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Abstract—This paper proposes algebraic soft decoding (ASD)
for one-point elliptic codes, where the interpolation is realized
through the perspective of obtaining a Gröbner basis. The desired
interpolation polynomial Q(x, y, z) is the minimum candidate in
the basis. This work shows how to obtain such a Gröbner basis.
Based on an interpolation multiplicity matrix M, an interpolation
ideal IM can be defined. With a predefined decoding output list
size (OLS) l (l ≥ degz Q), an equivalent interpolation module
IM,l can be led to. By further defining the Lagrange interpolation
functions, a basis of the interpolation module can be constructed.
The desired Gröbner basis can be obtained by reducing this
module basis. Finally, the decoding complexity is also analyzed.

Index Terms—Algebraic soft decoding, basis reduction, elliptic
codes, Gröbner basis, interpolation

I. INTRODUCTION

Algebraic geometric (AG) codes were first introduced by
Goppa [1]. They are linear block codes constructed based
on an algebraic curve. The well known AG codes include
Hermitian codes, elliptic codes, hyperelliptic codes, Klein
quartic codes, and etc. The popular Reed-Solomon (RS) codes
can also be seen as an AG code, since they are constructed
based on a straight line. The length of an AG code is defined by
the number of rational points on the curve. Since the number
of rational points on a curve can exceed the size of finite
field in which the curve is defined, the length of AG codes
can exceed the field size so that they can correct more errors.
However, their length advantage is exchanged by the genus
penalty that pulls them away from being maximum distance
separable (MDS). Among all algebraic curves, elliptic curves
have a genus of one. Hence, elliptic codes are almost MDS
codes, inheriting a good tradeoff between codeword length and
distance property.

For an (n, k) AG code with length n and dimension k,
its minimum Hamming distance d is lower bounded by the
designed distance d∗ = n − k − g + 1, where g is the genus
of the curve. By constructing a polynomial that interpolates
a set of points with a certain multiplicity, Guruswami and
Sudan [2] proposed list decoding of RS and AG codes,
namely, the GS decoding. For AG codes, it can correct up
to n−⌊

√
n(n− d∗)⌋−1 errors. The GS decoding consists of

interpolation and root-finding. The former that determines the
interpolation polynomial dominates the decoding complexity
and it can be realized by Kötter’s iterative polynomial con-
struction [3]. Høholdt and Nielsen [4] presented a mathemat-
ical framework for GS decoding of Hermitian codes using
Kötter’s interpolation. Using soft received information and

transforming them into the interpolation multiplicities, alge-
braic soft decoding (ASD) of Hermitian codes was proposed
by Chen et al. [5]. GS decoding of elliptic codes using Kötter’s
interpolation was recently proposed by the authors [6].

Different from Kötter’s interpolation, Lee and O’Sullivan
proposed another interpolation approach for GS decoding of
Hermitian codes from the perspective of Gröbner bases of
modules [7]. The desired Gröbner basis can be obtained by
first constructing the basis of the interpolation module, and
then reducing the basis. The interpolation polynomial is the
minimum candidate of the Gröbner basis. By generalizing
the Alekhnovich basis reduction algorithm [8], Beelen and
Brander further reduced the interpolation complexity for a
class of AG codes [9]. Nielsen and Beelen also presented such
interpolation technique for power decoding and GS decoding
of Hermitian codes [10], in which the GJV basis reduction
algorithm [11] was applied. ASD of Hermitian codes using this
basis reduction (BR) interpolation technique was proposed by
Lee and O’Sullivan [12]. GS decoding of elliptic codes using
this BR interpolation technique was recently developed by the
authors [13].

Based on Kötter-Vardy’s soft decoding framework for RS
codes [14], this paper proposes the ASD of elliptic codes using
the BR interpolation technique. The soft received information
is transformed into a multiplicity matrix M, based on which
an interpolation ideal IM can be defined. By characterizing
the decoding output list size (OLS) l, module IM,l can be
further defined. It contains the trivariate polynomials that
satisfy the prescribed interpolation constraints. In order to
formulate the generators for the basis of IM,l, a sequence of
submodules of the elliptic curve coordinate ring are defined.
This formulation is further completed by defining the zero
basis of each affine point and the Lagrange interpolation
function over the elliptic function field. The module basis
can be presented as a matrix in univariate polynomials. Row
operation on the matrix further reduces it into the desired
Gröbner basis. The interpolation polynomial Q(x, y, z) is the
minimum candidate of the Gröbner basis. Besides formulating
the above ASD for elliptic codes, this work also analyzes the
BR interpolation complexity in the decoding. Our analysis
shows that a higher rate code will exhibit a lower decoding
complexity.

II. ELLIPTIC CURVES AND ELLIPTIC CODES

Let Fq = {σ0, σ1, . . . , σq−1} denote the finite field of size q.
An affine elliptic curve E over Fq is defined by a nonsingular
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Weierstrass equation as

E : Y 2 + a1XY + a3Y −X3 − a2X
2 − a4X − a6 = 0, (1)

with a1, a2, a3, a4, a6 ∈ Fq . On E, there exists a point
of infinity P∞. The points on the curve are called affine
points, denoted as Pj = (xj , yj). Let E(Fq) denote the set
of Fq-rational points on E that have all coordinates in Fq ,
i.e., E(Fq) = {Pj}

∪
{P∞}. The Fq-rational points form an

additive Abelian group based on the “chord-and-tangent” rule
with P∞ as the identity element [15]. Let δ denote the order of
Pj , which is defined as the smallest nonnegative integer δ that
satisfies δPj = P∞. Let −Pj denote the inverse of Pj . They
are the only affine points on E with same x-coordinate, and
hence can be denoted as Pj = (xj , yj) and −Pj = (xj , y

′
j).

Therefore, for E, we define the following coordinate sets

A = {xj | Pj = (xj , yj), ∀j}, (2)

Bj = {yj , y′j}. (3)

Let Fq[X,Y ] denote the bivariate polynomial rings defined
over Fq , and < E > denote the ideal generated by E. The
coordinate ring of E can be defined as

R = Fq[X,Y ]/ < E > . (4)

R consists of functions in the form h0(x) + h1(x)y, where
h0(x), h1(x) ∈ Fq[x], where x and y are the residue classes
of X and Y , respectively. The quotient field of R is called
the elliptic function field, denoted as Fq(E).

Given h ∈ Fq(E), its order at a rational point P is denoted
as vP (h) [15]. There exists a function Λ that enables vP (Λ) =
1 and h = ΛvP (h)h′, where vP (h

′) = 0. Λ is called a local
parameter in P . If vP (h) > 0, h has a zero of order vP (h)
at P . Otherwise if vP (h) < 0, it has a pole of order −vP (h)
at P . For elliptic curves, −vP∞(x) = 2, −vP∞(y) = 3 and
−vP∞(xλyγ) = 2λ+ 3γ.

Definition 1 ([15]): Let nP denote an integer that corre-
sponds to P , D =

∑
P∈E(Fq)

nP [P ] is a divisor of E. It
has a degree of deg(D) =

∑
P∈E(Fq)

nP and a sum of
sum(D) =

∑
P∈E(Fq)

nPP .

Definition 2 ([15]): If h ∈ Fq(E) and h ̸= 0, the divisor
of h is defined as div(h) =

∑
P∈E(Fq)

vP (h)[P ]. div(h) is
also called the principal divisor of E.

Let L(D) denote the Riemann-Roch space defined by the
divisor D. For L(u[P∞]) = {h ∈ Fq(E)|div(h) + u[P∞] ≽
0}

∪
{0}, there exists a basis consisting of

{ϕ0 = 1} ∪ {ϕa = xλyγ | a = 2λ+ 3γ − 1 < u,

λ ∈ N, γ ∈ {0, 1}}, (5)

where “ ≽ ” indicates that the coefficients of div(h)+ u[P∞]
are nonnegative and N denotes the set of nonnegative integers.
It can be seen that −vP∞(ϕa) < −vP∞(ϕa+1). Consequently,
R =

∪∞
u=0 L(u[P∞]). If h ∈ R, it can be written as h =∑

ζaϕa, where ζa ∈ Fq , and −vP∞(h) = max{−vP∞(ϕa) |
ζa ̸= 0}. Meanwhile, for each affine point Pj , there exists a

zero basis
{ψPj ,b(x, y) | b ∈ N} (6)

of R that satisfies vPj (ψPj ,b) = b. Therefore, each pole basis
monomial ϕa can be written as

ϕa =
∑
b∈N

ξa,Pj ,bψPj ,b, (7)

where ξa,Pj ,b ∈ Fq is the corresponding coefficient between
ϕa and ψPj ,b [4] [16].

Given a message vector f = (f0, f1, . . . , fk−1) ∈ Fk
q , it can

be written as

f(x, y) = f0ϕ0 + f1ϕ1 + · · ·+ fk−1ϕk−1, (8)

where f ∈ L(k[P∞]). The encoding of an (n, k) elliptic code
can be performed by

c = (f(P0), f(P1), . . . , f(Pn−1))

= (c0, c1, . . . , cn−1) (9)

where c ∈ Fn
q . Its minimum Hamming distance d ≥ n− k.

Therefore, the number of affine points on curve E defines
the length of the code. Over Fq , there exists curve E on which
the number of rational points can reach the Hasse-Weil bound
[17], i.e., |E(Fq)| = q + ⌊2√q⌋+1. It should be pointed that
the use of the affine points an order of two will make the
interpolation module basis construction cumbersome. Given
an elliptic curve, there exist at most three such points. In this
work, our code construction will be based on curves that reach
the Hasse-Weil bound but do not contain affine points of order
two. This can be realized by choosing the curve coefficients
a1, a2, a3, a4 and a6, appropriately. Excluding P∞ for encod-
ing, the constructed elliptic codes have length n = q+⌊2√q⌋.

III. ALGEBRAIC SOFT DECODING

A. Reliability Transform

Assume that codeword c is transmitted through a dis-
crete memoryless channel. Given a received symbol vector
r = (r0, r1, . . . , rn−1) ∈ Rn, a reliability matrix Π of size
q × n can be obtained. Its entry πij = Pr[cj = σi | rj ]
is the a posteriori probability. Note that it is assumed that
Pr[cj = σi] = 1

q , ∀(i, j). Matrix Π will be transformed
into a multiplicity matrix M of the same size [14]. Its entry
mij represents the interpolation multiplicity for point (Pj , σi).
Note that the Π → M transform can be parameterized by
a predefined decoding OLS l, where l ≥ degz Q [5]. That
says the transform that iteratively updates mij will terminate
once the entries can sustain a decoding OLS of l, where the
estimation of l based on M will be presented in Section III.C.

B. Interpolation Ideal

Let R[z] denote the polynomial ring over R. For monomial
ϕaz

b ∈ R[z], its (1, k)-weighted degree is deg1,kϕaz
b =

−vP∞(ϕa) + kb. Given two distinct monomials ϕa1z
b1 and

ϕa2z
b2 , we can arrange them in the (1, k)-revlex order:

ord(ϕa1z
b1) < ord(ϕa2z

b2), if deg1,kϕa1z
b1 < deg1,kϕa2z

b2 ,
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or deg1,kϕa1z
b1 = deg1,kϕa2z

b2 and b1 < b2. For a polynomi-
al Q =

∑
a,b Qabϕaz

b ∈ R[z], its (1, k)-weighted degree and
leading order can be defined as deg1,kQ = max{deg1,kϕaz

b |
Qab ̸= 0} and lod(Q) = max{ord(ϕazb) | Qab ̸= 0}, respec-
tively. Therefore, given two distinct polynomials Q1, Q2 ∈
R[z], we claim Q1 < Q2, if lod(Q1) < lod(Q2).

Let mult(Pj ,σi)(Q) denote the interpolation multiplicity of
Q at point (Pj , σi). Given matrix M, the interpolation ideal
IM is defined as

IM = {Q ∈ R[z] | mult(Pj ,σi)(Q) ≥ mij , ∀mij ̸= 0}. (10)

Interpolation finds the minimum polynomial Q over IM under
the (1, k)-revlex order.

Let ij = index{σi | σi = cj}, based on M, the score of c
is defined as

SM(c) =
n−1∑
j=0

mijj .

The following Theorem shows a sufficient condition for a
successful ASD.

Theorem 1: Given an (n, k) elliptic code and a nonzero
interpolation polynomial Q ∈ IM. If

SM(c) > deg1,k Q, (11)

then Q(x, y, f) = 0, or equivalently (z − f) | Q.
Proof: Since Q ∈ IM, for Pj , Q can be written as

Q =
∑

a+bi≥mij

ha

q−1∏
i=0

(z − σi)
bi , (12)

where ha ∈ R and vPj (ha) ≥ a. Replacing z in (12)
by f yields Q(x, y, f) =

∑
a+bi≥mij

ha
∏q−1

i=0 (f − σi)
bi . If

f(Pj) = σi for each Pj , then vPj (Q(x, y, f)) ≥ a+bi ≥ mij .
Therefore, Q(x, y, f) has at least SM(c) zeroes over the n
affine points. Since f ∈ L(k[P∞]), i.e., deg1,k f ≤ k,
deg1,k Q(x, y, f) ≤ deg1,k Q(x, y, z). Based on (11),∑n−1

j=0 vPj (Q(x, y, f)) = SM(c) > deg1,k Q
≥ deg1,k Q(x, y, f) = −vP∞(Q(x, y, f)),

i.e., Q(x, y, f) has a zero order that is greater than its pole
order. As a result, Q(x, y, f) = 0.

C. Decoding OLS

Given a multiplicity matrix M, let

CM =

q−1∑
i=0

n−1∑
j=0

(
mij + 1

2

)
(13)

denote its interpolation cost implied by the matrix. It is the
number of interpolation constraints that Q should satisfy.

Theorem 2: For an (n, k) elliptic code, given M, its de-
coding OLS can be determined by

l =

⌊√
2CM

k
+

1

4
− 1

2

⌋
. (14)

Proof: Given M, the interpolation polynomial Q should
contain at least the first CM + 1 monomials in R[z], so that
the linear system will have a nonzero solution. Therefore,

l = max
{
l′ | ord(zl

′
) ≤ CM

}
. (15)

Note that ord(zl
′
) = ord(zl

′−1) + |{ϕazb | (l′ − 1)k <
deg1,k(ϕaz

b) ≤ l′k}|. Since elliptic curves have a genus
of one, in R there does not exist a monomial ϕ such
that −vP∞(ϕ) = 1. If D = (l′ − 1)k + 1, |{ϕazb |
deg1,k(ϕaz

b) = D}| = l′ − 1. If (l′ − 1)k + 1 < D < l′k,
|{ϕazb | deg1,k(ϕaz

b) = D}| = l′. Otherwise, |{ϕazb |
deg1,k(ϕaz

b) = D}| = l′ + 1. Therefore, ord(zl
′
) =

ord(zl
′−1)+ l′k = (1+2+ · · ·+ l′)k = kl′(l′+1)

2 . Substituting
it into (15), the conclusion will be led to.

IV. THE BR BASED INTERPOLATION

This section introduces how to construct the interpolation
polynomial Q through module basis construction and its
reduction, for which the following prerequisites are needed.

A. Prerequisites

Let R[z]l = {Q ∈ R[z] | degzQ ≤ l}, which can be seen
as a free module over Fq[x] with a rank of 2(l+1) and a free
basis of {1, y, z, yz, . . . , zl, yzl}. Let us define

IM,l = IM ∩R[z]l

as a submodule of R[z]l.
Consider IM,l as an Fq[x]-module, the basis of IM,l can

be presented as a square matrix V ∈ Fq[x]
2(l+1)×2(l+1). Let

Vt and Vt,s denote the row-t and the row-t column-s entry
of V, respectively, the degree of Vt is defined as

degVt = max{degVt,s | 0 ≤ s ≤ 2l + 1}. (16)

The leading position of Vt is

LP(Vt) = max{s | degVt,s = degVt}. (17)

Finally, the degree of V is defined as

degV = max{degVt | 0 ≤ t ≤ 2l + 1}. (18)

Definition 3 ([18]): Given a square matrix V in Fq[x], it is
in weak Popov form if and only if LP(Vt) ̸= LP(Vt′),∀t ̸=
t′.

The interpolation polynomial Q can be computed by first
constructing a basis for IM,l. Presented as a matrix in Fq[x],
it will then be reduced into weak Popov form, which indicates
the desired Gröbner basis is reached. Q is the minimum
candidate of the basis.

B. Module Basis Construction

In order to construct the basis for IM,l, the following
interpolation point numeration is needed. Let Sj denote the
multiset of interpolation points (Pj , σi)

Sj = {(Pj , σi), . . . , (Pj , σi)︸ ︷︷ ︸
mij

| ∀i}. (19)

523



Its balanced list S ′
j can be further generated by moving one

of the most frequent elements in Sj to S ′
j , until Sj becomes

empty. Let mj =
∑q−1

i=0 mij , we have |S ′
j | = |Sj | = mj . Note

that mj ≤ l. S ′
j can be denoted as

S ′
j = {(Pj , z

(0)
j ), (Pj , z

(1)
j ), . . . , (Pj , z

(mj−1)
j )}, (20)

where z(u)j ∈ Fq and 0 ≤ u ≤ mj − 1. With all balance lists
S ′
0,S ′

1, . . . ,S ′
n−1, let z(u) = (z

(u)
0 , z

(u)
1 , . . . , z

(u)
n−1). Further-

more, S ′
j can be partitioned into S(u)

j = {(Pj , z
(0)
j ), . . . , (Pj ,

z
(u−1)
j )} and S(u)

j = {(Pj , z
(u)
j ), . . . , (Pj , z

(mj−1)
j )}. Note

that in S(u)

j , (Pj , z
(u)
j ) is one of the most frequent elements.

Moreover, since mj ≤ l, S(u)

j = ∅ if mj ≤ u ≤ l. Let m(u)
j

denote the multiplicity of (Pj , z
(u)
j ) in S(u)

j , we can define

Ju = {h ∈ R | vPj (h) ≥ m
(u)
j } (21)

as an Fq[x]-submodule of R. Since m
(u)
j ≥ m

(u+1)
j , Ju ⊆

Ju+1.
Recall that over an elliptic curve E, Pj = (α, β) and −Pj =

(α, β′). Let us denote Pα0 = (α, β) and Pα1 = (α, β′), and
µ
(u)
αv = m

(u)
j for Pαv = Pj , where v = 0, 1. For each α ∈ A,

we arrange the index v such that

µ(u)
α0

≥ µ(u)
α1
. (22)

For u = 0, 1, . . . , l, Pα0 can be different. For explicity, we
denote Pα0 by P (u)

α0 . Therefore, Ju can be written as

Ju = {h ∈ R | v
P

(u)
αv

(h) ≥ µ(u)
αv

}. (23)

Lemma 3: Given function h(x, y) =
∑ρ

s=0 hs(x)y
s ∈ Ju,∏

α∈A(x− α)
µ(u)
αρ |hρ(x).

Proof: When ρ = 0, for P
(u)
α0 , there exists a local

parameter Λ = x − α such that h0(x) = Λµ(u)
α0 h′0(x). Hence,∏

α∈A(x − α)µ
(u)
α0 |h0(x). When ρ = 1, h = h0 + h1y. For

P
(u)
α1 , assume that (x − α)µ

(u)
α1 - h1, then h = (x − α)µh′,

where µ < µ
(u)
α1 and (x − α) - h′. Since vPα1

(h) ≥ µ
(u)
α1 ,

h′(P
(u)
α1 ) = 0. Since h′(P (u)

α0 ) ̸= h′(P
(u)
α1 ), v

P
(u)
α0

(h) = µ <

µ
(u)
α0 . It contradicts v

P
(u)
α0

(h) = µ
(u)
α0 .

Let µ(u)
α = µ

(u)
α0 − µ

(u)
α1 , given H(x) ∈ Fq[x], it satisfies

v
P

(u)
α0

(y −H(x)) ≥ µ(u)
α , ∀α ∈ A. (24)

Let
ν(u) =

∑
α∈A

µ(u)
α (25)

and

H(x) =
ν(u)−1∑
i=0

ζix
i, (26)

where ζi ∈ Fq. Based on (7), we know for each Pj , y =∑
b∈N ξ2,Pj ,bψPj ,b and H(x) =

∑
b∈N(ζ0ξ0,Pj ,b +

∑ν(u)−1
i=1

ζiξ2i−1,Pj ,b)ψPj ,b. Therefore, for P
(u)
α0 , if ζ0ξ0,P (u)

α0
,b

+

∑ν(u)−1
i=1 ζiξ2i−1,P

(u)
α0

,b
= ξ

2,P
(u)
α0

,b
with 0 ≤ b < µ

(u)
α ,

H(x) satisfies the required condition of (24). The zero basis
functions of each affine point can be generated based on
Theorem 3 of [6]. The corresponding coefficients ξa,Pj ,b can
be further determined. Consequently, H(x) can be obtained
by solving the linear system

ζΞ = ξ, (27)

where Ξ is a square matrix of size ν(u), ζ = (ζ0, . . . , ζν(u)−1)
and ξ = (ξ

2,P
(u)
α0

,0
, ξ

2,P
(u)
α0

,1
, . . . , ξ

2,P
(u)
α0

,µ
(u)
α −1

).

Theorem 4: Ju (0 ≤ u ≤ l) can be generated as an Fq[x]-
module by

G(u)
0 (x, y) =

∏
α∈A

(x− α)µ
(u)
α0 (28)

and
G(u)
1 (x, y) = (y −H(x))

∏
α∈A

(x− α)µ
(u)
α1 . (29)

Proof: Note that G(u)
0 , G(u)

1 ∈ Ju. Based on Lemma 3,
for each h = h0+h1y ∈ Ju, there exists h′1 such that h′(x) =
h− h′1G

(u)
1 ∈ Ju. And there exists h′0 such that h′ = h′0G

(u)
0 .

Therefore, h = h′1G
(u)
1 + h′0G

(u)
0 , i.e., Ju can be generated as

an Fq[x]-module by G(u)
0 and G(u)

1 .
Note that if m

(l)
j = 0, G(l)

0 = 1 and G(l)
1 = y. Given Q ∈

R[z], it can be written as Q =
∑

s∈NQ[s]z
s, where Q[s] ∈ R.

Lemma 5: Let Q =
∑ϱ

s=0Q[s]z
s ∈ IM,l, then Q[ϱ] ∈ Jϱ.

Proof: For Pj , Q =
∑

a+bi≥mij
ha

∏q−1
i=0 (z − σi)

bi ,
where ha ∈ R and vPj (ha) ≥ a. Therefore, vPj (ha) ≥
max{mij − bi}. When ϱ = 0, vPj (ha) ≥ max{mij} and
Q[0] ∈ J0. When ϱ = 1, i.e.,

∑q−1
i=0 bi = 1, let b0 = 1, we

have vPj (ha) ≥ max{m′
ij | m′

0j = m0j − 1 and m′
ij =

mij , 1 ≤ i ≤ q − 1}. Therefore, Q[1] ∈ J1. Following the
same deduction manner, the conclusion can be reached.

To define a basis for IM,l, the following function is needed

Kz(u)(x, y) =
n−1∑
j=0

z
(u)
j Lj(x, y), (30)

where

Lj(x, y) =
∏

α∈A\{xj}

x− α

xj − α

∏
β∈Bj\{yj}

y − β

yj − β
(31)

is the Lagrange interpolation function over Fq(E). Note that
if j = j′, then Lj(Pj′) = 1; otherwise, Lj(Pj′) = 0. Hence,
Kz(u)(Pj) = z

(u)
j for 0 ≤ u < mj . Based on (28)-(30), the

generators of IM,l can be defined as follows.
Theorem 6: IM,l can be generated as an Fq[x]-module by

M ={Mt |Mt = G(u)
v

u−1∏
ϵ=0

(z −Kz(ϵ)),

t = v + 2u, v = 0, 1 and 0 ≤ u ≤ l}. (32)

Proof: Based on Theorem 4, we have G(u)
v ∈ Ju,

i.e., vPj (G
(u)
v ) ≥ m

(u)
j . Let m(u)

ij denote the multiplicity
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of (Pj , σi) in S(u)

j . Therefore, mult(Pj ,σi)(G
(u)
v ) ≥ m

(u)
ij .

Based on (20) and (29), mult(Pj ,σi)(
∏u−1

ϵ=0 (z − Kz(ϵ))) ≥
mij −m

(u)
ij . Therefore, Mt ∈ IM,l. Based on Lemma 5, for

Q =
∑l

s=0Q[s]z
s ∈ IM,l, Q[s] ∈ Js. Therefore, there exist

h
(l)
0 , h(l)1 ∈ Fq[x] such that Q[l] = h

(l)
0 G(l)

0 +h
(l)
1 G(l)

1 . It enables
Q(l−1) = Q−(h

(l)
0 M2l+h

(l)
1 M2l+1) with degz Q

(l−1) ≤ l−1

and Q(l−1)
[l−1] ∈ Jl−1. Again, there exist h(l−1)

0 , h(l−1)
1 ∈ Fq[x]

such that Q(l−2) = Q(l−1) − (h
(l−1)
0 M2l−2 + h

(l−1)
1 M2l−1)

with degz Q
(l−2) ≤ l − 2 and Q

(l−2)
[l−2] ∈ Jl−2. Following the

same deduction, there exist h
(1)
0 , h(1)1 ∈ Fq[x] which enable

Q(0) = Q(1) − (h
(1)
0 M2 + h

(1)
1 M3). Therefore, Q(0) ∈ J0,

i.e., there exist h(0)0 , h(0)1 ∈ Fq[x] such that Q(0) = h
(0)
0 M0 +

h
(0)
1 M1. Consequently, if Q ∈ IM,l, it can be expressed as an

Fq[x]-linear combination of Mt.
It is obvious that for Mt, G(u)

v and
∏u−1

ϵ=0 (z − Kz(ϵ))

interpolate all points of S(u)

j and S(u)
j , respectively.

C. Module Basis Reduction

Basis M will be further reduced, yielding the Gröbner basis
M′ that contains the interpolation polynomial Q.

Note that IM,l is an Fq[x] submodule of R[z]l. That
says its polynomials Q can be written as Q = Q(0) +
Q(1)y + · · · + Q(2l+1)yzl, where Q(0), Q(1), . . . , Q(2l+1)

∈ Fq[x]. They can also been written as Q =
(Q(0), Q(1), . . . , Q(2l+1))(1, y, . . . , yzl)T . Therefore, the ba-
sis polynomials Mt can also be written as Mt =

(M
(0)
t ,M

(1)
t , · · · ,M (2l+1)

t )(1, y, . . . , yzl)T . Basis M can be
presented as a matrix V ∈ Fq[x]

2(l+1)×2(l+1) by letting

Vt = (M
(0)
t ,M

(1)
t , . . . ,M

(2l+1)
t ), (33)

where Vt,s =M
(s)
t (x). Inversely,

Mt = Vt · (1, y, . . . , yzl)T . (34)

The Mulders-Storjohann (MS) algorithm [18] can reduce V
into weak Popov form. First, let us define the mapping Ψw

[10]: Fq[x]
2(l+1) → Fq[x]

2(l+1)

Vt 7→ V∗
t = Vt · diag(x⌊

w0
2 ⌋, x⌊

w1
2 ⌋, . . . , x⌊

w2l+1
2 ⌋), (35)

where w = (w0, w1, . . . , w2l+1) and ws = k⌊ s
2⌋+3(smod 2).

With the mapping, matrix V is transformed into

V∗ = Ψw(V) = (Ψw(V0),Ψw(V1), . . . ,Ψw(V2l+1))
T ,
(36)

where V∗
t,s = Vt,sx

⌊ws
2 ⌋. Row operations will then be

performed on V∗ until it reaches weak Popov form V∗′. The
corresponding matrix V′ can be obtained by Ψ−1

w as

V∗′
t 7→ V′

t = V∗′
t · diag(x−⌊w0

2 ⌋, x−⌊w1
2 ⌋, . . . , x−⌊

w2l+1
2 ⌋).

(37)
The desired Gröbner basis M′ can be further obtained as in
(34), which contains the interpolation polynomial Q.

Based on Theorem 1, message polynomial f can be further
decoded by finding z-roots of Q. It can be realized by the

recursive coefficient search algorithm [19]. Summarizing the
Section, the ASD algorithm that utilizes the BR interpolation
can be presented as in Algorithm 1, where f̂ denotes the
estimation of f .

Algorithm 1 The ASD algorithm
Input: Π and l;
Output: f̂ ;

1: Compute M that sustains l;
2: Create balanced lists S ′

j , as in (19) and (20);
3: Formulate the module basis M as in (32);
4: Map it into V∗ as in (33) and (35);
5: Reduce V∗ using the MS algorithm, yielding V∗′;
6: Demap V∗′ as in (37) and (34), yielding M′;
7: Choose the minimum candidate of M′ as Q;
8: Determine the z-roots of Q to estimate f̂ .

V. DECODING COMPLEXITY

This section analyzes complexity of the BR interpolation
for ASD of elliptic codes. We first consider the basis con-
struction complexity. The computation of H(x) requires at
most O((ν(u))3) finite field operations, where ν(u) has been
in (25). Based on Theorem 4, the complexity of computing
G(u)
v is O(ln). Since degx G

(u)
v < ln/2 and degx Kz(u) < n/2,

based on Theorem 6, the complexity of the basis construction
can be characterized as O(l2n2).

For characterizing the basis reduction complexity, we
should first define the orthogonality defect of matrix V ∈
Fq[x]

2(l+1)×2(l+1) as

∆(V) = rowdegV − deg detV, (38)

where rowdegV =
∑2l+1

t=0 degVt and deg detV denotes the
degree of the determinant of V. The following Lemma shows
the complexity of reducing V into weak Popov form.

Lemma 7 ([18]): Given a matrix V ∈ Fq[x]
2(l+1)×2(l+1),

the MS algorithm exhibits a complexity of O((2l +
2)2 degV∆(V)).

Therefore, for matrix V∗ of Section IV.C, degV∗ < ln/2
and ∆(V∗) < l2(n − k). Reducing it into weak Popov
form exhibits a complexity of O(l5n(n − k)). The above
analysis show that the interpolation will be more effective
for high rate codes as they inherit a smaller basis reduction
complexity. Furthermore, based on [19], the root-finding step
has a complexity of O(l2n2).
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