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Abstract—This paper investigates the iterative decoding for
spectrally efficient two-way relay (TWR) communications in
which two end nodes exchange information through a relay (R).
With the use of physical-layer network coding (PNC), information
exchange throughput can be significantly improved as only two
orthogonal time slots (TS) are required to realize both the
multiple access (MAC) and the broadcast (BC) transmissions.
During the MAC stage, transmitted symbols from the end
nodes are superimposed at R which decodes the exclusive-or
(XOR) information of the two end nodes. However, with a high
order modulation, symbol superposition will cause demapping
ambiguity. This paper proposes a TWR communication system
that employs the bit-interleaved coded modulation (BICM). The
iterative decoding, namely, the BICM-ID, is introduced to dissolve
the demapping ambiguity. With iterative decoding, the transmit-
ted symbol pair probabilities can be better estimated so that
the demapper can provide better coded bit information for the
decoder. The proposed work generalizes the iterative demapping-
decoding approach for TWR channels. Our simulation results
demonstrate significant iterative decoding gains can be achieved
with a tendency of approaching the XOR-decoding bound.

Index Terms—BICM, iterative decoding, physical-layer net-
work coding, spectrum efficiency, two-way relay

I. INTRODUCTION

Network coding (NC) [1] is a celebrated concept for
improving the information throughput in a communication
network. Among its many applications, two end nodes without
direct link exchange information through a relay (R) is a
scenario in which NC plays an important role. As shown in
Fig. 1(a), nodes A and B wish to exchange binary message
vectors uA and uB, respectively. During the multiple access
(MAC) stage, A and B transmit their message vectors through
two orthogonal time slots (TSs). If they can be correctly
decoded by R, R generates an exclusive-or (XOR) message
vector uA ⊕ uB and broadcasts it to A and B during the
broadcast (BC) stage. With the knowledge of its own message,
an end node can recover the intended message if it can
correctly decode uA ⊕ uB. Physical-layer NC (PNC) [2]–[4]
was introduced by further relaxing the time orthogonality of
the MAC stage. R decodes uA⊕uB with the observation of the
superimposed signals from A and B. As shown in Fig. 1(b),
A and B exchange information using only two TSs. This PNC
assisted information exchange is also called the two-way relay
(TWR) communications and the channel experienced by R
during the MAC stage is called the TWR channel. It has been
shown that TWR communications can significantly improve
the information throughput [4]. The capacity region of the end
nodes in the TWR Gaussian channel has been characterized

Fig. 1. Message exchange between nodes A and B.

by [5]. In approaching the capacity, lattice code has been
considered in [5]– [7] with an attempt to harness the MAC
transmission interference. However, lattice code is yet to be a
practical channel code due to its implementation complexity.
In utilizing the conventional channel codes to decode the XOR
message, repeat-accumulate (RA) codes have been considered
with redesigning the decoding algorithm by [8]. Convolutional
coded TWR communications was considered and a reduced
complexity decoding algorithm was proposed in [9]. The
designs of irregular RA (IRA) codes and low-density parity-
check (LDPC) codes for TWR Gaussian channels have been
investigated in [10] and [11], respectively. However, the above
mentioned works employed BPSK modulation limiting the
spectrum efficiency of TWR communications. The lack of
work in using high order modulation schemes is due to the fact
that demapping ambiguity usually arises as one superimposed
symbol may correspond to multiple XOR coded bit permu-
tations. So far, only a few works [12] [13] have considered
using high order modulation schemes. They attempted to avoid
the ambiguity problem by redesigning the modulation scheme,
such that the superimposed symbol and the XOR coded bit
permutation exhibit a one-to-one map. However, only uncoded
scenarios were considered in [12] [13], which limits the
scope of their potential applications. Recently, the iterative
noncoherent receiver design for TWR communications was
considered by [14], in which the end nodes employ the
multi-tone frequency shift keying (FSK). It realizes spectrally
efficient TWR communications, and fortunately FSK does not
cause the demapping ambiguity at R. However, it is understood
that FSK modulation will incur a more complex receiver
structure than other energy efficient modulation schemes, e.g.,
the popular quadrature amplitude modulation (QAM).

This paper proposes the bit-interleaved coded modulation



(BICM) coded TWR communication systems by employing
the energy efficient QAM modulations. In solving the demap-
ping ambiguity problem, iterative decoding or namely the
BICM-ID [15] that is performed by R will be introduced. The
demapper obtains the channel observations with knowledge of
the mapping constellations of both R and the end nodes. By
iteratively updating the transmitted symbol pair probabilities,
the demapper produces more accurate a priori probabilities
of the XOR coded bits for the decoder. Both of the TWR
Gaussian and fading channels are considered. The proposed
work generalizes the iterative demapping-decoding approach
for TWR channels. It can also be applied to the scenario
without the demapping ambiguity. Our simulation results show
that the demapping ambiguity can be overcome by BICM-ID
and significant iterative performance gains can be achieved.
The iterative decoding performance yields a tendency of
approaching the XOR-decoding bound.

II. BICM CODED TWR COMMUNICATIONS

Let uξ = [uξ
1, u

ξ
2, . . . , u

ξ
t , . . . , u

ξ
l ] denote the binary message

vector of node ξ, where ξ ∈ {A,B} and l is the length of
the message vector. A convolutional code of rate r is used
to encode the message vectors and the binary codeword of
node ξ is cξ = [cξ1, c

ξ
2, . . . , c

ξ
t′ , . . . , c

ξ
l
r

]. In this paper, the
M -ary QAM modulation schemes will be considered and its
order is m = log2 M . In BICM, the serial-to-parallel (S/P)
conversion will be performed producing m parallel coded bit
sequences {cξ,1j }, {cξ,2j }, . . . , {cξ,mj }, where j = 1, 2, . . . , l

rm .
Each sequence will then be randomly interleaved, yielding
m interleaved coded bit sequences {vξ,1j }, {vξ,2j }, . . . , {vξ,mj }.
It is assumed that both of the end nodes utilize the same
interleaving patterns for the m sequences. After interleav-
ing, every m interleaved coded bits constitute vector vξj =

[vξ,1j , vξ,2j , . . . , vξ,mj ] which will be mapped to a transmitted
symbol of node ξ by

xξ
j = Λξ(v

ξ
j), (1)

where Λξ(·) is the mapping function employed by node
ξ. Inversely, Λ−1

ξ (·) is the demapping function. Transmitted
symbol xξ

j ∈ χξ and χξ is the signal constellation of node ξ.
For simplicity, it is assumed that nodes A and B employ the
same mapping scheme such that χA = χB and ΛA(·) = ΛB(·).
However, it is not necessary that A and B have to use the
same mapping scheme, e.g., they can employ different types
of 16QAM.

The baseband signal model of the TWR channels is

yj = αA
j x

A
j + αB

j x
B
j + nj , (2)

where αA
j and αB

j are the fading coefficients experienced by
symbols xA

j and xB
j , respectively. They are Rayleigh distributed

random variables with E[(αA
j )

2] = E[(αB
j )

2] = 1. nj is the
additive white Gaussian noise (AWGN) that is observed by R
with noise variance N0/2. When αA

j = αB
j = 1 for all j, it

becomes the TWR Gaussian channel. After the MAC trans-
mission, R obtains the received vector y = [y1, y2, . . . , y l

rm
] ∈

R l
rm with which it decodes the XOR message vector of
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(a) MSEW 16QAM constellation

(b) Superimposed constellation 

Fig. 2. MSEW 16QAM and its superimposed constellations.

u⊕ = uA ⊕ uB = [uA
1 ⊕ uB

1 , u
A
2 ⊕ uB

2 , . . . , u
A
l ⊕ uB

l ]. (3)

If it can be correctly decoded, it will be re-encoded and
broadcast in the BC stage. This paper focuses on decoding
u⊕ with y.

III. BICM-ID FOR TWR CHANNELS

In order to iteratively decode the XOR message vector u⊕,
we will first visit the superimposed signal constellation that is
observed by R. At the meantime, some notations that are used
to describe the iterative decoding will be introduced.

A. Superimposed Signal Constellation

As shown by (2), R receives a noisy version of the super-
imposed signal from nodes A and B. Let sA

ϱ and sB
σ denote

the constellation points that are chosen from χA and χB,
respectively, where (ϱ, σ) = 1, 2, . . . ,M . With αA

j = αB
j = 1,

the superimposed signal constellation that is observed at R can
be defined as:

χ⊕ = {s⊕τ = sA
ϱ + sB

σ, ∀ sA
ϱ ∈ χA and sB

σ ∈ χB}, (4)

where s⊕τ is a superimposed signal of χ⊕ with τ =
1, 2, . . . , |χ⊕| and M < |χ⊕| ≤ M2. For a better il-
lustration, Fig. 2 shows the constellation of the maximum
squared Euclidean weight (MSEW) 16QAM [16] and its
superimposed constellation under the condition of αA

j =

αB
j = 1. With |χA| = |χB| = 16, |χ⊕| = 49. Let v⊕j =

[v⊕,1
j , v⊕,2

j , . . . , v⊕,m
j ] denote the set of XOR interleaved



coded bits, where v⊕,i
j = vA,i

j ⊕ vB,i
j and i = 1, 2, . . . ,m.

Moreover, we denote [v⊕j ]i = v⊕,i
j . It can be noticed that

a superimposed signal may be demapped to multiple sets of
v⊕j . This is because the superposition of different pairs of
constellation points that are chosen from χA and χB may
produce the same superimposed signal point in χ⊕. For exam-
ple, let (sA

ϱ , s
B
σ) denote a pair of signals that are chosen from

the constellation of Fig. 2(a). The superimposed signal s⊕τ of
(−2, 6) in Fig. 2(b) is a superposition outcome of the following
signal pairs ((−1, 3), (−1, 3)) whose superposition produces
v⊕j = [0, 0, 0, 0], and ((−3, 3), (1, 3)) (or ((1, 3), (−3, 3)))
whose superposition produces v⊕j = [0, 1, 0, 1]. In general,
(sA

ϱ , s
B
σ) 7→ s⊕τ can be a many-to-one map, while s⊕τ 7→

(sA
ϱ , s

B
σ) can be a one-to-many map. This causes the demap-

ping ambiguity at R when it tries to decode the XOR message
u⊕. We aim to overcome such ambiguity by iterative decoding.
The following notations that are associated with both the
original and the superimposed constellations will be defined.
• Let χi,b

⊕ denote the set of superimposed constellation
points s⊕τ whose demapping produces the ith bit being b and
b ∈ {0, 1}. If Λ−1

⊕ (·) is used to denote the demapping function
that performs s⊕τ 7→ v⊕j , χi,b

⊕ can be defined as:

χi,b
⊕ = {s⊕τ ∈ χ⊕ | [Λ−1

⊕ (s⊕τ )]i = b}. (5)

For example, with i = 1 to 4 and b = 0 or 1, points of Fig.
2(b) can be categorized into eight different subsets. However,
notice that a superimposed signal point can belong to both χi,0

⊕
and χi,1

⊕ . For instance, (−2, 6) ∈ χ2,0
⊕ and (−2, 6) ∈ χ2,1

⊕ .
• Let (sA

ϱ , s
B
σ)

i,b
⊕ denote the set of pairs of original con-

stellation points that are chosen from χA and χB such that
sA
ϱ + sB

σ = s⊕τ ∈ χi,b
⊕ , i.e.,

(sA
ϱ , s

B
σ)

i,b
⊕ = {(sA

ϱ , s
B
σ) | sA

ϱ + sB
σ = s⊕τ ∈ χi,b

⊕ }. (6)

This definition enables us to trace back to the original con-
stellations employed by nodes A and B, and identify the pairs
of original constellation points whose superposition would
yield a point in the set χi,b

⊕ . Since in the TWR channels, the
transmitted symbols xA

j and xB
j are the constellation points

of sA
ϱ and sB

σ , respectively, we call (sA
ϱ , s

B
σ) the transmitted

symbol pair.
• Let v⊕(sA

ϱ , s
B
σ) denote the set of XOR interleaved coded

bits [v⊕,1
j , v⊕,2

j , . . . , v⊕,m
j ] that corresponds to the superposi-

tion of sA
ϱ and sB

σ, i.e.,

v⊕(sA
ϱ , s

B
σ) = Λ−1

A (sA
ϱ )⊕ Λ−1

B (sB
σ). (7)

With a M -ary QAM, there are M2 different transmitted
symbol pairs (sA

ϱ , s
B
σ), while there are only M different permu-

tations of [v⊕,1
j , v⊕,2

j , . . . , v⊕,m
j ]. Therefore, it can be observed

that each transmitted symbol pair corresponds to a particular
permutation of [v⊕,1

j , v⊕,2
j , . . . , v⊕,m

j ], while each permutation
of [v⊕,1

j , v⊕,2
j , . . . , v⊕,m

j ] corresponds to M different transmit-
ted symbol pairs. Furthermore, we denote [v(sA

ϱ , s
B
σ)]i = v⊕,i

j .
For example, in Fig. 2(a) with sA

ϱ = (−3, 3) and sB
σ = (1, 3),

v⊕(sA
ϱ , s

B
σ) = [0, 1, 0, 1] and [v⊕(sA

ϱ , s
B
σ)]2 = 1.

B. Iterative Decoding

Armed with the above knowledge, we can now introduce the
iterative decoding performed by R. In the following, Pa, Pp

and Pe will be used to denote the a priori, the a posteriori and
the extrinsic probabilities, respectively. The channel decoding
is performed by the maximum a posteriori (MAP) algorithm.

With the received vector y, the demapper obtains the chan-
nel observations by

Pr(yj |sA
ϱ , s

B
σ) =

1

πN0
exp

(
−
||yj − αA

j s
A
ϱ − αB

j s
B
σ||2

N0

)
. (8)

We assume the demapper has perfect channel state information
(CSI) of αA

j and αB
j . The above channel observation implies

given a received symbol yj , the probability of symbols sA
ϱ

and sB
σ have been transmitted by nodes A and B. With M -

ary modulations employed by both of the end nodes, each
received symbol will spin out M2 channel observations w.r.t.
each distinct transmitted symbol pair (sA

ϱ , s
B
σ). They will be

kept unchanged during the iterative decoding. With the channel
observations, the demapper further determines the a posteriori
probabilities of the XOR interleaved coded bits v⊕,i

j by

Pp(v
⊕,i
j = b|yj) = N1

∑
(sA

ϱ,s
B
σ)

i,b
⊕

Pr(sA
ϱ , s

B
σ|yj)

= N1

∑
(sA

ϱ,s
B
σ)

i,b
⊕

Pr(yj |sA
ϱ , s

B
σ) · Pr(sA

ϱ , s
B
σ),

(9)

where N1 = (
∑

b∈{0,1} Pp(v
⊕,i
j = b|yj))−1 is a normalization

factor. Pr(sA
ϱ , s

B
σ) is the probability of symbols sA

ϱ and sB
σ

being transmitted by the two end nodes, which is called the
transmitted symbol pair probability. Since message vectors uA
and uB are independent, sA

ϱ and sB
σ are also independent, i.e.

Pr(sA
ϱ , s

B
σ) = Pr(sA

ϱ ) · Pr(sB
σ). (10)

The superposition of symbols sA
ϱ and sB

σ can be demapped to a
set of m XOR interleaved coded bits v⊕(sA

ϱ , s
B
σ). We can cal-

culate the probability Pr(sA
ϱ , s

B
σ) with knowledge of the m bits.

Since each permutation of [v⊕,1
j , v⊕,2

j , . . . , v⊕,m
j ] corresponds

to M transmitted symbol pairs and interleaving warrants the m
bits of v⊕(sA

ϱ , s
B
σ) being independent, probability Pr(sA

ϱ , s
B
σ)

can be determined by

Pr(sA
ϱ , s

B
σ) =

1

M

m∏
i=1

Pa([v
⊕(sA

ϱ , s
B
σ)]i), (11)

where Pa([v
⊕(sA

ϱ , s
B
σ)]i) is the a priori probabilities of the

XOR interleaved coded bits v⊕,i
j . At the beginning of the

iterative decoding, no knowledge of v⊕,i
j is available and

Pa(v
⊕,i
j = 0) = Pa(v

⊕,i
j = 1) = 1/2, and Pr(sA

ϱ , s
B
σ) =

1
M2

for all the transmitted symbol pairs. This is equivalent to
claiming all the points in χA and χB have equal probabil-
ity of occurrence such that Pr(sA

ϱ ) = Pr(sB
σ) = 1

M , and
Pr(sA

ϱ , s
B
σ) = 1

M2 . Once the MAP channel decoding has
been performed, more information of the XOR interleaved
coded bits will be available and they can be utilized to update
Pr(sA

ϱ , s
B
σ) as in (11).



The extrinsic probabilities of the XOR interleaved coded
bits v⊕,i

j can be further determined by

Pe(v
⊕,i
j = b) = N2

Pp(v
⊕,i
j = b|y)

Pa(v
⊕,i
j = b)

, (12)

where N2 = (
∑

b∈{0,1} Pe(v
⊕,i
j = b))−1 is a normaliza-

tion factor. Since Pa(v
⊕,i
j = b) can also be denoted as

Pa([v
⊕(sA

ϱ , s
B
σ)]i = b), and based on (9) and (11), Pe(v

⊕,i
j =

b) of (12) can be written as:

Pe(v
⊕,i
j = b) =

N2
1

M

∑
(sA

ϱ,s
B
σ)

i,b
⊕

Pr(yj |sA
ϱ , s

B
σ)

m∏
i′=1
i′ ̸=i

Pa([v
⊕(sA

ϱ , s
B
σ)]i′).

(13)

Therefore, to determine the extrinsic probability Pe(v
⊕,i
j =

b), the demapper will first employ the superimposed signal
constellation to identify the signal points of set χi,b

⊕ . For
example, if the demapper wants to determine Pe(v

⊕,1
j = 1),

it needs to identify points of χ1,1
⊕ . Based on each identified

signal point of the set, it further traces back to the original
constellations that are employed by the two end nodes by
computing Λ−1

A (sA
ϱ ) ⊕ Λ−1

B (sB
σ) to find out those transmitted

symbol pairs whose superposition can produce the ith bit
being b. By going through all the points of subset χi,b

⊕ , the
relevant transmitted symbol pairs (sA

ϱ , s
B
σ)

i,b
⊕ are identified.

Hence, to determine a probability Pe(v
⊕,i
j = b), the tracing

process requires O(mM2|χi,b
⊕ |) binary computations. This can

be facilitated by using a match table between superimposed
points of χi,b

⊕ and the transmitted symbol pairs (sA
ϱ , s

B
σ)

i,b
⊕ .

By identifying the transmitted symbol pairs, the demapper
can further specify the use of relevant channel observations
Pr(yj |sA

ϱ , s
B
σ) and the calculation of the relevant transmitted

symbol pair probabilities Pr(sA
ϱ , s

B
σ). Therefore, the superim-

posed constellation χ⊕ is utilized as an intermediate platform
for tracing to the original constellations χA and χB in finding
the relevant transmitted symbol pairs.

The extrinsic probabilities Pe(v
⊕,i
j ) will then be deinter-

leaved and parallel-to-serial (P/S) converted accordingly. The
outcome will be mapped to the a priori probabilities of the
XOR coded bits c⊕t′ by

Pe(v
⊕,i
j = b) 7→ Pa(c

⊕
t′ = b), (14)

where c⊕t′ = cA
t′ ⊕ cB

t′ and t′ = 1, 2, . . . , l
r . The MAP decoding

algorithm further produces the a posteriori probabilities of
the XOR coded bits Pp(c

⊕
t′ |y) and the XOR information bits

Pp(u
⊕
t |y) with t = 1, 2, . . . , l. The extrinsic probabilities of

the XOR coded bits can be determined by

Pe(c
⊕
t′ = b) = N3

Pp(c
⊕
t′ = b|y)

Pa(c
⊕
t′ = b)

, (15)

where N3 = (
∑

b∈{0,1} Pe(c
⊕
t′ = b))−1 is a normalization

factor. Extrinsic probabilities Pe(c
⊕
t′ ) will be S/P converted

and interleaved accordingly, and further mapped back to the
a priori probabilities of the XOR interleaved coded bits by

Pe(c
⊕
t′ = b) 7→ Pa(v

⊕,i
j = b). (16)

With the newly updated probabilities Pa(v
⊕,i
j ), another round

of iteration starts with the demapper recalculating the extrinsic
probabilities Pe(v

⊕,i
j ) as in (13). After a certain number of

iterations, the iterative system terminates and estimations of
bits u⊕

t will be made with the knowledge of Pp(u
⊕
t |y).

It is important to emphasize that the above approach has
generalized the iterative demapping-decoding approach for
TWR channels. Its application is not limited to the scenarios
where the demapping ambiguity arises in the superimposed
constellation. Based on (9), we can see that with a received
symbol yj and the M -ary QAM employed by both of the end
nodes, the demapping ambiguity prevents us from obtaining
M2 distinct channel observations Pr(yj |sA

ϱ , s
B
σ). For exam-

ple, if both of the end nodes employ the MSEW 16QAM
of Fig.2(a), over the TWR Gaussian channel each received
symbol can only spin out 49 distinct channel observations.
However, through the iterative decoding in which the channel
decoder feeds back a better estimation of the XOR coded bits,
more accurate transmitted symbol pair probabilities Pr(sA

ϱ , s
B
σ)

can be obtained. They can compensate the demapping am-
biguity that is reflected on the channel observations. Hence,
iterative decoding is a natural course in curing the demapping
ambiguity.

IV. DECODING PERFORMANCE ANALYSIS

This section presents the BICM-ID performance over both
the TWR Gaussian and fading channels. Both the cut-set
bound and the XOR-decoding bound are given as the theoret-
ical benchmarks for assessing the optimality of the proposed
scheme. Note that the XOR-decoding bound is obtained uti-
lizing the numerical approach of [17].

Figs.3 and 4 shows the frame error rate (FER) performance
of BICM-ID over the TWR Gaussian and fading channels,
respectively. The rate half 16-state convolutional code with
transfer functions (23, 35)8 is employed. Both of the end
nodes utilize the MSEW 16QAM modulation. We consider the
fast TWR fading channel. Fig.3 shows without iteration, the
XOR information cannot be recovered in the TWR Gaussian
channel due to the demapping ambiguity. While over the
TWR fading channel, the ambiguity can be offset by the
multiplying the transmitted symbols xA

j and xB
j with different

fading coefficients. That says with αA
j ̸= αB

j , M2 distinct
channel observations Pr(yj |sA

ϱ , s
B
σ) can be obtained and the

XOR information can still be decoded without iteration, but
at the cost of a high SNR. By performing iterative decoding,
the demapping ambiguity problem is gradually overcome by
better estimating the transmitted symbol pair probabilities, im-
proving the iterative decoding performance. More performance
enhancement can be made by increasing the iteration number.
For example, by increasing the iteration number from two to
ten, 3dB performance gain at the FER of 10−4 is rewarded
over the TWR Gaussian channel. The use of other 16QAM
by the two end nodes has also been considered, e.g., the
modified set-partitioning (MSP) 16QAM of [15]. We can see



 

Fig. 3. Iterative decoding performance over the TWR Gaussian channel.
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Fig. 4. Iterative decoding performance over the TWR fading channel.

that MSEW 16QAM outperforms MSP 16QAM over both the
TWR Gaussian and fading channels.

Our simulation results also show the iterative decoding
performance can approach the XOR- decoding bound with a
2.5dB and 4.5dB gap over the TWR Gaussian and fading
channels, respectively. This gap is due to the proposed ap-
proach still falls short in obtaining individual knowledge of
Pr(sA

ϱ ) and Pr(sB
σ), preventing a more accurate estimation of

Pr(sA
ϱ , s

B
σ) as in (10). Therefore, pursuing a better estimation

of Pr(sA
ϱ , s

B
σ) will be the key in narrowing the gap. This will

be the direction of our future endeavor.

V. CONCLUSION

This paper has proposed a general iterative demapping-
decoding approach for TWR channels in realizing spectrally
efficient message exchange between two end nodes. It has
been shown that iterative decoding is a natural solution to
R’s demapping ambiguity triggered by employing high order

QAMs. With the channel decoding feedback, the demapper
can better estimate the transmitted symbol pair probabilities.
Consequently, better a priori probabilities of the XOR coded
bits can be supplied to the channel decoder. It can compensate
the demapping ambiguity that arises over the TWR Gaussian
channel. Our simulation results have shown that significant
iterative decoding gains can be achieved over both the TWR
Gaussian and fading channels. The tendency of approaching
the XOR-decoding bound over both channels has been demon-
strated.
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