
Low-Complexity Chase Decoding of Reed-Solomon
Codes through Basis Reduction

Jiongyue Xing †, Li Chen †, Martin Bossert ‡
† School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, China

‡ Institute of Communications Engineering, Ulm University, Ulm, Germany
Email: xingjyue@mail2.sysu.edu.cn, chenli55@mail.sysu.edu.cn, martin.bossert@uni-ulm.de

Abstract—This paper proposes the low-complexity Chase
(LCC) decoding using basis reduction (BR) interpolation for
Reed-Solomon (RS) codes, namely the LCC-BR algorithm. With
received soft information, a number of decoding test-vectors are
formulated. The LCC-BR algorithm first constructs a common
basis which will be utilized by the following individual basis
constructions of all test-vectors. This eliminates the redundant
computation in BR interpolation, resulting in a low decoding
complexity. Moreover, the LCC-BR algorithm can decode each
test-vector in parallel, lowering the decoding latency. This paper
further proposes the progressive LCC-BR (PLCC-BR) algorithm
that decodes the test-vectors sequentially and terminates once the
intended message is found. This progressive decoding is realized
without additional memory cost. Simulation results show the
complexity and latency advantages of the proposed algorithms
over the other benchmark algorithms.

Index Terms—Basis reduction, low-complexity Chase decoding,
progressive decoding, Reed-Solomon codes

I. INTRODUCTION

In data communications and storage systems, Reed-
Solomon (RS) codes are among the most popular error-
correction codes. Currently, they are decoded by the effi-
cient Berlekamp-Massey (BM) algorithm [1]. The algebraic
Guruswami-Sudan (GS) [2] and Koetter-Vardy (KV) [3] algo-
rithms yield a better performance but with a higher complexity.
This is due to the construction of the interpolation polynomial,
which is usually realized by Koetter’s algorithm [4]. It can be
facilitated by the re-encoding transform [5] and the progressive
interpolation [6]. By identifying η unreliable received symbols,
the low-complexity Chase (LCC) decoding algorithm [7] for-
mulates 2η test-vectors. It reduces the decoding complexity by
exploiting the similarity among all test-vectors, eliminating
the redundant computation in determining the interpolation
polynomial for each of them. Several variants of the LCC
algorithm have been proposed, including the hardware friendly
backward-forward LCC (BF-LCC) algorithm [8] and the pro-
gressive LCC (PLCC) algorithm [9].

The interpolation polynomial can also be determined by
the basis reduction (BR)1 technique which is based on the
concept of Gröbner basis of a module [10]. It first constructs
a basis of a module satisfying all interpolation constraints, and
then reduces it into a Gröbner basis that contains the intended

1In our earlier publications, we named this interpolation technique module
minimization (MM). However, in the course of our research, we realized that
basis reduction (BR) is a more appropriate name. The basis of a module is
reduced instead of the module itself.

polynomial. For practical codes, the basis reduction can be
efficiently realized by the Mulders-Storjohann (MS) algorithm
[11]. The module minimization (MM)2 has been used in the re-
encoding transformed (ReT) KV decoding and the progressive
algebraic soft decoding (PASD), namely the ReT-KV-MM [12]
and the PASD-MM [13] algorithms, respectively.

Recently, the MM based algebraic Chase decoding (ACD-
MM) algorithm has been proposed in [14]. Unlike the LCC
algorithm [7], it can perform parallel decoding for each test-
vector, lowering the decoding latency. However, the ACD-
MM algorithm does not fully utilize the similarity among the
test-vectors, resulting in redundant decoding computation. To
further optimize the decoding complexity, this paper proposes
the BR based LCC (LCC-BR) algorithm for realizing low-
complexity and low-latency decoding of RS codes. It will
be shown that the BR interpolation of all test-vectors can
be partitioned into the common basis construction and the
individual basis construction. The common basis construction
is performed once and its outcome will be shared by the
individual basis construction for decoding each test-vector,
fully eliminating the redundant computation of all decoding
trials. Furthermore, this paper proposes the progressive LCC-
BR (PLCC-BR) algorithm, which can remove the memory re-
quirement of the original PLCC algorithm [9]. Our simulation
results will demonstrate the complexity and latency advantages
of the proposed algorithms over several existing ones.

II. BACKGROUND KNOWLEDGE

A. RS Encoding

Let Fq = {σ0, σ1, . . . , σq−1} denote the finite field of
size q, and Fq[x] and Fq[x, y] denote the univariate and the
bivariate polynomial rings defined over Fq , respectively. For
an (n, k) RS code with length n and dimension k, codeword
c = (c0, c1, . . . , cn−1) ∈ Fnq can be generated by

c = (f(α0), f(α1), . . . , f(αn−1)),

where

f(x) = f0 + f1x+ · · ·+ fk−1x
k−1 ∈ Fq[x]

is the message polynomial and α0, α1, . . . , αn−1 are the n
distinct nonzero elements of Fq .

2For the sake of consistency, we will continue to use the acronym MM
when we refer to our earlier proposed algorithms. The audience should be
aware that both BR and MM mean the same interpolation technique.

298978-1-7281-6432-8/20/$31.00 ©2020 IEEE ISIT 2020

B. The BR Based GS Algorithm
Let ω = (ω0, ω1, . . . , ωn−1) ∈ Fnq denote the hard-decision

received word. Given Q(x, y) =
∑
a,bQabx

ayb ∈ Fq[x, y] and
a nonnegative integer pair (κ, ι), the (κ, ι)-Hasse derivative
evaluation at one point (αj , ωj) is defined as

D(αj ,ωj)
κ,ι (Q(x, y)) =

∑
a≥κ,b≥ι

(
a

κ

)(
b

ι

)
Qabα

a−κ
j ωb−ιj .

If D(αj ,ωj)
κ,ι (Q(x, y)) = 0,∀κ + ι < m, Q(x, y) interpolates

(αj , ωj) with a multiplicity m. By defining the n interpolation
points (α0, ω0), (α1, ω1), . . . , (αn−1, ωn−1), the GS algorithm
first constructs an interpolation polynomial Q(x, y) ∈ Fq[x, y]
that passes through each of them with a multiplicity m. Let
l denote the y-degree of Q(x, y), i.e., l = degy Q. Note that
m ≤ l. After generating Q, message polynomial f(x) can be
recovered by finding its y-roots, i.e., Q(x, f(x)) = 0 [2].

For a bivariate monomial xayb, its (µ, ν)-weighted degree
is degµ,ν x

ayb = µa + νb. Given Q(x, y) =
∑
a,bQabx

ayb,
its coefficients can be organized under the (µ, ν)-reverse
lexicographic (revlex) order, which is defined as follows.
Given xa1yb1 and xa2yb2 , it is claimed xa1yb1 < xa2yb2 ,
if degµ,ν x

a1yb1 < degµ,ν x
a2yb2 , or degµ,ν x

a1yb1 =

degµ,ν x
a2yb2 and b1 < b2. Further let xa

′
yb
′

be the leading
monomial (LM) of Q with Qa′b′ 6= 0, the (µ, ν)-weighted de-
gree of Q is degµ,ν Q = degµ,ν x

a′yb
′
. Given two polynomials

Q1 and Q2 with LM(Q1) = xa
′
1yb
′
1 and LM(Q2) = xa

′
2yb
′
2 ,

respectively, Q1 < Q2 if LM(Q1) < LM(Q2).
The interpolation polynomial Q can be constructed by the

BR technique [10]. It first constructs a basis of a module,
which will then be reduced into a Gröbner basis that contains
Q. Module M is defined as follows.

Definition I. Module M is the space of all polynomials
over Fq[x, y] that interpolate the n points with a multiplicity
m and have a maximum y-degree l.

In order to construct a module basis, the following two
module seeds are needed,

G(x) =

n−1∏
j=0

(x− αj) (1)

and

R(x) =

n−1∑
j=0

ωjTj(x), (2)

where

Tj(x) =

n−1∏
j′=0,j′ 6=j

x− αj′
αj − αj′

is the Lagrange basis polynomial. Note that R(αj) = ωj ,∀j.
Based on Definition I,M can be generated as an Fq[x]-module
by the following l + 1 polynomials

Pt(x, y) = G(x)m−t(y −R(x))t, if 0 ≤ t ≤ m, (3)

Pt(x, y) = yt−m(y −R(x))m, if m < t ≤ l. (4)

They form a basis of a module, denoted as B.
Lemma 1 [10]. Given a polynomial Q(x, y) ∈ M, it can

be presented as an Fq[x]-linear combination of Pt(x, y), i.e.,
Q(x, y) =

∑l
t=0 pt(x) · Pt(x, y), where pt(x) ∈ Fq[x].

The basis reduction is to perform Fq[x]-linear combinations
on Pt(x, y) until the y-degree of all LM(Pt) are different,
resulting in a Gröbner basis of B. The minimum candidate is
chosen as the interpolation polynomial Q(x, y). In this work,
we apply the MS algorithm [11] for the basis reduction.

III. THE LCC-BR ALGORITHM

This section proposes the LCC-BR algorithm, in which we
set m = l = 1. It starts with formulating the test-vectors.

A. Test-vectors Formulation

Assume codeword c is transmitted through a memoryless
channel and r = (r0, r1, . . . , rn−1) ∈ Rn is the received
symbol vector. By assuming Pr[cj = σi] = 1

q , an a posteriori
probability matrix Π ∈ Rq×n with entries πij = Pr[cj =
σi | rj] can be observed, where 0 ≤ i ≤ q − 1 and
0 ≤ j ≤ n− 1. For each rj , the two most likely decisions are
rI
j = σiIj and rII

j = σiIIj , where iIj = arg maxi{πij} and iIIj =

arg maxi,i 6=iIj{πij}, respectively. Hence, the symbol-wise re-
liability measure of rj can be defined as

γj =
πiIjj

πiIIjj
,

where γj ∈ (1,∞). The decision on rj is more reliable if
γj is larger, and vice versa. A new symbol index sequence
j0, j1, . . . , jn−1 is yielded by sorting γj in an descenting
order. It indicates γj0 ≥ γj1 ≥ · · · ≥ γjn−1 . By iden-
tifying η unreliable symbols, we define the reliable index
set Θ = {j0, j1, . . . , jn−η−1} and the unreliable index set
Θc = {jn−η, jn−η+1, . . . , jn−1}, respectively. Consequently,
all test-vectors can be written as

ru = (r
(u)
j0
, r

(u)
j1
, . . . , r

(u)
jn−η−1

, r
(u)
jn−η

, . . . , r
(u)
jn−1

), (5)

where u = 1, 2, . . . , 2η , among which r
(u)
j = rI

j for j ∈ Θ

and r(u)
j = rI

j or rII
j for j ∈ Θc.

B. Re-encoding Transform

The LCC-BR algorithm is facilitated by the re-encoding
transform [5]. Let η ≤ n − k so that all test-vectors would
share at least k common symbols rI

j0
, rI
j1
, . . . , rI

jk−1
. Let

Ψ = {j0, j1, . . . , jk−1} denote the index set of the k most
reliable symbols, and Ψc = {jk, jk+1, . . . , jn−1}. A re-
encoding codeword h = (h0, h1, . . . , hn−1) can be generated
by setting hj = rI

j ,∀j ∈ Ψ and determining the remaining
n−k symbols by Forney’s algorithm [15]. All test-vectors ru
are then transformed by

ru 7→ zu : z
(u)
j = r

(u)
j − hj ,∀j. (6)

Consequently, the transformed test-vectors become

zu = (0, 0, . . . , 0, z
(u)
jk
, . . . , z

(u)
jn−1

). (7)

C. Common Basis Construction

From (5), we observe that the 2η test-vectors share common
interpolation points (αj , r

I
j),∀j ∈ Θ. After the re-encoding

transform, they become (αj , z
I
j), where zI

j = rI
j−hj . Note that

299

zI
j = 0,∀j ∈ Ψ. Let Ψ′ = Ψc \Θc = {jk, jk+1, . . . , jn−η−1}.

We define a common test-vector z0 = (z
(0)
0 , z

(0)
1 , . . . , z

(0)
n−1),

where z(0)
j = zI

j ,∀j ∈ Ψ′ and z(0)
j = 0,∀j ∈ Ψ ∪Θc. For all

test-vectors zu, the polynomial (2) is redefined as

Ru(x) =

n−1∑
j=0

z
(u)
j Tj(x). (8)

Since z(u)
j = 0,∀j ∈ Ψ, V (x) =

∏
j∈Ψ(x− αj) becomes the

GCD for both G(x) of (1) and the above Ru(x). Therefore,
two new module seeds are defined as

G̃(x) =
G(x)

V (x)
=
∏
j∈Ψc

(x− αj) (9)

and
R̃u(x) =

Ru(x)

V (x)
=
∑
j∈Ψc

z
(u)
j T̃j(x), (10)

where

T̃j(x) =

∏
j′∈Ψc,j′ 6=j(x− αj′)∏n−1
j′=0,j′ 6=j(αj − αj′)

.

With m = l = 1, the module generators (3) and (4) for the
common test-vector z0 can be simplified into

P̃0,0(x, y) = G̃(x), (11)

P̃0,1(x, y) = y − R̃0(x), (12)

where R̃0(x) =
∑
j∈Ψc z

(0)
j T̃j(x) =

∑
j∈Ψ′ z

(0)
j T̃j(x). The

above two polynomials generate an isomorphic module M̃0

for points (αj , z
(0)
j),∀j ∈ Ψ′ with a multiplicity of one,

constructing the common basis B̃0. The MS algorithm [11]
that performs Fq[x]-linear combinations will reduce B̃0 into a
Gröbner basis B̃′0 which contains polynomials P̃ ′0,0(x, y) and
P̃ ′0,1(x, y). Based on Lemma 1, they can be written as

P̃ ′0,t(x, y) = pt0(x)G̃(x) + pt1(x)(y − R̃0(x)), (13)

where pt0(x), pt1(x) ∈ Fq[x] and t = 0, 1. They will be
utilized by the following 2η individual basis constructions.

D. Individual Basis Construction

Based on B̃′0, the BR interpolation will be completed by
performing the individual basis construction and reduction for
each transformed test-vector zu. Since z(u)

j = z
(0)
j ,∀j ∈ Ψ′,

and Ψc = Ψ′ ∪Θc, the polynomial (10) can be rewritten as

R̃u(x) = R̃0(x) + Υ̃u(x),

where Υ̃u(x) =
∑
j∈Θc z

(u)
j T̃j(x). Therefore, based on (13),

for each test-vector zu, we have

P̃u,t(x, y) = pt0(x)G̃(x) + pt1(x)(y − R̃u(x))

= pt0(x)G̃(x) + pt1(x)(y − R̃0(x)− Υ̃u(x))

= P̃ ′0,t(x, y)− pt1(x)Υ̃u(x). (14)

Polynomials P̃u,0(x, y) and P̃u,1(x, y) form the basis B̃u.
Since all B̃u are constructed using the previously reduced
common basis B̃′0, the redundant computation in decoding all
test-vectors can be eliminated. Afterwards, the MS algorithm
will reduce each basis B̃u into its Gröbner basis B̃′u which con-

tains polynomials P̃ ′u,0(x, y) and P̃ ′u,1(x, y), and Q̃u(x, y) =

min{P̃ ′u,0(x, y), P̃ ′u,1(x, y)}. Note that with the re-encoding
transform, polynomials are organized by the (1,−1)-revlex
order [5]. Since Q̃u(x, y) = Q̃

(0)
u (x) + Q̃

(1)
u (x)y, it can be

restored into the interpolation polynomial Qu(x, y) by

Qu(x, y) = V (x)Q̃(0)
u (x) + Q̃(1)

u (x)y. (15)

Now Qu(x, y) interpolates (αj , z
(u)
j),∀j with a multiplicity of

one. If the decoding estimation f̃u(x) satisfies Qu(x, f̃u(x)) =
0, f̃u(x) can be determined by

f̃u(x) = −V (x)Q̃
(0)
u (x)

Q̃
(1)
u (x)

, (16)

and the estimated codeword is ĉu = (ĉ
(u)
0 , ĉ

(u)
1 , . . . , ĉ

(u)
n−1),

where ĉ
(u)
j = f̃u(αj) + hj ,∀j. Its corresponding message

polynomial is denoted as f̂u(x). If Q̃(1)
u (x) - V (x)Q̃

(0)
u (x),

the decoding of test-vector zu fails. After decoding all 2η

test-vectors, the message f̂u(x) that yields the most likely
codeword among all candidates will be chosen as the output.

The LCC-BR algorithm is summarized in Algorithm 1.

Algorithm 1 The LCC-BR Algorithm
Input: Π, η;
Output: f̂u(x);

1: Formulate 2η test-vectors ru as in (5);
2: Perform re-encoding transform to yield zu as in (6);
3: Construct B̃0 by (11) (12) and reduce it into B̃′0;
4: For each transformed test-vector zu do
5: Construct B̃u by (14);
6: Perform the MS algorithm to reduce B̃u into B̃′u;
7: Determine Qu(x, y) as in (15);
8: Decode f̃u(x) as in (16) and generate f̂u(x);
9: End for

Remark 1. Unlike the LCC algorithm [7], the LCC-BR
algorithm can decode all test-vector in parallel, yielding a low
decoding latency. It also advances from the existing ACD-MM
algorithm [14] by eliminating the redundant computation on
basis construction and reduction for all 2η test-vectors.

IV. THE PROGRESSIVE VARIANT

This sections proposes the PLCC-BR algorithm, in which
the test-vectors are decoded sequentially. It will first order
the test-vectors such that the one with a higher potential of
yielding the intended message will be decoded earlier.

A. Ordering of Test-vectors

Given a test-vector ru = (r
(u)
0 , r

(u)
1 , . . . , r

(u)
n−1), its relia-

bility can be defined as Ωu =
∏n−1
j=0 πi(u)j j

, where i
(u)
j =

index{σi | σi = r
(u)
j } [9]. The test-vector with a larger Ωu

is considered to be more reliable and it should be decoded
earlier. Since all test-vectors share the common symbols rI

j ,
where j ∈ Θ, the reliability function can be simplified into

Ω̃u =
∏
j∈Θc

π
i
(u)
j j

. (17)

300

By sorting Ω̃u in a descending order such that Ω̃u1 > Ω̃u2 >
· · · > Ω̃u2η

, the progressive decoder will first decode test-
vectors ru1

, then decode ru2
and etc. It will terminate when a

codeword that satisfies the maximum-likelihood (ML) criterion
[16] is found. Note that ru1

= ω.

B. The PLCC-BR Algorithm

Let Λuτ = {j | z(uτ)
j 6= z

(uτ+1)
j , j ∈ Θc} denote the

index set of the different symbols between the transformed
test-vectors zuτ and zuτ+1

, where τ = 1, 2, . . . , 2η . Note
that Λu2η

= ∅. Since z
(uτ)
j = r

(uτ)
j − hj and z

(uτ+1)
j =

r
(uτ+1)
j − hj ,∀j, z(uτ)

j 6= z
(uτ+1)
j implies r(uτ)

j 6= r
(uτ+1)
j .

Therefore, Λuτ can also be denoted as

Λuτ = {j | r(uτ)
j 6= r

(uτ+1)
j , j ∈ Θc}. (18)

The PLCC-BR algorithm is described as follows. At the
beginning, a basis B̃u1 for test-vector zu1

is constructed by

P̃u1,0(x, y) = G̃(x), (19)

P̃u1,1(x, y) = y − R̃u1(x). (20)

By performing Steps 6 – 8 of Algorithm 1, we can determine
the estimated codeword ĉu1

and its corresponding message
f̂u1

(x). If ĉu1
satisfies the ML criterion [16], the decoding ter-

minates and outputs f̂u1(x). Otherwise, the decoding continues
to decode test-vector zu2

. Based on Lemma 1, polynomials
P̃ ′u1,0(x, y) and P̃ ′u1,1(x, y) of basis B̃′u1

can be written as

P̃ ′u1,t(x, y) = pu1,t0(x)G̃(x) + pu1,t1(x)(y − R̃u1
(x)),

where pu1,t0(x), pu1,t1(x) ∈ Fq[x] and t = 0, 1. The dif-
ference between the test-vectors zu1

and zu2
is utilized to

formulate the polynomial R̃u2
(x), which can be obtained by

R̃u2
(x) = R̃u1

(x) +Wu1
(x),

where Wu1
(x) =

∑
j∈Λu1

(z
(u2)
j − z

(u1)
j)T̃j(x) =∑

j∈Λu1
(r

(u2)
j − r(u1)

j)T̃j(x). A basis B̃u2
for test-vector zu2

can be straightforwardly constructed by

P̃u2,t(x, y) = pu1,t0(x)G̃(x) + pu1,t1(x)(y − R̃u2
(x))

= P̃ ′u1,t(x, y)− pu1,t1(x)Wu1
(x).

Again, the estimated codeword ĉu2
is decoded to see if it

satisfies the ML criterion.
In general, if the ML codeword cannot be retrieved from

decoding test-vector zuτ−1
(τ ≥ 2), test-vector zuτ needs to

be decoded. A basis B̃uτ for zuτ can be constructed by

P̃uτ ,t(x, y) = P̃ ′uτ−1,t(x, y)− puτ−1,t1(x)Wuτ−1(x), (21)

where t = 0, 1 and

Wuτ−1
(x) =

∑
j∈Λuτ−1

(z
(uτ)
j − z(uτ−1)

j)T̃j(x)

=
∑

j∈Λuτ−1

(r
(uτ)
j − r(uτ−1)

j)T̃j(x). (22)

Note that P̃ ′uτ−1,t(x, y) and puτ−1,t1(x) are obtained from the
decoding of test-vector zuτ−1

. After reducing basis B̃uτ into its
Gröbner basis B̃′uτ , the interpolation polynomial Quτ (x, y) is

determined by (15). If it produces a codeword ĉuτ that satisfies
the ML criterion, the decoding terminates and outputs f̂uτ (x).
Otherwise, the decoding continues to decode test-vector zuτ+1

.
If the decoding of all 2η test-vectors cannot produce an ML
codeword, the PLCC-BR algorithm terminates with a failure.

Remark 2. Eqs. (20) and (22) reveal that the re-encoding
transform only needs to be performed once, that is for ru1

.
Remark 3. It can be observed from (21) that the PLCC-

BR algorithm does not need to memorize the intermediate
decoding information, while the original PLCC algorithm
exhibits the additional memory cost of O(2η(n− k)) [9].

V. SIMULATION RESULTS

This section shows the decoding complexity, latency and
performance of the proposed algorithms. They are measured
as the number of finite field multiplications, the running time
required to decode a codeword and the frame error rate (FER),
respectively. Our results were obtained over the additive white
Gaussian noise (AWGN) channel using BPSK.

A. Decoding Complexity
TABLE I

COMPLEXITY COMPARISON IN DECODING THE (63, 47) RS CODE

η LCC [7] BF-LCC [8] ACD-MM [14] LCC-BR
2 1.65× 104 2.20× 104 2.51× 104 1.84× 104

4 5.61× 104 6.80× 104 7.44× 104 5.82× 104

6 2.12× 105 2.54× 105 2.73× 105 2.16× 105

Table I compares complexity of the LCC-BR algorithm
with several existing Chase decoding algorithms in decoding
the (63, 47) RS code. Note that they employ the same test-
vectors formulation. Both the LCC [7] and the BF-LCC
[8] algorithms employ Koetter’s interpolation. Table I shows
that the LCC-BR algorithm is less complex than the BF-
LCC algorithm. Meanwhile, by eliminating the redundant BR
computation, the proposed LCC-BR algorithm yields a lower
complexity than the ACD-MM algorithm. However, it remains
slightly more complex than the LCC algorithm which performs
the interpolation of all test-vectors in a binary tree growing
fashion, granting it a low complexity feature.

TABLE II
AVERAGE COMPLEXITY OF THE PLCC-BR AND THE PASD-MM

ALGORITHMS IN DECODING THE (63, 47) RS CODE

SNR
(dB)

PLCC-BR PASD-MM [13]
η = 2 η = 4 η = 6 l = 4

3.0 1.76× 104 5.67× 104 2.08× 105 5.12× 105

3.5 1.69× 104 5.46× 104 2.01× 105 4.64× 105

4.0 1.53× 104 4.83× 104 1.73× 105 3.48× 105

4.5 1.14× 104 2.72× 104 1.07× 105 1.58× 105

5.0 9.98× 103 1.39× 104 4.38× 104 6.55× 104

5.5 8.73× 103 9.62× 103 2.07× 104 3.09× 104

6.0 8.32× 103 8.52× 103 8.82× 103 1.93× 104

6.5 8.22× 103 8.22× 103 8.22× 103 1.87× 104

7.0 8.18× 103 8.18× 103 8.18× 103 1.85× 104

To show the effectiveness of the PLCC-BR algorithm, we
measure its average complexity over multiple decoding events
at a certain signal-to-noise ratio (SNR). Table II shows the
average complexity in decoding the (63, 47) RS code. It shows
that complexity advantage of the progressive decoding be-
comes more obvious as the SNR increases, where the decoding

301

can terminate earlier. For this code, complexity of the BM
algorithm is 2.42× 103. When SNR ≥ 6 dB, the progressive
decoding complexity can converge to the minimum level that
has the same magnitude as the BM complexity.

B. Decoding Latency
TABLE III

DECODING LATENCY (MS) COMPARISON BETWEEN THE LCC AND THE
LCC-BR ALGORITHMS

η
LCC LCC-BR

(255, 127) RS (255, 239) RS (255, 127) RS (255, 239) RS
2 6.687 7.921 34.061 1.687
4 19.029 27.769 33.684 1.632
6 70.038 104.337 33.471 1.604

Table III shows the latency (in ms) in decoding two RS
codes defined over F256. These results were obtained by
implementing the algorithms in C and running the program
on Intel core i5-4260U CPU and macOS operating system.
Since the LCC-BR algorithm can perform its individual ba-
sis construction and root-finding in parallel, the re-encoding
transform and common basis construction will dominate the
running time. Therefore, the decoding latency does not vary
significantly by changing η and it is defined by that of
decoding a single test-vector. For the LCC algorithm, running
time increases as η enlarges due to exponentially expanded
interpolation. Table III also shows that the LCC-BR decoding
latency of the (255, 239) RS code is smaller than that of the
(255, 127) RS code, revealing its effectiveness for high rate
codes [13]. Compared with the LCC algorithm, the proposal
shows its advantage on the decoding latency for large η and
high rate codes, which will be more practically welcomed.

C. Decoding Performance

1.E-5

1.E-4

1.E-3

1.E-2

1.E-1

1.E+0

3 3.5 4 4.5 5 5.5 6 6.5 7

FE
R

Eb/N0 (dB)

 PLCC-BR (η = 6)

BM / GS

ReT-KV-MM (l = 4)

LCC-BR (η = 2)

LCC-BR (η = 4)

LCC-BR (η = 6)

LCC-BR (η = 8)

LCC-BR (η = 10)

Fig. 1. Performance of the (63, 47) RS code.

Fig. 1 shows performance of the (63, 47) RS code. Note
that the four Chase decoding algorithms shown in Table I
yield the same performance since they decode the same test-
vectors. As η increases, the LCC-BR performance improves
since more test-vectors are decoded. When η = 10, the LCC-
BR algorithm outperforms the BM algorithm with 1.1 dB gains
at the FER of 10−4. It can be seen that the PLCC-BR algorithm
maintains the LCC-BR decoding performance, e.g., η = 6.
Revisiting Tables I and II, the PLCC-BR algorithm has lower
complexity than the LCC-BR algorithm over the whole SNR
regions. Fig. 1 also shows that the ReT-KV-MM (l = 4) [12]

performs similarly as the LCC-BR (η = 4), and its complexity
is 4.98 × 105. Tables I and II show that the LCC-BR and
the PLCC-BR algorithms exhibit a lower complexity than the
ReT-KV-MM and the PASD-MM algorithms, respectively.

VI. CONCLUSION

This paper has proposed the BR interpolation based LCC
algorithm for RS codes. It first constructs a common basis
which is shared by the parallel decoding of the formulated
test-vectors, removing the redundant computation in the BR
interpolation and achieving a low decoding latency. The
PLCC-BR algorithm has been further proposed to adjust the
decoding computation to the channel quality. By exploiting the
difference between the adjacent test-vectors, this progressive
decoding is realized without additional memory cost. Simu-
lation results have shown that the proposed algorithms are
favorable compared with the other ones.

ACKNOWLEDGEMENT

This work is sponsored by National Natural Science Foun-
dation of China (NSFC) with project ID 61671486 and Interna-
tional Program for Ph.D. Candidates, Sun Yat-sen University.

REFERENCES

[1] J. Massey, “Shift register synthesis and BCH decoding,” IEEE Trans.
Inform. Theory, vol. 15, no. 1, pp. 122–127, Jan. 1969.

[2] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon
and algebraic-geometric codes,” IEEE Trans. Inform. Theory, vol. 45,
no. 6, pp. 1757–1767, Sept. 1999.

[3] R. Koetter and A. Vardy, “Algebraic soft-decision decoding of Reed-
Solomon codes,” IEEE Trans. Inform. Theory, vol. 49, no. 11, pp. 2809–
2825, Nov. 2003.

[4] R. Koetter, On algebraic decoding of algebraic-geometric and cyclic
codes. PhD thesis, Univ. Linköping, Linköping, Sweden, 1996.

[5] R. Koetter, J. Ma, and A. Vardy, “The re-encoding transformation in
algebraic list-decoding of Reed-Solomon codes,” IEEE Trans. Inform.
Theory, vol. 57, no. 2, pp. 633–647, Feb. 2011.

[6] L. Chen, S. Tang, and X. Ma, “Progressive algebraic soft-decision
decoding of Reed-Solomon codes,” IEEE Trans. Commun., vol. 61,
no. 2, pp. 433–442, Feb. 2013.

[7] J. Bellorado and A. Kavčić, “Low-complexity soft-decoding algorithms
for Reed-Solomon codes - part I: an algebraic soft-in hard-out Chase
decoder,” IEEE Trans. Inform. Theory, vol. 56, no. 3, pp. 945–959, Mar.
2010.

[8] J. Zhu, X. Zhang, and Z. Wang, “Backward interpolation architecture
for algebraic soft-decision Reed-Solomon decoding,” IEEE Trans. Very
Large Scale Integr. Syst., vol. 17, no. 11, pp. 1602–1615, Nov. 2009.

[9] J. Zhao, L. Chen, X. Ma, and M. Johnston, “Progressive algebraic Chase
decoding algorithms for Reed-Solomon codes,” IET Commun., vol. 10,
no. 12, pp. 1416–1427, 2016.

[10] K. Lee and M. O’Sullivan, “List decoding of Reed-Solomon codes from
a Gröbner basis perspective,” J. Symb. Comput., vol. 43, no. 9, pp. 645–
658, Sept. 2008.

[11] T. Mulders and A. Storjohann, “On lattice reduction for polynomial
matrices,” J. Symb. Comput., vol. 35, no. 4, pp. 377–401, Apr. 2003.

[12] J. Xing, L. Chen, and M. Bossert, “Low-complexity Koetter-Vardy
decoding of Reed-Solomon codes using module minimization,” in Proc.
IEEE Int. Conf. Commun. (ICC), Shanghai, China, pp. 1–6, May 2019.

[13] J. Xing, L. Chen, and M. Bossert, “Progressive algebraic soft-decision
decoding of Reed-Solomon codes using module minimization,” IEEE
Trans. Commun., vol. 67, no. 11, pp. 7379–7391, Nov. 2019.

[14] L. Chen and M. Bossert, “Algebraic Chase decoding of Reed-Solomon
codes using module minimisation,” in Proc. Int. Symp. Inform. Theory
App. (ISITA), Monterey, U.S.A, pp. 310–314, Oct. 2016.

[15] G. Forney, “On decoding BCH codes,” IEEE Trans. Inform. Theory,
vol. 11, no. 4, pp. 549–557, Oct. 1965.

[16] T. Kaneko et al., “An efficient maximum-likelihood-decoding algorithm
for linear block codes with algebraic decoder,” IEEE Trans. Inform.
Theory, vol. 40, no. 2, pp. 320–327, Mar. 1994.

302

