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Abstract—In this paper, we propose a new approach to
construct quasi-cyclic low-density parity-check (QC-LDPC) codes
using Hamming codewords of weight three, namely the HM-
QC-LDPC codes. Thanks to the distance property of Hamming
codes, length four cycles are avoided from the Tanner graph
of the constructed codes, resulting in codes of girth six. This
approach can be further extended to construct QC-LDPC codes
of girth eight. Our numerical results show that the proposal has
a better cycle profile than the progressive-edge-growth (PEG)
constructed codes, and consequently prevails in performance.
Moreover, the constructed QC-LDPC code prevails the LDPC
code of the IEEE802.22 standard by 0.2 dB at the bit error rate
(BER) of 10−8 when the codeword length is within hundreds of
bits, making it a promising candidate for scenarios where strict
decoding latency is imposed.
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I. INTRODUCTION

Low-density parity-check (LDPC) codes [1] are competent
channel codes that can achieve performance closed to the
Shannon limit. So far, various construction and decoding
algorithms for LDPC codes have been proposed, maturing the
code. The code has already been adopted by various standards,
such as DVB-S2, IEEE802.16e, IEEE802.22. LDPC codes
can be mainly categorized into two types, random codes and
structured codes, which had been investigated in [2-3] and
[4], respectively. It is well known that random codes can ap-
proach channel capacity with relatively long codeword length.
However, random codes are not implementation friendly. In
contrast, structured codes often possess cyclic or quasi-cyclic
(QC) structure in their parity-check matrices and therefore
have low encoding complexity [5]. These codes with short-
to-medium length can achieve a similar performance as the
random codes.

In practice, the short-to-medium length channel codes play
an important role in the communication scenarios that have
a strict latency tolerance. The progressive-edge-growth (PEG)
approach [6] can construct good LDPC codes with moderate
codeword length. It yields a large girth code and can be applied
to generate linear time encodable LDPC codes. Subsequent
research [7-8] had been proposed to improve the performance
of the PEG constructed codes. In this paper, we propose a new
approach to construct QC-LDPC codes with flexible length

utilizing Hamming codewords of weight three. Utilizing the
distance property of Hamming codes, it avoids length four
cycles from the Tanner graph [9] of the constructed codes, re-
sulting in girth six for the codes. This approach can be further
extended to construct codes of girth eight. For simplicity, we
name the proposed codes as Hamming (HM)-QC-LDPC codes.
Extensive simulation has been conducted and our numerical
results show that the constructed short codes have a better
cycle profile than the PEG constructed codes. Consequently,
they yield a better decoding performance. Moreover, with a
smaller length and a higher rate, the HM-QC-LDPC code
of length 378 bits can outperform the IEEE802.22 standard
code by 0.2 dB at the bit error rate (BER) of 10−8 over the
additive white Gaussian noise (AWGN) channel using BPSK
modulation.

II. PRELIMINARY

This section introduces the preliminaries for the proposed
work, including QC-LDPC codes, Hamming codes and its
equivalent codeword class.

A. QC-LDPC Codes

QC-LDPC codes are a class of LDPC codes whose parity-
check matrices are formed using the zero matrices and the
circulant permutation matrices (CPMs). Both the encoding and
decoding of QC-LDPC codes are easy to be implemented.
Therefore, they have a promising prospect in communication
systems. The conventional parity-check matrix of an (I , J)
QC-LDPC code with codeword length N = J × s can be
defined by

H =


P1,1 P1,2 · · · P1,J

P2,1 P2,2 · · · P2,J

...
...

. . .
...

PI,1 PI,2 · · · PI,J

 , (1)

where Pi,j (1 ≤ i ≤ I, 1 ≤ j ≤ J, I < J) is either a s × s
CPM or a zero matrix with the same size. CPM has the cyclic
structure while its row weight and column weight are both one.
In particular, a CPM can be obtained by cyclically shifting an
identity matrix.



B. Hamming Codes

Hamming code is one of the earliest linear block codes. For
any positive integer m ≥ 3, there exists a Hamming code with
the following parameters [10]. The codeword length is

n = 2m − 1 (2)

and the dimension of the code is

k = 2m −m− 1. (3)

Hence, the number of parity-check bits is n − k = m. The
code maintains the minimum distance dmin = 3, and it can
correct one bit error.

Moreover, weight distribution of Hamming codes is known
in literature. We can obtain the weight enumerator according
to the MacWilliams identity [11]

A(x) =
1

n+ 1
((1 + x)n + n(1− x)(1− x2)(n−1)/2). (4)

A(x) can also be presented as

A(x) =
n∑

z=0

Azx
z, (5)

where Az indicates the number of Hamming codewords with
weight z. By expanding (4), we can determine A3 = n(n −
1)/6.

Hereafter, we will utilize weight three Hamming codewords
for the design of HM-QC-LDPC codes.

C. Codeword Equivalent Class

The proposed construction will utilize the cyclic property
of Hamming codes. Hence, the following preliminaries are
necessary to be introduced.

Definition I: Given an n-tuple codeword c = (c0, c1, · · · ,
cn−1), we can obtain the following n-tuple codeword c(β) by
cyclically shifting c to the right by β (0 ≤ β < n) positions

c(β) = (cn−β , cn−β+1, · · · , cn−1, c0, c1, · · · , cn−β−1). (6)

c(β) is cyclically equivalent to c.
Definition II: Let Sc denote the set of all codewords that are

cyclically equivalent to c. We call Sc as a codeword equivalent
class.

Note that codeword c can also be expressed as a polynomial
by

C(x) = c0 + c1x+ c2x
2 + · · ·+ cn−1x

n−1. (7)

Assuming there exists a weight three Hamming codeword c,
its corresponding polynomial C(x) is

C(x) = xe + xb + xa, (8)

where 0 ≤ e < b < a < n. We cyclically shift the codeword
by β positions and the polynomial of such a shifted codeword
can be written as [10]

C∗(x) = xβC(x) mod (xn + 1). (9)

Lemma 1 Given Hamming codewords in the form of
C(x) = 1 + xn/3 + x2n/3, they can be obtained again by
cyclically shifting it to the right by n/3 positions.

Proof: We can elaborate xβC(x)/(xn + 1) for the proof.
First of all, if

(xβC(x)− C∗(x))/(xn + 1) = xa+β−n,

then
C∗(x) = xa+β−n + xe+β + xb+β .

We have

xβ(xe+xb+xa) = xa+β−n(xn+1)+xa+β−n+xe+β+xb+β .

Further based on (8), in order to let C∗(x) = C(x), we need a+ β − n = e,
e+ β = b,
b+ β = a.

The above equation group implies β = n/3. That says we
can trace back the codeword by cyclically shifting it to the
right by n/3 positions. Let e = 0, we have b = n/3 and
a = 2n/3. The code polynomial is C(x) = 1 + xn/3 + x2n/3

and |Sc| = n/3.
Secondly, if

(xβC(x)− C∗(x))/(xn + 1) = xb+β−n + xa+β−n,

then
C∗(x) = xb+β−n + xa+β−n + xe+β ,

and therefore
xβ(xe + xb + xa) =(xb+β−n + xa+β−n)(xn + 1) + xb+β−n

+ xa+β−n + xe+β .

Hence, if  b+ β − n = e,
a+ β − n = b,
e+ β = a,

then C∗(x) = C(x). Again, the above equation group implies
β = 2n/3. In other words, after cyclically shifting c to the
right by 2n/3 positions, we can obtain c again. Let e = 0,
then b = n/3 and a = 2n/3. The code polynomial is C(x) =
1 + xn/3 + x2n/3 and |Sc| = n/3.

Finally, if

(xβC(x)−C∗(x))/(xn+1) = xe+β−n+xb+β−n+xa+β−n,

then
C∗(x) = xe+β−n + xb+β−n + xa+β−n,

and therefore
xβ(xe + xb + xa) =(xe+β−n + xb+β−n + xa+β−n)(xn + 1)

+ xe+β−n + xb+β−n + xa+β−n.

Furthermore, if  e+ β − n = e,
b+ β − n = b,
a+ β − n = a,

C∗(x) = C(x). Therefore, β = n. It conforms that any
codeword c can trace back to itself by cyclically shifting it to
the right by n positions. The above proof shows that if e = 0,
b = n/3 and a = 2n/3, |Sc| = n/3.

The above proof however indicates that n should be divided
by three. Based on (2), we know that this will only happen
when m is even. Together with Definition II, we have the
following Corollary that describes the characteristics of |Sc|.



Corollary 2 When m is even, there exists a Hamming
codeword in the form of C(x) = 1 + xn/3 + x2n/3 and its
equivalent class has a cardinality of |Sc| = n/3. The rest of
Hamming codewords have an equivalent class of cardinality
|Sc| = n.

III. CONSTRUCTION OF HM-QC-LDPC CODES

In this section, we will present our approaches to construct
HM-QC-LDPC codes of girth six and eight. Parameterization
of the codes will also be described.

A. HM-QC-LDPC Codes of Girth Six
For the construction, the following Lemmas need to be

introduced.
Lemma 3 Given any positive integer m ≥ 3, let all the

weight three Hamming codeword c belong to a set B3, where
|B3| = n(n− 1)/6. We can choose l distinct codewords from
B3 and denote them as c1, c2, · · · , cl. Parity-check matrix H
can be formed by placing the l codewords column wise as

H = [cT1 cT2 · · · cTl ]. (10)

Matrix H is free from cycles of length four.
Proof: Given any positive integer m ≥ 3, let us assume

that there exists length four cycles in matrix H. A length
four cycle in the matrix corresponds to two codewords (in
two columns of H). Since Hamming codes are linear block
codes, linear combination of the two codewords will produce
a third Hamming codeword. However, this combination would
produce a codeword of weight less than three. This contradicts
to the fact that the minimum distance of Hamming codes
is three. Therefore, matrix H is free from cycles of length
four.

Lemma 4 Given a matrix H without length four cycles, we
can obtain several submatrices of the same size by decompos-
ing H as

H = H1 + H2 + · · ·+ Hγ , (11)

and H1,H2, · · · ,Hγ do not possess the common nonzero entry
in the same column or the same row. By combining these
submatrices as

H* =


H1

H2

...
Hγ

 , (12)

H* is also free from cycles of length four.
Proof: Since H does not have any cycle of length four,

neither do submatrices H1,H2, · · · ,Hγ . Moreover, since the
submatrices do not share a common nonzero entry in the same
column or the same row, H* will also be free from cycles of
length four.

Now, it is sufficient to propose our construction approach for
HM-QC-LDPC codes of girth six. In following algorithm, we
will only choose the weight three Hamming codewords whose
equivalent classes have size n, i.e., cv ∈ B3 and |Scv | = n.

In the above construction, parameter g can be understood as
among all the available codeword equivalent classes, the num-
ber we choose to constitute HHM−QC−LDPC. It is a parameter

Algorithm 1 HM-QC-LDPC Codes of Girth Six
• Initialization: Choose parameter m, and the codeword

length N , where N ≤ n(n − 1)/6 and N mod n = 0.
Let g = N/n and v = 1;

• Step 1: Search for cv /∈ Sc1 , Sc2 , · · · , Scv−1 ;
• Step 2: Define Scv = {c(0)v , c

(1)
v , · · · , c(n−1)

v };
• Step 3: Generate matrix Ωv as Ωv = [c

(0)T

v c
(1)T

v · · ·
c
(n−1)T

v ];
• Step 4: Decompose Ωv into three CPMs P1,v , P2,v , P3,v

as Ωv = P1,v + P2,v + P3,v;
• Step 5: Generate matrix Λv as

Λv =

 P1,v

P2,v

P3,v

 ;

• Step 6: Let v = v + 1;
• Step 7: If v ≤ g, go to Step 1; Else, generate matrix

HHM−QC−LDPC as HHM−QC−LDPC = [Λ1 Λ2 · · · Λg]
and terminate the construction.

that defines the code rate, which will be discussed in Section
III.C. Note that the above construction requires |Scv | = n.
Hence, the Hamming codeword C(x) = 1+xn/3+x2n/3 and
their cyclically equivalent codewords are excluded. Secondly,
when v = 1, Step 1 can be skipped. We will simply choose
a codeword c1 from B3 with |Sc1 | = n. Finally, Lemmas 3
and 4 help ensure that Λv is free from cycles of length four.
Since P1,v , P2,v , P3,v are CPMs and cv /∈ Sc1 , Sc2 , · · · , Scv−1 ,
HHM−QC−LDPC will also be free from cycles of length four.

B. HM-QC-LDPC Codes of Girth Eight
Algorithm 1 can be further modified to construct HM-QC-

LDPC codes of girth eight. We now let HHM−QC−LDPC(w, u)
donate the parity-check matrix’s entry of row w and column
u, where 0 ≤ w < 3n and 0 ≤ u < N . Identifying any

Fig. 1. Patterns of length six cycles in the parity-check matrix.

six nonzero entries in HHM−QC−LDPC, they will constitute
a length six cycle in the corresponding Tanner graph if they
appear as in one of the six patterns shown in Fig. 1. Note that



the entry coordinates are assigned following w1 < w2 < w3

and u1 < u2 < u3.
In Algorithm 1, HHM−QC−LDPC is formed by generating

Λ1,Λ2, · · · ,Λg one by one. The above description implies
that we should be selective when introducing Λv into [Λ1Λ2

· · · Λv−1] in order to avoid length six cycles. In general, when
v ≥ 3, we will generate six possible Λv by permuting P1,v ,
P2,v , P3,v as

Λv1 =

 P1,v

P2,v

P3,v

 ,Λv2 =

 P1,v

P3,v

P2,v

 ,Λv3 =

 P2,v

P1,v

P3,v

 ,

Λv4 =

 P2,v

P3,v

P1,v

 ,Λv5 =

 P3,v

P1,v

P2,v

 ,Λv6 =

 P3,v

P2,v

P1,v

 .

We will then pick up one that does not create any of the length
six cycle patterns in [Λ1 Λ2 · · · Λv−1 Λv]. Note that there
can be plural choices for Λv . In this case, we will pick up the
one that imposes the least number of cycles of length eight
in [Λ1 Λ2 · · · Λv−1 Λv]. Also notice that it is possible
that all of the above six Λv will impose length six cycles in
[Λ1 Λ2 · · · Λv−1 Λv]. In this case, we will abandon all
the Λv and generate a new Λv based on another Hamming
codeword from B3. Therefore, when v ≥ 3, we will integrate
this selection process into Step 5 of Algorithm 1. This will
enable us to construct HM-QC-LDPC codes of girth eight.

C. Parameterization of HM-QC-LDPC Codes
Based on Section II, we know that there are n(n − 1)/6

weight three Hamming codewords, i.e. |B3| = n(n − 1)/6,
where n = 2m − 1. Recalling Corollary 2, we further know
that if m is odd, these codewords can be categorized into
(n − 1)/6 equivalent classes, each of which has size n.
Hence, Algorithm 1 and its variant of Section III.B can
produce a HM-QC-LDPC code with the maximal length of
(2m − 1)(2m − 2)/6. However, if m is even, there are
n(n − 1)/6 − n/3 = n(n − 3)/6 codewords that belong to
equivalent classes of size n. In this case, the constructed code’s
maximal length will be (2m−1)(2m−4)/6. In general, a larger
Hamming code will lead to a larger HM-QC-LDPC code.

The actual length of the constructed code can however
be more flexible as it can be controlled by parameter g. It
indicates the number of classes that we choose to constitute
HHM−QC−LDPC. Hence, if m is odd, g ≤ (n−1)/6, and if m
is even, g ≤ (n − 3)/6. The actual length of the constructed
code will be gn = g(2m − 1).

Finally, the designed rate of constructed code will be (gn−
3n)/gn = (g − 3)/g. But notice that due to the parity-check
matrix’s cyclic feature, it will not be full rank and actual code
rate will be greater than the designed one. Table I summarizes
the above parameterization of HM-QC-LDPC codes.

IV. SIMULATION RESULTS AND ANALYSES

In our simulations, the codewords are BPSK modulated and
transmitted over the AWGN channel. The sum-product algo-
rithm (SPA) [12] is employed for decoding and the maximum

TABLE I
PARAMETERIZATION OF HM-QC-LDPC CODES

m maximum length actual length rate
odd (2m − 1)(2m − 2)/6 g(2m − 1) > (g − 3)/g
even (2m − 1)(2m − 4)/6 g(2m − 1) > (g − 3)/g

TABLE II
CYCLE PROFILE OF CODES WITH LENGTH 378 BITS

Length six Length eight Length ten
cycles cycles cycles

Proposed code with girth six 63 2709 12033
Proposed code with girth eight 0 1638 11151
PEG code with girth eight 0 1749 13986

TABLE III
CYCLE PROFILE OF CODES WITH LENGTH 762 BITS

Length six Length eight Length ten
cycles cycles cycles

Proposed code with girth six 254 2794 10414
Proposed code with girth eight 0 1397 9906
PEG code with girth eight 0 1484 12003

number of iterations is 100. The codes’ BER performance
is measured against Eb/N0, where Eb is the energy per
information bit and N0 is the noise power.

Given m = 6, we constructed the HM-QC-LDPC codes
with girth six and eight, respectively. For comparison, we
have also constructed an LDPC code of girth eight using the
PEG approach. Both the proposed codes and PEG constructed
code have the same codeword length of 378 bits and rate of
0.52. In Fig. 2, it can be seen that the HM-QC-LDPC code
of girth eight outperforms the one of girth six. This mainly
thanks to the former has a better cycle profile that lists the
number of cycles of various length for a given code. Table
II shows that the cycle profile of the proposed codes and the
PEG constructed code, all of which are 378 bits long. Fig. 2
also shows that the proposed code of girth eight outperforms
the PEG constructed code with a coding gain of 0.3 dB at
the BER of 10−8. Table II reveals that with girth eight the
HM-QC-LDPC code has a better cycle profile than the PEG
constructed code. Fig. 2 also compares the proposed codes
with the IEEE802.22 standard LDPC code that is 384 bits
long and has a rate of 0.5. It can be observed that even with
a smaller length and a higher rate, the proposed code of girth
eight can outperform the standard code by 0.2 dB at the BER
of 10−8. Fig. 3 demonstrates the decoding convergence of the
proposed codes, which is exhibited by the average number of
SPA iterations. It shows the proposed codes converge better
than the PEG code.

Similarly, we constructed the HM-QC-LDPC codes with
girth six and eight when m = 7. They are compared with
the PEG constructed code of girth eight. They have the
same length of 762 bits and rate of 0.51. Table III again
shows the above mentioned codes’ cycle profile. Moreover,
the IEEE802.22 standard LDPC code with length of 768 bits
and rate of 0.5 is also used as a comparison benchmark. Fig. 4
shows that the proposed code with girth eight outperforms the



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

 E
b
/N

0
(dB)

B
E

R

IEEE802.22 code
PEG code, girth eight
Proposed code, girth six
Proposed code, girth eight

Fig. 2. Performance of the HM-QC-LDPC codes of length 378 bits.
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Fig. 4. Performance of the HM-QC-LDPC codes of length 762 bits.

PEG constructed code by about 0.1 dB at the BER of 10−8. It
also tempts to produce a better asymptotic performance than
the standard code that has a slightly larger length and smaller
code rate. The above simulation results also have demonstrated
the proposal does construct competent QC-LDPC codes in
the range of hundreds of bits long, offering fresh choice for
communication systems that impose a strict signal recovery
latency tolerance.

V. CONCLUSION

In this paper, we have proposed a new approach to construct
QC-LDPC codes utilizing the Hamming codewords of weight
three, namely the HM-QC-LDPC codes. We have constructed
HM-QC-LDPC codes of girth six and eight, with a flexible
design of codeword length and code rate. Our numerical
results have shown the proposal can yield QC-LDPC codes
that have a better cycle profile than the PEG constructed
codes. In the range of hundreds of bits, they outperform the
PEG constructed codes and the IEEE802.22 standard codes.
Our future endeavor will investigate nonbinary HM-QC-LDPC
codes and other design optimization aspects.
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