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Abstract—This paper proposes the U-UV structured codes with
BCH codes as its components. This coding construction will lead
to polarized subchannels and rate of each component code can
be designed accordingly. The component code will be decoded by
the ordered statistic decoding (OSD), yielding multiple decoding
outcomes. Integrated in a successive cancellation (SC) decoding
mechanism, SC-list (SCL) decoding of the U-UV codes is further
proposed. Our simulation results will show that over the short-
to-medium length regime, SCL decoding of a BCH based U-UV
code can outperform that of a similar rate polar code.

Index Terms—BCH codes, successive cancellation list decoding,
short-to-medium length codes, U-UV codes

I. INTRODUCTION

To realize ultra-reliable low-latency communications, it is
important to design good performing short-to-medium length
codes. This paper investigates this aspect by exploring the
(U|U+V) construction, where the U code and the V code are
component codes of equal length [1]. For simplicity, we name
it the U-UV construction, and the constructed codes the U-
UV codes. They have been traditionally used for unequal error
protection (UEP) [2–4], since the information carried by the
U code is better protected than that carried by the V code.

Reed-Muller (RM) [5, 6] and polar [7] codes can also be
interpreted by the U-UV structure. In particular, the research
of polar codes has shown that the U-UV construction leads to
polarized subchannels with their capacities approaching 0 or 1.
High decoding performance can be achieved by designing the
transmission according to the polarized subchannel capacities.
This inspires a more general U-UV structured code that is
yielded by a number of component codes, each of which
is transmitted through one of the subchannels. Rates of the
component codes can be designed based on the subchannel
capacities. The U-UV codes can also be interpreted as the
generalized concatenated codes [8, 9], where the polar code
is used as the inner code. In addition, it has been shown
that using algebraic-geometric codes as component codes
and soft decoding, the U-UV codes can attain the discrete
symmetric channel capacity [10]. However, a more practical
U-UV structured code with simpler component codes is yet
to be developed. Moreover, it has been proven that with
the successive cancellation (SC) decoding, polar codes can
achieve the capacity of the binary input symmetric discrete
memoryless channel [7]. But this is conditioned on codeword
length n→∞. When n remains small or medium, the incom-
pleteness of channel polarization starts to weight, since there
will be a larger portion of subchannels without a polarized

capacity. This will downgrade the effectiveness of assigning
transmission symbol wise as in polar coding. Instead, viewing
polar coding as a generalized structure filled by component
codes and designing the component code rates based on the
subchannel capacities can overcome this challenge. Therefore,
the U-UV coding offers an alternative solution for designing
competent short-to-medium length codes.

This paper proposes the U-UV structured codes with BCH
codes as its components. The polarized subchannel capacities
will be estimated by Gaussian approximation (GA) [11], and
rate of each component code can be designed accordingly.
The component codes are decoded by the ordered statistic
decoding (OSD) [12], providing close to maximum likelihood
(ML) decoding performance. Meanwhile, multiple estimations
for each component code will be provided. Integrated in an
SC decoding mechanism, SC-list (SCL) decoding of the U-UV
code is further proposed. Our simulation results will show that
in the short-to-medium length regime, the SCL decoding of the
U-UV code can outperform that of a similar rate polar code.

II. BCH BASED U-UV CODES

This section introduces the code construction and its design.

A. Code Construction

Definition I. Let U code be an (n, kU, dU) linear block
code, and V code an (n, kV, dV) one, where kU and kV are
their dimensions, and dU and dV are their minimum Hamming
distances, respectively. The U-UV code will be a (2n, k, d)
linear block code that is constructed by

(U|U + V) = {(u|u + v);u ∈ U and v ∈ V}, (1)

where k = kU + kV, and d = min{2dU, dV} is the minimum
Hamming distance of the U-UV code. Without loss of gener-
ality, in this paper, U (u) and V (v) also denote the codebook
(codeword) of the U code and the V code, respectively.

In the proposed coding scheme, the above U code and V
code are two BCH codes. This construction can be extended
recursively by involving more component BCH codes, forming
a larger U-UV code. This requires a multilevel U-UV construc-
tion. In general, if a U-UV code is constructed by H levels, it
consists of 2H component BCH codes. For simplicity, let U

(h)
i

(u(h)
i ) denote the ith component code (codeword) at level-h,

where h = 0, 1, ...,H and i = 1, 2, ..., 2H−h. In particular,
when h = 0, the component code U

(0)
i becomes an (n, ki)

BCH code with rate Ri = ki
n . Therefore, the ith component
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Fig. 1. Recursive construction of an H levels U-UV structured code.

code of level-h (h ≥ 1) is constructed by

U
(h)
i = (U

(h−1)
2i−1 |U

(h−1)
2i−1 + U

(h−1)
2i ). (2)

Note that a component code of level-h has length-2hn. Fig.
1 illustrates the recursive construction of an H levels U-UV
structured code.

B. Component Code Rate Design

The above U-UV construction yields 2H−h subchannel-
s at level-h, each of which has a different capacity. Let
W

(h)
i denote an equivalent subchannel at level-h and it is

used to transmit component code U
(h)
i . Let I(W

(h)
i ) de-

note the capacity of subchannel W
(h)
i . As the number of

levels H enlarges, the subchannel capacities at level-0, i.e.,
I(W

(0)
1 ), I(W

(0)
2 ), ..., I(W

(0)

2H
), will polarize [7]. Since U

(0)
i

is transmitted through W
(0)
i , its code rate Ri can be chosen

according to the subchannel capacity I(W
(0)
i ) as

Ri ≤ I(W
(0)
i ). (3)

GA can be utilized to estimate the subchannel capacities.
Let u(h)

i,j denote the jth symbol of a component codeword
u

(h)
i , where j = 0, 1, ..., 2hn − 1 and L

(h)
i,j denote its log-

likelihood ratio (LLR). Assume that codeword u
(H)
1 is trans-

mitted through the additive white Gaussian noise (AWGN)
channel with a noise variance of σ2. LLRs of its symbols,
denoted as L(H)

1,0 , L
(H)
1,1 , ..., L

(H)

1,2Hn−1
, can also be considered

as Gaussian variables with a mean of 2
σ2 and a variance of 4

σ2 .
It is denoted as L(H)

1,j ∼ N ( 2
σ2 ,

4
σ2 ). In general, statistics of

the LLRs of a level-(h−1) component code can be computed
with that of level-h as [11]

E[L
(h−1)
2i−1,j′ ] = 2E[L

(h)
i,j ], (4)

E[L
(h−1)
2i,j′ ] = φ−1(1− (1− φ(E[L

(h)
i,j ]))2), (5)

where j = 0, 1, . . . , 2hn− 1, j′ = 0, 1, . . . , 2h−1n− 1, and

φ(x) =

{
1− 1√

4πx

∫
tanh(ν2 ) exp(− (ν−x)2

4x )dν, x > 0,

1, x = 0.
(6)

Performing the computations recursively through the levels,
E[L

(0)
i,j ] can be determined. They are utilized to further deter-

mined the subchannel capacities I(W
(0)
i ).
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Fig. 2. Subchannel capacities W(0)
i of 2 levels U-UV construction.

The subchannel capacity I(W
(0)
i ) can be determined using

the Monte-Carlo simulation. With knowledge of E[L
(0)
i,j ], the

equivalent noise variance of subchannel W
(0)
i can be deter-

mined by σ2
i = 2

E[L
(0)
i,j ]

.

Considering W
(0)
i as an AWGN channel with a variance of

σ2
i , its capacity can be determined by

I(W
(0)
i ) =

1

2

∑
u
(0)

i,j′∈{0,1}

E
[
log2

p(yj′ |u(0)
i,j′)

1
2

∑
u
(0)
i,j∈{0,1}

p(yj |u(0)
i,j )

]
,

(7)
where yj (y′j) is the received symbol that carries u(0)

i,j (u(0)
i,j′ ),

and p(yj |u(0)
i,j ) (p(yj′ |u(0)

i,j′)) is the channel observation.

Fig. 2 shows the subchannel capacities I(W
(0)
i ) with H =

2. Rate of each component BCH code can be designed
accordingly. For example, to achieve a transmission rate of
0.78bits/sym., the signal-to-noise ratio (SNR) should be at
least 1dB, at which I(W

(0)
1 ) = 0.99, I(W

(0)
2 ) = 0.87,

I(W
(0)
3 ) = 0.85 and I(W

(0)
4 ) = 0.42. Hence, based on (3),

rates of U
(0)
1 , U

(0)
2 , U

(0)
3 and U

(0)
4 can be designed accordingly.

III. SCL DECODING

SCL decoding of the U-UV codes is built upon the OSD of
its component codes and the SC decoding mechanism for the
structured codes. They will be first introduced.

A. OSD of BCH Codes

Assumed that an (n, k) BCH codeword c = (c0, c1, . . . ,
cn−1) is transmitted through a discrete memoryless channel
using BPSK modulation. Let y = (y0, y1, . . . , yn−1) ∈
Rn denote the received symbol vector and L =
(L0, L1, . . . , Ln−1) ∈ Rn denote the corresponding LLR
vector with entries defined as

Lj = ln
p(yj |cj = 0)

p(yj |cj = 1)
, (8)
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where j = 0, 1, ..., n − 1. Hard-decision rj on each coded
symbol cj can be made. If Lj ≥ 0, rj = 0; otherwise,
rj = 1. Note that a larger |Lj | implies the decision on cj
is more reliable. Therefore, based on |Lj |, k most reliable
independent decisions are chosen to form an information
vector m(0). Meanwhile, a k × n generator matrix G that
is in the reduced echelon form will be obtained, in which the
k weight-1 columns correspond to the symbols of m(0). The
OSD of order τ(τ ≤ k) consists of τ decoding phases. Let β
denote the OSD phase index, and β = 1, . . . , τ . At phase-β,
β bits of m(0) will be flipped, yielding information vectors
m(1),m(2), . . . ,m(kβ). Using G, they will be encoded into
codeword candidates ĉ(1), ĉ(2), . . . , ĉ(kβ), respectively. There-
fore, the order-τ OSD will produce a list of

lτ =

(
k

0

)
+

(
k

1

)
+ · · ·+

(
k

τ

)
(9)

decoding estimations. Likelihood of each estimation ĉ(µ) =

(ĉ
(µ)
0 , ĉ

(µ)
1 , . . . , ĉ

(µ)
n−1) can be measured by the correlation

distance defined as [12]

λ(L, ĉ(µ)) =

n−1∑
j=0,rj 6=ĉ(µ)j

|Lj |, (10)

where µ = 1, . . . , lτ . A smaller λ(L, ĉ(µ)) indicates the
estimation ĉ(µ) is more likely to be the transmitted codeword.

B. The SC Decoding Mechanism

Given an H levels U-UV code, assume its codeword u
(H)
1

is transmitted through a memoryless channel using BPSK
modulation. Its received symbol vector is y = (y0, y1,

..., y2Hn−1) ∈ R2Hn. Let us define

Ω(h) = {1, 2, ..., 2H−h} (11)

as the set of component code indices at level-h, and

Ωi(h) = {i+ 1, i+ 2, ..., 2H−h} (12)

as the subset of Ω(h). At level-h, the SC decoding exhibits a
decoding order of U

(h)

2H−h
→ U

(h)

2H−h−1
→ · · · → U

(h)
1 . Hence,

Ωi(h) denotes the component codes that are decoded prior to
U

(h)
i . Note that at level-H , the overall U-UV code is consti-

tuted and Ωi(H) = ∅. Given u
(h)
i = (u

(h)
i,0 , u

(h)
i,1 , ..., u

(h)

i,2hn−1
),

under the SC decoding mechanism, LLR of its symbol is
defined as

L
(h)
i,j = ln

p({yj+(η−1)2hn}η∈Ω(h), {û
(h)
ρ,j }ρ∈Ωi(h)|u

(h)
i,j = 0)

p({yj+(η−1)2hn}η∈Ω(h), {û
(h)
ρ,j }ρ∈Ωi(h)|u

(h)
i,j = 1)

,

(13)
where j = 0, 1, ..., 2hn− 1, û(h)

ρ,j is an estimation of u(h)
ρ,j and

p({yj+(η−1)2hn}η∈Ω(h), {û
(h)
ρ,j }ρ∈Ωi(h)|u

(h)
i,j ) are the transition

probabilities of subchannel W
(h)
i . In particular, when h = H ,

L
(H)
1,j = ln

p(yj |u(H)
1,j = 0)

p(yj |u(H)
1,j = 1)

, (14)
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Fig. 3. SC Decoding of a 2 levels U-UV code.

which can be obtained based on y. The LLRs will be updated
level-by-level until L(0)

i,j are produced. In particular, let us
define

f(X ,Y) , ln
eX eY + 1

eX + eY
, (15)

where X ,Y ∈ R. With the U-UV construction, the LLRs of
level-(h− 1) can be determined by those of level-h as

L
(h−1)
2i,j′ =f(L

(h)
i,j′ , L

(h)

i,j′+2h−1n
), (16)

L
(h−1)
2i−1,j′ =L

(h)
i,j′ + (−1)

û
(h−1)

2i,j′ L
(h)

i,j′+2h−1n
, (17)

where j′ = 0, 1, ..., 2h−1n − 1. The above LLR updates
indicate that at level-(h − 1), component code U

(h−1)
2i is

decoded prior to U
(h−1)
2i−1 , since the LLR updates of U

(h−1)
2i−1

require the estimations of U
(h−1)
2i,j . Once the LLRs of all

component BCH codes are produced, the OSD will be used
to decode the component codes.

Without loss of generality, the decoding of a component
code U

(h)
i (h > 0) can be performed by the following key

operations.
Code Decomposition: If h > 0, U

(h)
i is still a U-UV

structured code. It should be decomposed into U
(h−1)
2i and

U
(h−1)
2i−1 , with the LLR updates of (16) and (17), respectively.
Level-0 Component Code Decoding: The above decompo-

sition continues until h = 0, where U
(0)
1 ,U

(0)
2 , . . . ,U

(0)

2H
are

component BCH codes. The OSD will be performed for each
component code. Based on the correlation distance of (10), the
most likely estimation will be chosen as the decoding output
for the component code.

Code Reconstruction: Once component codes U
(0)
2i−1 and

U
(0)
2i have been decoded, U

(1)
i can be reconstructed. In general,

once the estimations of level-(h − 1) component codes have
been obtained, estimations of the level-h component code can
be determined by

û
(h)
i = (û

(h−1)
2i−1 |û

(h−1)
2i−1 + û

(h−1)
2i ). (18)

In general, SC decoding of an H levels U-UV code is
a recursive process starting by decomposing U

(H)
1 . Fig. 3

illustrates the SC decoding process of a 2 levels U-UV code.
U

(2)
1 is first decomposed into U

(1)
1 and U

(1)
2 , where the latter

will be further decomposed into U
(0)
3 and U

(0)
4 . U

(0)
4 will
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Fig. 4. SCL decoding tree with l = 3. The solid branches indicate the
accumulated distances are being kept at the layers.

then be decoded by the OSD, following by the OSD of U
(0)
3 .

Afterward, U
(1)
2 can be reconstructed. The decoding of U

(0)
2

and U
(0)
1 follow similarly. Therefore, the component codes

U
(0)
4 ,U

(0)
3 ,U

(0)
2 ,U

(0)
1 are successively decoded.

C. The SCL Decoding

Armed with the above knowledge, the SCL decoding of
U-UV codes can be further introduced. The SCL decoding
evolves from the above SC operations by considering the
l most likely OSD candidates for each component code,
resulting in a list of decoding estimations for the U-UV code.

The SCL decoding process can be illustrated by a multi-
branch tree shown in Fig. 4. In the decoding tree, each
layer corresponds to a component code and nodes of the
layer denote the estimations of the component code. Con-
sequently, the SCL decoding can be visualized as a layer-
by-layer codeword estimation process over the tree, where
the layer indices and the component code indices coincide.
To prevent an exponentially growing decoding complexi-
ty, at each layer, only the l most likely estimations of
the component code will be kept. At layer i, the l most
likely estimations of component code U

(0)
i are denoted as

û
(0)
i (1), û

(0)
i (2), ..., û

(0)
i (l), respectively. Let û(0)

i−1(s′) denote
an estimation of U

(0)
i−1 which is obtained based on one of the

estimations of U
(0)
i , i.e., û(0)

i (s). Note that s, s′ = 1, 2, ..., l.
Let L(0)

i−1(s) = (L
(0)
i−1,0(s), L

(0)
i−1,1(s), ..., L

(0)
i−1,n−1(s)) denote

the corresponding LLR vector computed based on û
(0)
i (s).

The correlation distance between L
(0)
i−1(s) and û

(0)
i−1(s′) is

λ
(s,s′)
i−1 = λ(L

(0)
i−1(s), û

(0)
i−1(s′)), (19)

where function λ(·) has been defined in (10). Over the
decoding tree, λ(s,s′)

i represents the metric of the s′th branch
that emancipates from the sth node at layer i. Since U

(0)

2H

is the first component code to be decoded, its estimations
are the roots of the decoding tree. Therefore, the correlation
distances (branches) that lead to them are written as λ(s,−)

2H
.

These correlation distances are accumulated respectively along

the decoding path. Let Φ
(1)
i ,Φ

(2)
i , ...,Φ

(l)
i denote the l smallest

accumulated distances at layer i of the tree. At layer 2H , Φ
(s)
i

are initialized as λ(s,−)

2H
. At layer i where i < 2H , let us define

Λ
(s,s′)
i−1 = Φ

(s)
i + λ

(s,s′)
i−1 (20)

as the accumulated correlation distance that is computed
through a path from node s at layer i to node s′ at layer i−1.
Since s, s′ = 1, 2, ..., l, l2 accumulated correlation distances
Λ

(s,s′)
i−1 will be computed at layer-(i − 1). Only the l small-

est ones will be kept and denoted as Φ
(1)
i−1,Φ

(2)
i−1, ...,Φ

(l)
i−1,

respectively. Decoding of the rest component codes follows
until layer-1 is reached, indicating all component codes have
been decoded. Note that to ensure the SCL decoding with a
list size of l, the OSD order of code U

(0)

2H
should be chosen

such that its lτ ≥ l.
The above SCL decoding of an H levels U-UV code is

further summarized as in Algorithm 1. The decoding will
start by calling SCLD(U

(H)
1 ). From its output list, û(H)

1 can
be estimated. Note that after U

(0)
1 is decoded, l smallest

accumulated distances Φ
(1)
1 ,Φ

(2)
1 , ...,Φ

(l)
1 have been obtained.

Let
Φ

(?)
1 = min{Φ(s)

1 ,∀s} (21)

denote the smallest value among them. The estimation û
(H)
1

can be retrieved from the path that yields Φ
(?)
1 .

Algorithm 1 SCL Decoding of U
(h)
i , SCLD(U

(h)
i )

Input: {L(h)
i,j |j = 0, 1, ..., 2hn− 1}, l;

Output: {û(h)
i (s)};

1: If h > 0
2: Compute the LLRs of U

(h−1)
2i as in (16);

3: Perform SCLD(U
(h−1)
2i ), yielding {û(h−1)

2i (s)};
4: For each estimation û

(h−1)
2i do

5: Compute the LLRs of U
(h−1)
2i−1 as in (17);

6: Perform SCLD(U
(h−1)
2i−1 ), yielding {û(h−1)

2i−1 (s)};
7: For each pair of û(h−1)

2i−1 and û
(h−1)
2i do

8: Reconstruct û(h)
i as in (18);

9: Form the estimation list {û(h)
i (s)}.

10: Else
11: Perform OSD, yielding {û(0)

i };
12: Determine λ(s,s′)

i and Λ
(s,s′)
i as in (19) and (20);

13: Keep the l smallest values Φ
(1)
i ,Φ

(2)
i , ...,Φ

(l)
i , and yield

the estimations {û(h)
i (s)}.

IV. PERFORMANCE AND COMPLEXITY

This section shows the SCL decoding performance of the U-
UV codes over the AWGN channel using BPSK modulation.
They are compared with the SCL decoding of polar codes [13,
14]. The polar codes are designed using GA at the SNR of
0dB. The finite length performance limits represented by the
normal approximation (NA) [15] are also shown for references.

1436



Fig. 5 shows the frame error rate (FER) of the (252, 183)
U-UV code with the (63, 57), (63, 51), (63, 51) and (63, 24)
BCH component codes. This 2 levels U-UV code is designed
based on the subchannel capacity estimations at the SNR of
1dB, which has been shown in Fig. 2. For OSD of a BCH code
with its minimum Hamming distance d, a decoding order of
τ = bd4c is sufficient for the OSD to yield an ML performance
[12]. In our simulations, the OSD orders are chosen to meet
this requirement so that the ML decoding performance can
be realized for each component code. In particular, they are
1, 1, 1 and 2 for U

(0)
1 ,U

(0)
2 ,U

(0)
3 and U

(0)
4 , respectively. The

performances of the SC and the SCL decoding with list size l
(denoted as SCL (l)) are provided. It can be seen that as the list
size enlarges, the SCL decoding achieves a larger coding gain
over the SC decoding. With the same list size l, SCL decoding
of the U-UV code outperforms that of the (256, 185) polar
code, where the latter is assisted by an 8-bit CRC (denoted
as CA-SCL (l)). It should be pointed that the U-UV codes do
not need to be assisted by CRC. This is due to its component
code decoding have already provided the ML decoding feature
for the structured code. The ML estimations are more likely
to be validated by CRC.
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Fig. 5. SCL decoding performance of the (252, 183) U-UV code.
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Fig. 6. SCL decoding performance of the (504, 250) U-UV code.

Fig. 6 shows the FER performance of the (504, 250)
U-UV code. It is a 3 levels U-UV code with the (63,

57), (63, 51), (63, 45), (63, 24), (63, 45), (63, 18), (63, 10), (63,
0) BCH component codes. Note that the (63, 0) component
code does not carry any information. It is acting as the
frozen symbols of polar codes. The OSD orders of the other
seven component codes are 1, 1, 1, 2, 1, 3 and 3, respectively.
Similarly, Fig. 6 shows that SCL decoding of the U-UV code
can also outperform that of the (512, 254) polar code assisted
by a CRC of 8 bits.

It should be noted that, for the U-UV codes, the OSD
dominates the overall decoding complexity. The complexity
of OSD with order τ can be characterized as O(nτ ). Hence,
for an H levels U-UV codes, the SCL(l) complexity is
O(nτ2H l). The decoding complexity will grow rapidly as the
order increases. For the chosen BCH codes with n = 63, the
most of the OSD orders would not be greater than two. In
this case, the SCL(l) complexity will be O(n22H l). The SCL
decoding complexity of a polar code with a similar length of
n2H is O(n2H log2(n2H)l). Hence, that of the U-UV code
will be more complex by a factor of n

log2(n2H)
. But this factor

could be further decreased since the OSD complexity could
be reduced by several existing methods from published work.

V. CONCLUSION

This paper has proposed the U-UV structured codes with
BCH codes as their components, as well as the SCL decoding
of the structured codes. Rate of each component code can be
designed based on the estimated subchannel capacities. The
SCL decoding has been proposed by integrating the OSD
of the component codes and the SC decoding mechanism.
Our simulation results have shown that over the short-to-
medium length regime, SCL decoding of the U-UV code can
outperform that of a similar rate polar code.
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