimum distance and
trapping set analysis of protograph-based LDPC convolutional codes,”
IEEE Trans. Inf. Theory, vol. 59, no. 1, pp. 254–281, Jan. 2013.

[8] A. Iyengar, M. Papaleo, P. Siegel, J. Wolf, A. Vaneli-Corali and G.
Corazza, “Windowed decoding of protograph-based LDPC convolutional
codes over erasure channels,” IEEE Trans. Inf. Theory, vol. 58, no. 4,
pp. 2303–2320, Apr. 2012.

[9] N. ul Hassan, A. Pusane, M. Lentmaier, G. Fettweis and D. Costello, Jr.,
“Non-uniform window decoding schedules for spatially coupled LDPC
codes,” IEEE Trans. Commun., vol. 65, no. 2, pp. 501–510, Feb. 2017.

[10] N. ul Hassan, M. Lentmaier and G. Fettweis, “Comparision of LDPC
block and LDPC convolutional codes based on their decoding latency,”
in Proc. Int. Symp. Turbo Codes & Iter. Inf., Gothenburg, Sweden, Aug.
2012.

[11] J. Thorpe, “Low-density parity-check (LDPC) codes constructed from
protographs,” Jet Propulsion Laboratory, INP Progress Report, pp. 42–
154, Aug. 2003.

[12] F. Kschischang, B. Frez and H. Loeliger, “Factor graphs and the sum-
product algorithm,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 498–519,
Feb. 2001.

