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Abstract—In conventional communication systems, the noise
at the receiver is usually assumed to be Gaussian. However,
this assumption is not always valid if the signal is affected by
impulsive noise. This paper analyzes the theoretical bit error
probability (BEP) of M-ary quadrature amplitude modulation
(M-QAM) (M ≥ 4) on Rayleigh fading channels with impulsive
noise that has an alpha stable distribution. The derived theoret-
ical BEP can be used to evaluate the performance of wireless
communication system with impulsive noise and also provides
a benchmark for determining coding gains. Furthermore, two
closed-form approximations of the theoretical BEP are derived
that provide good approximations of the actual BEP.

Index terms— bit error probability, symmetric alpha
stable distribution, Rayleigh fading

I. INTRODUCTION

The noise at the receiver in a practical wireless commu-
nication system is not always Gaussian due to other sources
of noise, such as impulsive noise. Many sources can generate
natural or man-made impulsive interference, such as switching
transients in power lines, underwater acoustic noise and mul-
tiple access interference (MAI) [1, 2]. This interference can
be characterized by a the occurrence of large noise samples,
which results in a heavy-tailed distribution. In this case, the
Gaussian noise model is not correct and many distributions
such as Bernoulli-Gaussian model, Middleton Class A, B and
Symmetric Alpha Stable (SαS) distributions are more suit-
able to model these impulsive channels [3–5]. Recently, SαS
noise was employed as an accurate model of multiple access
interference (MAI) in a wireless ad hoc network and as near-
field interference in wireless transceivers [2, 6]. Additionally,
for underwater acoustic channel modeling, diversity combining
methods and space time coding over Rayleigh fading channels
with SαS noise were investigated in [7–9].

Due to the lack of closed-form probability density function
(pdf), most literature proposes sub-optimal receivers combined
with different coding schemes for SαS channels [10–12].
Hence, an analytic expression of BEP is needed to evaluate the
performance of a wireless system with impulsive noise. Any
complex SαS variable can be classified as a sub-Gaussian vari-
able where its real and imaginary components are dependent.
However, if the passband sampling frequency fs is four times

the carrier frequency fc, they are known to be independent
[13] and this type of channel has been used in the literature to
model impulsive noise [7, 14, 15]. This also provides a way
to analyze the performance of M-ary modulation schemes.

In this paper, we derive the BEP of M-QAM for flat
Rayleigh fading channels with SαS distributed noise and
simplify it by using an alternate expression of the cumulative
distribution function (CDF) of standard SαS distributions.
In addition, two closed-form approximations of BEP are
proposed which greatly reduce the computational cost without
sacrificing much accuracy. One method is the Bi-parameter
Cauchy-Gaussian mixture (BCGM) model which approxi-
mates the exact pdf in closed-form [16]. Another method
employs an asymptotic property of SαS distributions, which is
a good estimate of the high signal-to-noise ratio (SNR) region
of the BEP.

This paper is organized as follows: Section II describes the
system model and introduces the geometric signal-to-noise
ratio (SNRG) for SαS noise. Section III derives the BEP
of M-QAM with baseband SαS noise and this is extended
to Rayleigh fading channels with SαS noise. Moreover, two
approximations of exact BEP and their simplification are
derived in Section IV. In Section V, theoretical and simulation
results are presented and we conclude the paper in Section VI.

II. SYSTEM MODEL

We begin by defining a point-to-point system with a co-
herent receiver and the n-th received signal sample y(n) is
expressed as

y(n) = hx(n) + z(n), (1)

where x(n) is modulated signal with M-QAM modulation and
h is the complex Gaussian fading coefficient with zero mean
and unit variance and the envelope a has a Rayleigh pdf. z(n)
is complex noise where the real part zR(n) and imaginary
part zI(n) are identically independent distributed (i.i.d.) and
follow the symmetric alpha-stable (SαS) distribution. The
characteristic function of alpha-stable distributions is

ϕ(t) = exp {jδt− | γt |α (1− jβsign(t)ω(t, α))} . (2)

where

ω(t, α) =

{
tan(πα/2), α 6= 1

−2/π log |t|. α = 1978-1-5090-1749-2/16/$31.00 c©2016 IEEE



The alpha-stable distribution S(α, β, γ, δ) in (2) has four
parameters, α, β, γ and δ. 1) The characteristic exponent α,
has a range (0, 2] and determines the tail heaviness; 2) the
skewness is denoted by β; 3) the dispersion is denoted by
γα, which determines the spread of the pdf; 4) the location
parameter is denoted as δ [5]. The alpha-stable distribution is
called symmetric if β and δ are 0. Hence the pdf of a SαS
distribution is

fα(x; γ) =
1

2π

∫ ∞
−∞

exp(−γα|t|α)e−jtxdt. (3)

There are two special cases in the SαS family which have
closed form expressions. When α = 1, the noise is Cauchy.
When α = 2, the noise is Gaussian and the variance σ2 is
only defined in this case with σ2 = 2γ2.

To generate independent complex SαS noise, we note that
any SαS random variable w ∼ S(α, 0, γ, 0) can be written
as a compound Gaussian w =

√
BG, where B and G are

independent, with B ∼ S(α/2, 1, [cos(πα/4)]2/α, 0) and G
is a Gaussian random variable with zero mean and variance
σ2 [17]. In our case, since zR(n) and zI(n) are independent,
z(n) can be described as

z(n) =
√
B1G1 + j

√
B2G2, (4)

where B1 and B2 are i.i.d. and are distributed like B. Simi-
larly, G1 and G2 are i.i.d. Gaussian random variables which
follow N (0, σ2).

The conventional signal-to-noise ratio (SNR) is not defined
for SαS noise since the second order moment of SαS process
is infinite. Hence, we use the geometric SNR (SNRG) instead
[18]. The geometric power S0 is defined as

S0 =
(Cg)

1/αγ

Cg
, (5)

where Cg is the exponential of the Euler constant and Cg ≈
1.78. The SNRG is defined as

SNRG =
1

2Cg

(
A

S0

)2

, (6)

where A2 is the transmitted energy of the modulated signal
and the constant 1

2Cg
ensures SNRG remains valid when the

noise is Gaussian (when α = 2). Hence the Eb
N0

for M-QAM
modulation is given as

Eb
N0

=
A2

4 log2(M)C
( 2
α−1)
g γ2

, (7)

where A2 = Es. When M = 2 and A = 1, (7) becomes the
Eb
N0

for binary phase-shift keying (BPSK).

III. ANALYTIC BEP OF M-QAM ON RAYLEIGH FADING
CHANNELS WITH SαS NOISE

We start with the derivation of the BEP of BPSK with SαS
noise. First the tail probability Qα(x) for SαS distributions is
defined, which is similar to the well known Q-function.

Qα(x) =

∫ ∞
x

fsα(t)dt, (8)

where fsα(x) is the standard SαS distribution by setting γ = 1
and is given as

fsα(x) =
1

2π

∫ ∞
−∞

exp(−|t|α)e−jtxdt. (9)

We can derive the BEP for SαS channels from Cauchy noise
(i.e. α = 1), since the Cauchy distribution is the only heavy
tailed distribution in the SαS distributions that has a closed
form pdf. When α = 1, the BEP of BPSK with Cauchy noise
is denoted as

PB
b,α = P (x = +1)P (e|x = +1) + P (x = −1)P (e|x = −1)

=

∫ ∞
1
γ

1

π

1

x2 + 1
dx, (10)

where P (e|x = −1) is the conditional probability that an
error occurs and P (x = +1) = P (x = −1) = 1

2 . The Cauchy
distribution of (10) is a standard pdf, hence PB

b,α can also be
expressed by Qα(x) as

PB
b,α = Qα

(
1

γ

)
= Qα

(√
4C

( 2
α−1)
g

Eb
N0

)
. (11)

Since SNRG is defined for all α’s, PB
b,α in (11) can be seen

as a general expression for the BEP of a uncoded system with
SαS noise. A special case of the SαS family is the Gaussian
distribution (α = 2), which is the only SαS distribution that
has exponential tails. Notice that the variance of the normal
distribution when expressed as an SαS pdf is equal to two,
not one. Hence fsα(t) = 1

2
√
π

exp(− t
2

4 ) is the standard SαS
distribution when α = 2. Then the BEP of BPSK on the
AWGN channel can be expressed in terms of the Qα-function
as

PGauss
b = Q

(√
2Eb
N0

)
= Qα=2

(
2

√
Eb
N0

)
. (12)

When α = 2, (11) reduces to (12) which implies (11) is a
general expression for all α’s. The mapping between Q(x)
and Qα(x) is

Q(x)→ Qα

(√
2C

( 2
α−1)
g x

)
. (13)

We can find the BEP of SαS channels according to (13).
For AWGN channels, according to [19], the closed-form BEP
of M-QAM modulation is given as

PM
b =

2√
M log2

√
M

log2

√
M∑

k=1

(1−2−k)
√
M−1∑

i=0{
f(k, i)Q

(
(2i+ 1)

√
3 log2M · Ω
M − 1

)}
, (14)

where Ω = Eb
N0

and bxc represents the largest integer that
is not greater than x. f(k, i) is denoted as

f(k, i) = (−1)

⌊
i·2k−1
√
M

⌋(
2k−1 −

⌊
i · 2k−1

√
M

+
1

2

⌋)
. (15)



The relationship between Q(x) and Qα(x) is given in (13),
hence the theoretical BEP of M-QAM over SαS noise is given
as

PM
b,α =

2√
M log2

√
M

log2

√
M∑

k=1

(1−2−k)
√
M−1∑

i=0f(k, i)Qα

(2i+ 1)

√
6C

( 2
α−1)
g log2M · Ω

M − 1


(16)

Now we consider flat Rayleigh fading channels. For a fixed
attenuation a, the error rate of M-QAM in (16) is viewed
as a conditional error probability PM

b|a,α where Ω is replaced
by ω = a2 Eb

N0
. To obtain the error probability when a is

random, we must average PM
b|a,α, over the pdf of ω. The

general expression of the exact BEP on the Rayleigh fading
channels with SαS noise for M-QAM is given as

PM,Ray
b,α =

∫ ∞
0

PM
b|a,α(ω)p(ω)dω (17)

where the pdf of ω is p(ω) = 1
Ω exp(−ω/Ω). We note that

the complexity of calculating the exact BEP in (17) is very
high. Since the pdf of SαS in (9) is an integral, we will need
a triple integral to calculate (17).

We present a method to simplify (17) to a double integral by
reducing the complexity of calculating Qα(x). We observe that
Qα(x) = 1−Fα(x), where Fα(x) is the CDF of standard SαS
distribution. Hence, we can use an alternative representation
of Fα(x) which only contains one integral [20]. For x > 0:
(a) When α > 1,

Fα(x) = 1− 1

π

∫ π
2

0

exp
(
−x

α
α−1V (θ;α)

)
dθ, (18)

where

V (θ;α) =

(
cos θ

sinαθ

) α
α−1 cos(α− 1)θ

cos θ
. (19)

(b) When α = 1,

Fα(x) =
1

2
+

1

π
arctan(x). (20)

(c) When α < 1,

Fα(x) =
1

2
+

1

π

∫ π
2

0

exp
(
−x

α
α−1V (θ;α)

)
dθ. (21)

In this way, the computational cost of Qα(x) (α 6= 1) is
reduced from a double integral to a single integral. To further
decrease the complexity, we will next propose two methods to
approximate the BEP with very simple expressions and with
only a small loss in accuracy.

IV. TWO APPROXIMATIONS OF BEP OF M-QAM ON
RAYLEIGH FADING CHANNELS WITH SαS NOISE

A. BEP approximation from BCGM model

The BCGM model was proposed to approximate SαS
distributions (1 ≤ α ≤ 2) by mixing a Gaussian distribution
(α = 2) and a Cauchy distribution (α = 1) with only two
necessary parameters, ε and γ. Hence, we employ the BCGM
distribution to approximate α-stable pdf. The BCGM pdf is
given as

fCG(x) = (1− ε) 1

2
√
πγ

exp

(
− x2

4γ2

)
+ ε

γ

π(x2 + γ2)
, (22)

where ε is the mixture ratio and it achieves a near optimum
value when

ε =
2Γ(−p/α)− αΓ(−p/2)

2αΓ(−p)− αΓ(−p/2)
. (23)

The gamma function is Γ(x) =
∫∞

0
e−ttx−1dt and p < α.

Then We can define the standard BCGM distribution as

fsCG(x) = (1− ε) 1

2
√
π

exp

(
−x

2

4

)
+ ε

1

π(x2 + 1)
(24)

The BEP of an SαS channel can be approximated by fsCG(x)
as

PM,BCGM
b,α =

2√
M log2

√
M

log2

√
M∑

k=1

(1−2−k)
√
M−1∑

i=0{
f(k, i)

∫ ∞
√
g(i)Ω

fsCG(x)dx

}
(25)

where

g(i) =
6C

( 2
α−1)
g log2M

M − 1
(2i+ 1)2 (26)

The exact BEP on Rayleigh fading channels with SαS noise
is now approximated by using the BCGM model as

PM,Ray
b,α ≈ 1

Ω

∫ ∞
0

PM,BCGM
b|a,α (ω) exp(−ω/Ω)dω. (27)

It is observed that (27) contains a double integral. After
some manipulation, a closed-form expression of BEP can
be obtained and is given in (28). This greatly reduces the
computational cost compared with the exact BEP. When ε = 0,
(28) is the exact BEP for Rayleigh fading with Gaussian noise,
and when ε = 1, (28) becomes the exact BEP of Rayleigh
fading with Cauchy noise.

B. Asymptotic performance of a Rayleigh fading channel with
SαS noise

Another approximation can be obtained by using the heavy
tailed property of SαS distributions. According to [5], for a
α-stable random variable X with dispersion γα, we have

lim
x→∞

P (X > x) =
γαCα
xα

, (29)

where
Cα =

1

π
Γ(α) sin

(πα
2

)
. (30)



PM,Ray
b,α ≈ 1

Ω

∫ ∞
0

PM,BCGM
b|a,α (ω) exp(−ω/Ω)dω

=
2√

M log2

√
M

log2

√
M∑

k=1

(1−2−k)
√
M−1∑

i=0{
f(k, i)

[
1− ε

2

(
1−

√
g(i)Ω

4 + g(i)Ω

)
+
ε

2

(
1− exp

(
1

g(i)Ω

)
erfc

(√
1

g(i)Ω

))]}
(28)

Hence the asymptotic tail probability Qα(x) is given as

lim
x→∞

Qα(x) =
Cα
xα

, (31)

By substituting (31) into (16), we obtain the asymptotic BEP
for M-QAM on SαS channels

PM,asy
b,α =

2Cα√
M log2

√
M

log2

√
M∑

k=1

(1−2−k)
√
M−1∑

i=0{
f(k, i) (g(i)Ω)

−α2
}
. (32)

After some transformations, the asymptotic BEP on
Rayleigh fading channels with SαS noise for M-QAM is given
as

PM,Ray
b,α → 1

Ω

∫ ∞
0

PM,asy
b|a,α (ω) exp(−ω/Ω)dω

=
2Cα√

M log2

√
M

log2

√
M∑

k=1

(1−2−k)
√
M−1∑

i=0{
f(k, i) (g(i)Ω)

−α2 Γ
(

1− α

2

)}
. (33)

The resulting expression of the asymptotic BEP is also very
simple, containing only a gamma function. We note that for
slightly impulsive Rayleigh fading channels (i.e. α = 1.8),
only the first two terms (i = 0, 1) of (17), (28) and (33) are
required to give a good estimate of the BEP. However, when
the channel becomes more impulsive (i.e. α = 1), more terms
(i = 0, 1, 2...) are considered since the tail probability decays
slowly as SNR increases.

V. SIMULATION RESULTS

Simulation results and numerical results for the closed-form
expressions of the exact and approximated BEP of M-QAM
on Rayleigh fading channels with SαS noise are presented in
this section.

As shown in Fig. 1, when α = 1.9 or the channel is slightly
impulsive, our analytic BEPs match the simulation results for
different orders of M-QAM. The BCGM model approximates
the exact BEP very accurately at the high error-rate region. For
example, when α = 1.9, the BCGM BEP curve for each M-
QAM scheme matches the theoretical BEP when BEP > 10−2.
When SNR increases, this estimation becomes less accurate.
In contrast, the asymptotic BEPs closely approximate the low
error-rate region of the exact BEPs, but the approximation is
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Fig. 1. BEP of M-QAM on Rayleigh fading channels with SαS noise when
α = 1.9.
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Fig. 2. BEP of M-QAM on Rayleigh fading channels with SαS noise when
α = 1.5.

less accurate in the high error-rate region. As seen in Fig. 1,
for each M-QAM scheme, the asymptotic BEP matches the
theoretical BEP very closely when the BEP is equal to or less
than 10−2.

When the channel becomes more impulsive with α = 1.5,
our theoretical BEPs are still closely approximate simulated
bit-error rate curves in Fig. 2. Similar to the case of α = 1.9,
the asymptotic BEP accurately approximates the low error-
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Fig. 3. BEP of M-QAM on Rayleigh fading channels with SαS noise when
α = 1.1.

rate region for each M-QAM scheme. A different result is
the BCGM modeled BEP, which is less accurate compared
with α = 1.9. Fig. 2 shows that the BCGM model closely
approximates the exact BEP when BEP > 3× 10−2.

When the channel is highly impulsive with α = 1.1, as
shown in Fig. 3, our BEP approximations are still verified by
simulation results. In this case, the BCGM model is more
accurate compared with the case when α = 1.5. This is
because the BCGM model better approximates the SαS pdf
when α approaches 2 or 1. The numerical results of the
asymptotic BEP accurately capture the low error-rate region
performance as before, which implies that the asymptotic BEP
is robust for all levels of impulsiveness.

VI. CONCLUSION

In this paper, we have derived the exact BEP of M-QAM
on Rayleigh fading channels with SαS noise to evaluate the
performance of a wireless communication system with im-
pulsive noise. We have also presented two approximations of
the exact BEP, based on the BCGM model and an asymptotic
approximation. The BCGM model matched the high error-
rate region of the exact BEP curve and increased in accuracy
when the channel was lightly or heavily impulsive. However,
this method became less accurate when the channel was
moderately impulsive (α = 1.5) because it does not model the
pdf as accurately. The asymptotic BEP consistently provided a
good approximation for the BEP for all levels of impulsiveness
in the low error-rate region. Most importantly, these two
approximations have closed-from expressions, which greatly
reduces the computation complexity.
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