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Abstract—Spatially coupled (SC) low-density parity-check
(LDPC) codes can achieve capacity approaching belief propa-
gation (BP) decoding performance with low message recovery
latency when using the sliding window decoding (SWD). The
SWD is suitable for data stream transmission but cannot always
correct all errors in the targeted symbol set. A further decoding
stage would be desirable to eliminate the remaining errors from
SWD. This paper proposes a novel concatenated coding scheme
where the Reed-Solomon (RS) codes and the SC-LDPC codes are
chosen as the outer code and the inner code, respectively, namely
the RS-SC-LDPC codes. Consequently, the remaining errors from
SWD can be corrected by the outer RS codes. In the concatenated
coding scheme, the inner SC-LDPC code is designed such that it
has a large girth and locally systematic encoding property. Our
simulation results show the RS-SC-LDPC codes can achieve a
high decoding performance, while the error floor of the inner
code can be removed.

Index Terms—Concatenated codes, SC-LDPC codes, RS codes

I. INTRODUCTION

Spatially coupled low-density parity-check (SC-LDPC)

codes [1] were first introduced as LDPC convolutional codes

[2]. Compared to LDPC block codes, SC-LDPC codes inherit

the advantages of regular [3] and irregular LDPC codes [4],

i.e., linear growth of minimum distance with block length

and capacity-approaching belief propagation (BP) decoding

thresholds. SC-LDPC codes can usually be constructed based

on protographs [5] [6]. They can be constructed by first

coupling L disjoint block protographs and further applying

lifting to the coupled protograph to yield the Tanner graph [7]

of the code. In its parity-check matrix, the non-zero entries

locate in a diagonal band. Consequently, the sliding window

decoding (SWD) [8] can be utilized to decode the SC-LDPC

codes resulting in a low message recovery latency.

However, the SWD often yields burst errors within the

targeted symbol set [9]. It is desirable to concatenate the SC-

LDPC code with an outer code to further eliminate the burst

errors. Reed-Solomon (RS) codes are good candidates due

to their strong burst error correction property. Concatenated

LDPC codes have been widely adopted in several standards,

e.g., in China Mobile Multimedia Broadcasting (CMBB) and

Digital Video Broadcasting-Satellite 2 (DVB-S2), the RS-

LDPC code and the Bose-Chaudhuri-Hocquenghem (BCH)-

LDPC codes are used, respectively. Mitchell et al. proposed

BCH-SC-LDPC codes [10] to improve the error floor per-

formance but at the cost of a slight waterfall performance

degradation. A stronger outer code would be desirable to

further improve the decoding performance by correcting the

burst errors of the inner SWD.

In this paper, we propose a novel concatenated coding

scheme, namely the RS-SC-LDPC codes, where the RS codes

and the SC-LDPC codes are the outer code and the inner code,

respectively. The proposed concatenated code can yield a high

decoding performance and maintain a low message recovery

latency. This is a new coding scheme for data streaming where

higher transmission reliability is required. In order to decode

RS codes from the inner SWD, the SC-LDPC codes should

satisfy a locally systematic encoding property [11]. Ensuring

this property, this paper will also introduce the design of

the inner SC-LDPC code such that it has a girth of at least

eight. This would result in a high decoding performance of

the proposed concatenated code. Simulation results indicate it

and show that the error floor of the concatenated codes will

not appear until the bit error rate (BER) of 10−8.

II. SC-LDPC CODES

A. Construction of SC-LDPC Codes

SC-LDPC codes can be constructed based on protographs

[5]. A block protograph is a bipartite graph with nc check

nodes and nv variable nodes. It can be described using a base

matrix B of size nc × nv , where B(r, s) denotes its row-r
column-s entry with 0 ≤ r ≤ nc − 1 and 0 ≤ s ≤ nv − 1.

B(r, s) represents the number of edges connecting check node

r and variable node s. Fig. 1(a) shows a block protograph

defined by B = [3, 3], where nc = 1 and nv = 2. To form a

coupled protograph, the block protograph of Fig. 1(a) will be

replicated, yielding a chain of block protographs over time as

shown in Fig. 1(b). For all block protographs, some of their

edges from variable nodes at time instant t will be emancipated

and connected to the check nodes at time instants between

t + 1 and t + ω. This edge spreading can be interpreted by

decomposing B into ω+ 1 submatrices of the same size, i.e.,



(a) (b) (c)

(d)

t t + 1 t + 2 t t + 1 t + 2 t + 3

0 1 2 L - 1 L + 1L

Fig. 1. (a) A block protograph for B = [3, 3], (b) an infinite sequence of
uncoupled protographs, (c) coupling all the protographs over time, and (d) a
terminated chain of L coupled protographs.

B0,B1, . . . ,Bω , such that

B(r, s) =

ω∑
i=0

Bi(r, s), (1)

where ω is the coupling width of the constructed SC-

LDPC code. Fig. 1(c) shows an example of ω = 2 and

B0 = B1 = B2 = [1, 1]. Consequently, an infinite chain of

coupled protographs that is formed, i.e., B[−∞,+∞] extends

infinitely over time. Note that a practical SC-LDPC code

has finite length, which can be constructed from the coupled

protograph of finite length as illustrated by Fig. 1(d). The

terminated coupled protograph is obtained by coupling L
block protographs, where L is called the coupling length.

This coupled protograph can be interpreted by the following

base matrix

B[0,L−1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0

B1 B0

... B1
. . .

Bω

... B0

Bω B1

. . .
...

Bω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)

which has size (L+ω)nc×Lnv . The designed rate of the code

is R
(L)
SC = 1− (L+ω)nc

Lnv
, where limL→+∞ R

(L)
SC = 1− nc

nv
.

Let Pa denote an a × a permutation matrix and Ia an

a× a identity matrix. The Tanner graph of a finite SC-LDPC

code can be obtained by applying the M -fold graph lifting to

the above coupled protograph. Similarly, parity-check matrix

H[0,L−1] of the code can be obtained by the M -fold matrix

expansion over B[0,L−1]. Each non-zero entry in B[0,L−1]

is replaced by a sum of B(r, s) permutation matrices PM

and the zero entries are replaced by the M × M all zero

matrices. Let Nc = ncM and Nv = nvM , H[0,L−1] is of size

(L + ω)Nc × LNv . Let Hi(t) denote the expanded outcome

of Bi at time instant t, where 0 ≤ t ≤ L + ω − 1. After the

M -fold graph lifting, the parity-check matrix H[0,L−1] is

H[0,L−1] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

H0(0)
H1(1) H0(1)

... H1(2)
. . .

Hω(ω)
... H0(L− 1)

Hω(ω + 1) H1(L)
. . .

...

Hω(L+ ω − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

where Hi(t) can be expressed as

Hi(t) =

⎡
⎢⎢⎣

h
(0,0)
i (t) · · · h

(0,Nv−1)
i (t)

...
...

h
(Nc−1,0)
i (t) · · · h

(Nc−1,Nv−1)
i (t)

⎤
⎥⎥⎦ (4)

and h
(λ,μ)
i (t) ∈ {0, 1} is the row-λ, column-μ entry. Note that

it is assumed H0(t) is full rank.

B. Locally Systematic Encoding of SC-LDPC Codes

Since the SC-LDPC code is decoded by the SWD, realizing

its locally systematic encoding will be necessary so that SWD

outcome can be further decoded by the outer code. Let

U [0,L−1] = (U0, U1, . . . , UL−1) (5)

denote a sequence of L outer codewords in binary form, where

U t = (Ut,0, Ut,1, . . . , Ut,Nv−Nc−1) and 0 ≤ t ≤ L−1. Further

let

V [0,L−1] = (V 0, V 1, . . . , V L−1) (6)

denote the corresponding terminated SC-LDPC codeword,

where V t = (Vt,0, Vt,1 . . . , Vt,Nv−1). Therefore,

V [0,L−1] · HT
[0,L−1] = 0, (7)

where HT
[0,L−1] can be defined as in (8). In particular, V [0,L−1]

should satisfy

V tH
T
0 (t) + V t−1HT

1 (t) + · · ·+ V t−ωHT
ω (t) = 0 (9)

for t = 0, 1, . . . , L − 1. However, for t ≥ L, termination

bits VLNv
, VLNv+1, . . . , V(L+ω+1)Nv−1 are needed. They can

be generated based on the extended (ω + 1)Nv rows from

HT
[0,L−1]. Details of their generation can be referred to [11].

Since HT
0 (t) is full rank, (9) can be utilized to generate V t.

In order to realize locally systematic encoding, we let the last

Nc rows of HT
0 (t) form an identity submatrix. As a result,

Vt,j = Ut,j , (10)

for j = 0, 1, . . . , Nv − Nc − 1. Otherwise, for j = Nv −



HT
[0,L−1] =

⎡
⎢⎢⎢⎣

HT
0 (0) HT

1 (1) · · · HT
ω (ω)

HT
0 (1) · · · HT

ω−1(ω) HT
ω (ω + 1)

. . .
. . .

HT
0 (L− 1) HT

1 (L) · · · HT
ω (L+ ω − 1)

⎤
⎥⎥⎥⎦ . (8)

Nc, Nv −Nc + 1, . . . , Nv − 1,

Vt,j =

Nv−Nc−1∑
μ=0

Vt,μ · h(λ,μ)
0 (t) +

ω∑
i=1

Nv−1∑
μ=0

Vt−i,μ · h(λ,μ)
i (t)

(11)

where λ = j − (Nv −Nc).

III. RS-SC-LDPC CODES

This section introduces the proposed RS-SC-LDPC codes.

We will also introduce the design rules of the inner code so that

it has a large girth, and realizes locally systematic encoding.

A. The Concatenated Coding Scheme

RS SC-LDPC
[ , ] [ , ], … ,, , … ,,

Fig. 2. Block diagram of the RS-SC-LDPC code.

Block diagram of RS-SC-LDPC codes is shown as in Fig. 2.

Let Fq denote the finite field of size q. For practical concern,

we assume that the RS codes are defined in a binary extension

field, i.e., q = 2p, where p is a positive integer. An (n, k) RS

code defined over F2p has length n = 2p − 1 and dimension

k, where k < n. In this work, the RS code is decoded by the

Berlekamp-Massey (BM) algorithm [12], which can correct at

most �n−k
2 � symbol errors.

For the finite length concatenated code, the inner code has

a coupling length of L. Given L message vectors mt =
(mt,0,mt,1, . . . ,mt,k−1) ∈ F

k
2p , where t = 0, 1, . . . , L − 1,

each message vector can be encoded by an (n, k) RS code.

Message mt can be written as a message polynomial

mt(x) = mt,0 +mt,1x+ · · ·+mt,k−1x
k−1. (12)

The generator polynomial of an (n, k) RS code is

g(x) = (x− σ1)(x− σ2) · · · (x− σn−k), (13)

where σ is a primitive element of F2p . The codeword ct =
(ct,0, ct,1, . . . , ct,n−1) ∈ F

n
2p can be generated by

ct(x) = xn−kmt(x) + ((xn−kmt(x)) mod g(x))

= ct,0 + ct,1x+ · · ·+ ct,n−1x
n−1.

(14)

Then L RS codewords c0, c1, · · · , cL−1 are converted into a

binary RS codeword sequence, which is the input of the SC-

LDPC encoder. It can be written as

U [0,L−1] = (U0, U1, . . . , UL−1),

where U t ∈ F
np
2 is the binary representation of ct and

U t = (Ut,0, Ut,1, . . . , Ut,Nv−Nc−1). Finally, the finite length

concatenated codeword is generated by (10) and (11), which

can be written as

V [0,L−1] = (V 0, V 1, . . . , V L−1),

where V t = (Vt,0, Vt,1, . . . , Vt,Nv−1). The encoder is locally

systematic and therefore V t = [V
(0)
t , V

(1)
t ], where V

(0)
t = U t,

and V
(1)
t is the parity-check portion of length Nc.

B. Design of Inner Code

It is known that the girth of the Tanner graph of H[0,L−1] is

lower bounded by that of the protograph of B[0,L−1]. Hence,

we can first eliminate 4-cycles in B[0,L−1] and then construct

H[0,L−1] with a larger girth by applying a systematic M -fold

graph lifting using the Fossorier condition [13]. In B[0,L−1],

4-cycles may exist in several patterns as illustrated by Fig. 3.

It can be seen that 4-cycles can be contained in a submatrix of

Fig. 3. All 4-cycle patterns in B[0,L−1], where Ba, Bb, Bc and Bd,
a, b, c, d ∈ {0, 1, . . . , ω}, are the submatrices in B[0,L−1]. The non-zero
entries are indicated by solid circles.

B[0,L−1], or two submatrices of the same row (resp. column)

of B[0,L−1], or four submatrices that appear in a rectangular

array of B[0,L−1]. In order to design B[0,L−1] without 4-

cycles, i.e., the girth is at least six, we need to define the

following representative block BR as follows

BR �

⎡
⎢⎢⎢⎣
Bω Bω−1 · · · B0

Bω · · · B1

. . .
...

Bω

⎤
⎥⎥⎥⎦ . (15)

It is of size (ω + 1)nc × (ω + 1)nv . It contains all possible

submatrices patterns of Fig. 3, which can lead to 4-cycles

in B[0,L−1]. If BR does not contain 4-cycles, neither will

B[0,L−1]. In order to design BR, it can be further decomposed



into the constituent block BC and the excluded patterns B
(l)
E ,

where l ∈ {1, 2, . . . , nE} and nE is the total number of the

excluded patterns. BC is obtained by forming a rectangular

matrix from BR with at least two submatrices in each row

and each column, containing B0 in its upper-right corner and

one of the Bωs along the diagonal in its lower-left corner. It

is defined as

BC �

⎡
⎢⎣
Bβ−1 · · · B1 B0

...
. . .

...
...

Bω · · · Bα Bα−1

⎤
⎥⎦ , (16)

where ω = α+β−2 and α, β > 1, with size αnc×βnv . The

excluded patterns B
(l)
E are defined as

B
(1)
E =

[
Bω B0

]
, B

(2)
E =

[
B0

Bω

]
,

B
(l)
E =

[
Bal

Bbl

Bcl Bdl

]
, l = 3, 4, . . . , nE, (17)

where al, bl, cl, dl ∈ {0, 1, . . . , ω} and nE depends on ω and

the chosen BC. Note that all excluded patterns appear in BR

but do not appear in BC.

With the above definition, a two stage design approach for

B[0,L−1] has been proposed in [14]. In Design Stage I, the

submatrices are initialized based on the excluded patterns B
(l)
E ,

ensuring that there is no 4-cycle in B
(l)
E . In Design Stage II, the

initialized submatrices are modified to remove the remaining

4-cycles in BC. Ensuring BC and all B
(l)
E have no 4-cycles,

the designed B[0,L−1] has a girth of at least six. H[0,L−1] of

girth of at least eight is further generated using the M -fold

graph lifting.

In this concatenated coding scheme, encoding of the inner

SC-LDPC code is locally systematic. Hence, in order to obtain

V t, we only need to focus on the submatrix in which the

information vector U t participates at the time instant t, i.e.,

H0(t). In H0(t), each information bit and check bit should

participate in at least one parity-check equation so that they

can be recovered by SWD. At the beginning of SWD, H0(t)
should has a row weight of at least two. Each parity-check

equation of H0(t) should contain at least one information bit

and one check bit. Hence, Design Stage I of [14] should be

modified. Firstly, let Φa×b denote an a× b binary matrix with

a minimum column weight of one and with a maximum row

weight as small as possible. Secondly, let Ξa×b denote an a×b
binary matrix with a minimum row weight of one and with a

maximum column weight as small as possible. The modified

Design Stage I can be presented as the following steps.

Step 1 ensures that B0 has the minimum row weight of

two, i.e., the minimum row weight of B
(0)
0 and B

(1)
0 is one.

Moreover, the locally systematic encoding property can be

realized. The minimum column weight of B
(0)
0 and B

(1)
0 is

designed as one so that each information bit or parity-check

bit participates in at least one parity-check equation. So that,

the coded bits can be recovered uniquely. If nv−nc ≥ nc, the

minimum column weight of B
(0)
0 is one and if nv −nc < nc,

the minimum row weight of B
(0)
0 is one. Further, B

(1)
0 is

designed as an identity matrix in order to make sure that B0

is full rank. Consequently, its expanded outcome H0(t) is also

full rank. Note that the design of Bω in Step 2 does not have

to ensure the minimum row weight of two. This is because the

termination bits are redundant, and do not need to be decoded.

Design Stage 1 Initialize the Submatrices

Step 1: Let

B0 = [B
(0)
0 B

(1)
0 ], (18)

where B
(1)
0 is an identity matrix of size nc×nc. If nv−nc ≥

nc, B
(0)
0 is defined as

B
(0)
0 =

[
Pnc

Φnc×(nv−2nc)

]
, (19)

where Φnc×(nv−2nc) is chosen such that there is no 4-cycle

in B
(0)
0 ; otherwise, B

(0)
0 is defined as

B
(0)
0 =

[
Pnv−nc

Ξ(2nc−nv)×(nv−nc)

]
, (20)

where Ξ(2nc−nv)×(nv−nc) is chosen such that there is no

4-cycle in B
(0)
0 .

Step 2: Initialize Bω such that neither Bω , nor B
(1)
E and

B
(2)
E contain 4-cycles.

Step 3: Initialize other submatrices, i.e., B1,B2, . . . ,Bω−1,

such that B(r, s) =
∑ω

i=0 Bi(r, s) and there is no 4-cycle

in any of the submatrices or excluded patterns B
(l)
E (l =

3, 4, . . . , nE).

Finally, let I
(θ)
a denote the shifted identity matrix with each

row of Ia cyclically shifted to the left by θ positions. We apply

the M -fold graph lifting on the designed B[0,L−1]. Using the

Fossorier condition [13], 6-cycles can be removed by lifting

non-zero entries with different I
(θ)
M . Hence, we can construct

the inner code with girth g ≥ 8.

C. Locally Systematic Encoding of Inner Code

Since H0(t) is generated by applying the M -fold graph

lifting on B0 at time instant t, the last Nc rows of H0(t) does

not necessarily form an identity matrix after the lifting. In

order to define the locally systematic encoding of the designed

inner code, the following proposition is needed.

Proposition 1: I
(M−θ)
M is the transpose of I

(θ)
M .

The above proposition helps determine the parity-check

equation which generates the corresponding check bit in the

encoding. Let ρ denote the column index of HT
0 (t), where

ρ = 0, 1, . . . , Nc − 1, corresponding to the parity-check

equation which generates the check bit Vt,j and j = Nv −
Nc, Nv − Nc + 1, . . . , Nv − 1. Denote a permutation matrix

P of size M ×M as the targeted partitioned matrix with the

non-zero element corresponding to check bit Vt,j’s location in

matrix HT
0 (t). Let ρc, where ρc = 0, 1, . . . , Nc − 1, denote

the location index of the check bit Vt,j in V
(1)
t , which can be



given by

ρc = j − (Nv −Nc). (21)

Further let

ρ0 = � ρc
M

�M. (22)

Given a shifting factor θ of the targeted partitioned matrix,

P = (I
(θ)
M )T . Based on Proposition 1,

ρ = ρ0 + (ρc + θ) mod M. (23)

It means that the value of ρ is the sum of the column index of

the first column in the targeted partitioned matrix P in HT
0 (t)

and the position of the non-zero entry corresponding to the

check bit Vt,j relative to the first column of P . Note that when

the shifting factor θ = 0, the column index ρ corresponding

to check bit Vt,j is the location index of check bit Vt,j in

V
(1)
t , i.e., ρ = ρc. Therefore, the locally systematic encoding

follows:

Vt,j = Ut,j , (24)

if j = 0, 1, . . . , Nv −Nc − 1, and

Vt,j =

Nv−Nc−1∑
μ=0

Vt,μ · h(ρ,μ)
0 (t) +

ω∑
i=1

Nv−1∑
μ=0

Vt−i,μ · h(ρ,μ)
i (t),

(25)

if j = Nv −Nc, Nv −Nc + 1, . . . , Nv − 1.

Example 1: The following example illustrates the above

systematic encoding process. Given HT
[0,L−1] as shown by

Fig. 4, we demonstrate the calculation of V1,14.

First, we find that the location index of V1,14 in V
(1)
1 is 5,

i.e., ρc = 5. Based on (22), we can obtain the column index

of the first column in targeted partitioned matrix P in HT
0 (1),

which is shown as the dashed box, i.e., ρ0 = 3. Assume that

θ = 1, the position of the entry 1 corresponding to V1,14

relative to the first column in the dashed box is 0 and then we

can calculate that ρ = 3. Finally, the parity-check equation of

column 3 at time instant t = 1 is V1,14 = V0,12 + V1,0 = 0.

IV. PERFORMANCE ANALYSIS

As shown in Fig. 5, for the concatenated code, the SWD and

the BM algorithms are applied to decode the inner and outer

codes, respectively. Let W denote the size of decoding window

which contains W block protographs, where ω+1 � W � L.

The SWD performs log-BP decoding with a window size of W
at each decoding instant, aiming at recover only the targeted

symbols. For the finite length code, the entire codeword will

be recovered over L decoding instants.

For each decoding instant, log-likelihood ratios (LLRs) of

the targeted symbols within each window will be estimated.

Hard decisions are made based on the estimated LLRs and

further decoded by the outer RS code. If the RS code can

be decoded, the targeted symbols are known and their LLR

values become deterministic, i.e., +∞ or −∞. They partici-

pate into the SWD therein, improving the SWD performance.

Otherwise, the LLR values are not adjusted.

We compare the performance between SC-LDPC codes and

RS-SC-LDPC codes. The designed inner codes have girth
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feedback
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Fig. 5. Block diagram of the SWD-BM decoder.

eight with (nc, nv) = (3, 6), M = 126, ω = 3 and L = 60.

Simulations were performed over the AWGN channel using

BPSK modulation.

TABLE I
THE RATIO OF BLOCKS WITH SYMBOL ERRORS MORE THAN �n−k

2
�

RS SNR
Code 1.6 1.7 1.8

(63, 61) 0.00375% 0.00069% 0.00044%

(63, 59) 0.14652% 0.00667% 0.00058%

We first consider the choice of the outer RS code. We

examine the error patterns of the concatenated code after SWD

in different SNRs (up to 1.8 dB) in order to see if the RS

code is adequate to combat the errors. Note that the RS code

can correct at most �n−k
2 � symbol errors by using the BM

algorithm. As shown in Table I, when W = 20, the ratio

of inner blocks whose symbol errors are more than 1, tends

to be stable in the high SNR region when concatenated with

the (63, 61) RS code. It indicates that the error floor of the

concatenated code still exists when the outer code is the (63,

61) RS code. A lower-rate RS code will be chosen as the

candidate for the outer code. It can be seen that there is no

error floor when SNR ≤ 1.8 dB by concatenating a (63, 59)



RS code. Thus the (63, 59) RS code is chosen as the outer

code for the following concatenated codes.
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Fig. 6. Performance of designed and undesigned SC-LDPC codes and RS-
SC-LDPC codes.
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Fig. 7. Performance of designed SC-LDPC codes with no outer code and
with a (63, 59) RS outer code.

Fig. 6 shows the performance of designed and undesigned

SC-LDPC codes and their corresponding RS-SC-LDPC codes.

The undesigned inner codes were constructed from the base

matrix B = [3 3] with B0 = [1 1], B1 = [1 0], B2 = [0 1] and

B3 = [1 1], and M = 378. Designed codes follow the design

rules in Section III with W = 20 in all cases and the code

rates of the SC-LDPC code and concatenated code are 0.47

and 0.44, respectively. We see that the concatenated code helps

recover the error floor from the original SC-LDPC code. The

designed codes also outperform the undesigned ones thanks

to their larger girth property. However, concatenating with

outer codes leads to rate loss. This yields a slight degradation

in waterfall performance. Fig. 7 shows the performance of

SC-LDPC codes and corresponding RS-SC-LDPC codes with

different window sizes W . It shows that when the window size

is too small, e.g., W = 8, concatenating an RS code cannot

completely remove the error floor. This is due to the fact that

the chosen (63, 59) RS code cannot eliminate all errors yielded

by the inner SWD.

V. CONCLUSIONS

This paper has proposed the RS-SC-LDPC concatenated

codes, realizing both low message recovery latency and high

decoding performance for further data streaming. We present

the design rules and the locally systematic encoding of the

inner codes. With the proposed SWD-BM decoding, our

simulation results show that the proposed codes outperform the

SC-LDPC codes, removing the error floor when the window

size is sufficiently large.
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