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Abstract—In this paper, we present a progressive interpolation
approach in Guruswami-Sudan (GS) decoding of Reed-Solomon
(RS) codes. The objective of the interpolation is to construct
the minimal polynomial Q(x, y) by the progressive approach
with increasing multiplicities until the roots of Q(x, y) give the
correct message. Then the error-correction capability can be
adaptively obtained by assigning a suitable multiplicity according
to the number of errors occurred in the channel. We present an
efficient way to update the polynomial set utilizing the previous
computational results in the interpolation step. It enables the
decoder to adjust its decoding complexity to the needed level.
Simulation results suggest that the average decoding complexity
of GS algorithm can be significantly reduced by the progressive
approach for RS codes.

Keywords—Guruswami-Sudan algorithm, progressive interpo-
lation, Reed-Solomon codes.

I. INTRODUCTION

Reed-Solomon (RS) codes are one of the most important
error-correcting codes that are widely applied in satellite
communications, magnetic and optical data storage. An (n, k)
RS code, defined over a finite field Fq, achieves the maximum
separable distance of d = n − k + 1, where n and k
are the length and the dimension, respectively. The classical
decoding algorithms, such as Berlekamp-Massey (BM) algo-
rithm [1] [2], Euclidean algorithm [3] and Welch-Berlekamp
(WB) algorithm [4], guarantee a unique codeword in the
output provided that the number of errors is upper bounded
by ⌊d−1

2 ⌋. List decoding was introduced independently by
Elias [5] and Wozenrcraft [6], which provided an idea for
decoding beyond the half distance error-correction bounds.
In [7], Sudan discovered a polynomial-time list decoding
algorithm correcting at least n −

√
2nk errors for the low-

rate RS codes. Later, Guruswami and Sudan extended the
list decoding algorithm by interpolating each point at least m
times such that the error-correction capability can be improved
up to n−

√
n(k − 1) for all rate RS codes [8].

The algebraic list decoding algorithm depends on the in-
terpolation and factorization of polynomials. There has been
a lot of work on complexity reduction of the algebraic list
decoding algorithm [9]–[20]. Koetter et.al [9] [10] and Roth
et.al [11] presented the efficient techniques to reduce the
complexity of the interpolation and factorization, respectively.
The progressive algebraic soft-decision decoding algorithm is

devised for the RS codes by enlarging the list-size in [20].
From the hard-decision decoding point of view, the progressive
list decoding algorithm is presented for adaptively obtaining
the error-correction capability with increasing multiplicities. It
is known that the interpolation process aims to construct the
minimal polynomial Q(x, y) by solving a system of homo-
geneous linear equations. This is the most computationally
expensive step of GS algorithm. As the channel condition
improves, for example, the Signal-to-Noise Ratio (SNR) in-
creased, it is likely that less symbol errors will be introduced
in most of the received word. Hence, it is not necessary
to use a large multiplicity value for the interpolation since
most of error patterns can be corrected by GS algorithm with
a small multiplicity value. This inspires further research to
adaptively assign a suitable multiplicity for the interpolation
step according to the number of errors occurred in the channel.

Motivated by this observation, we propose a progressive
interpolation approach of GS algorithm. The objective of the
interpolation is to construct the minimal polynomial Q(x, y)
by the progressive approach with increasing multiplicities until
the roots of Q(x, y) give the correct message. We first set a
small multiplicity m1 for the interpolation such that the error-
correction capability is equal to t1. If the decoding output
list is not empty, the decoder declares “decoding success”.
Otherwise, a suitable multiplicity m2 > m1 is assigned such
that the error-correction capability improves to t2 ≥ t1+1. The
procedure can be repeated until the output list is not empty or
the multiplicity is greater than a prescribed threshold value. An
important advantage of our approach is that the interpolation
can utilize the previous computational results. Due to the
progressive approach, the average decoding complexity of the
interpolation process can be reduced significantly for decoding
the RS codes.

The rest of this paper is organized as follows. Section II
gives a brief review of RS codes and GS algorithm. In
Section III, the progressive interpolation approach is devised
for RS codes. A complexity analysis and simulation results
are presented in Section IV. Finally, Section V concludes this
paper.



II. PRELIMINARIES

Let Fq be a finite field of size q. An (n, k) RS code can
be generated by evaluating the message polynomial f(x) =
k−1∑
i=0

fix
i at the n distinct nonzero elements of Fq. Given the

message polynomial f(x) and n distinct nonzero elements
{α1, α2, · · · , αn}, the RS codeword is generated by

c = (f(α1), f(α2), · · · , f(αn)).

Normally, the length n = q − 1. The codeword is transmitted
through a noisy channel and the received word is y = c + e,
where e is the error pattern.

Let Fq[x, y] denote the ring of bivariate polynomials defined
over Fq. A bivariate polynomial in Fq[x, y] is given as

Q(x, y) =
∑
i,j

ai,jx
iyj , (1)

where ai,j ∈ Fq. Then the (1, k − 1)-weighted degree of
Q(x, y), denoted as deg1,k−1 Q(x, y), is the maximum over all
i+(k−1)j with ai,j ̸= 0. To arrange uniquely bivariate poly-
nomials in a fixed order, it is necessary to extend the notion
of (1, k−1)-weighted degree to a monomial order. Explicitly,
the (1, k− 1)-weighted degree lexicographic order [21] based
on y is defined as xi1yj1 ≺ xi2yj2 if and only if

i1 + (k − 1)j1 < i2 + (k − 1)j2 (2)

or
i1 + (k − 1)j1 = i2 + (k − 1)j2 and j1 < j2. (3)

By a fixed monomial order ≺, a polynomial Q(x, y) =∑
i,j

ai,jx
iyj can be rewritten uniquely as

Q(x, y) =

γ∑
j=0

ajϕj(x, y) (4)

with leading coefficient aγ ̸= 0. The integer γ is called the
rank of Q(x, y), written as Rank(Q). Thus each polynomial in
Fq[x, y] has a well-defined leading term under the monomial
order ≺ . Denote Dr,sQ(x, y) as the (r, s)-th Hasse derivative
of Q(x, y), which can be defined as

Dr,sQ(x, y) =
∑
i,j

(
i

r

)(
j

s

)
ai,jx

i−ryj−s. (5)

It is necessary to indicate the relationship among the pa-
rameters of GS algorithm. Note that the factors y − f(x)
with deg f(x) ≤ k − 1 are the focus of our interest. Then
the weighted degree of y is naturally assigned to be k − 1.
Denote δ as the (1, k− 1) weighted-degree of the polynomial
Q(x, y). Note that the number of coefficients of Q(x, y),
N1,k−1(δ), can be regarded as the number of monomials xiyj

with i+ (k − 1)j ≤ δ. Thus

N1,k−1(δ) =

⌊ δ
k−1 ⌋∑
j=0

(δ + 1− j(k − 1))

= (⌊ δ

k − 1
⌋+ 1)(δ + 1− k − 1

2
⌊ δ

k − 1
⌋).

(6)

As there are
(
m+1
2

)
choices of (r, s) for 0 ≤ r + s < m, the

interpolation problem is to solve a system of

C =
nm(m+ 1)

2
(7)

homogeneous linear equations. Hence, we choose δ to be large
enough such that

N1,k−1(δ) > C. (8)

This ensures a nonzero solution to the interpolation problem.
On the other hand, the polynomial Q(x, y) can be divisible

by the factor y − f(x) provided that δ ≤ m(n− t)− 1 [11].
Replacing δ with m(n− t)− 1, we have

N1,k−1(m(n− t)− 1) > C. (9)

Thus the error-correction capability tm is defined as the
maximum value for the multiplicity m ≥ 1 satisfying [22]

tm = max{t : N1,k−1(m(n− t)− 1) > C}. (10)

The list-size is defined as Lm = max{L : Rank(yL) ≤ C},
which is given by [22]

Lm =
⌊√

(
k + 1

2(k − 1)
)2 +

nm(m+ 1)

k − 1
− k + 1

2(k − 1)

⌋
. (11)

Hence, the error-correction capability tm and the correspond-
ing list-size Lm grow with multiplicity m as

tmi ≤ tmi+1 and Lmi ≤ Lmi+1 , if mi < mi+1. (12)

The iterative polynomial construction algorithm [21] [9]
has been widely recognized as the most efficient imple-
mentation algorithm for interpolation, which exhibits a com-
plexity O(n2m4L). It constructs a set of polynomials G =
{gj(x, y)|0 ≤ j ≤ L} such that each polynomial gj(x, y)
passes through all the points (xi, yi) at least m times. The
minimal polynomial Q(x, y) is given by the polynomial with
the minimal rank among the output of the algorithm.

III. THE PROGRESSIVE INTERPOLATION APPROACH

In this section, we present a progressive interpolation ap-
proach in order to keep the multiplicity as small as possible.

A. Outline of the Approach

Let m1, · · · ,mρ, · · · ,mτ be an increasing sequence of
multiplicities. The progressive approach for GS decoding of
RS codes is outlined as follows and also illustrated in Fig. 1,
where ρ is the progressive index that is initialized as one.

The algorithm is implemented in an iterative manner, whose
basic idea is that the current iteration can use the results
calculated in the last iteration. At the ρ-th iteration, there are
two phases: progressive interpolation and factorization. The
progressive interpolation step is to find a set of polynomials
passing through all points mρ times, which is denoted by

G(ρ) = {g(ρ)0 , g
(ρ)
1 , · · · , g(ρ)Lρ

}. (13)

This can be done by using Koetter’s iterative interpolation
algorithm [21] [9].
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Fig. 1. The block diagram of the progressive interpolation.

Let Q(ρ)(x, y) be the polynomial with minimal rank se-
lected from G(ρ). The factorization is to find a list of message
polynomial candidates satisfying

L = {f(x)|(y − f(x))|Q(ρ)(x, y),deg f(x) < k}. (14)

The factorization can be implemented by Roth-Ruckenstein
algorithm [11]. If the output list L is not empty, terminate the
algorithm by outputting the polynomial whose corresponding
codeword has the minimal Hamming distance from the re-
ceived word. Otherwise, increase the progressive index ρ by
one and assign the multiplicity value as mρ+1 such that the
error-correction capability improves to tρ+1 > tρ.

B. The Progressive Interpolation

It is critical to observe that the minimal polynomial con-
structed by Koetter’s interpolation algorithm is independent
with the order of calculating Hasse derivative evaluation
∆j = Dr,sgj(xi, yi). At the beginning of each iteration, the
polynomial set G(ρ) is modified by [13]

G(ρ) = {gj |Rank(gj) ≤ Cρ}. (15)

in order to eliminate those polynomials with leading order
over Cρ =

nmρ(mρ+1)
2 . Due to the rearrangement of the

parameters (r, s) in calculating the Hasse derivative evaluation,
we will show that the minimal polynomial Q(ρ)(x, y) can be
constructed in a progressive way by using the interpolation
results from the (ρ− 1)-th iteration.

For 1 ≤ ν ≤ Cρ−1, the ν-th constraint is defined as
Dr,sg

(ν)
j (xi, yi) = 0 for 0 ≤ r + s < mρ−1, where

Dr,sg
(ν)
j (xi, yi) is the (r, s)-th Hasse derivative evaluation at

the point (xi, yi) [21]. Define

g(ν−1) = {g(ν−1)
j |Dr,sg

(ν)
j (xi, yi) ̸= 0}. (16)

Let the polynomial with the minimal rank in g(ν−1) be

f (ν−1) = min{g(ν−1)
j |g(ν−1)

j ∈ g(ν−1)}. (17)

Denote the index and the Hasse derivative evaluation of f (ν−1)

as j∗ and ∆∗, respectively. We only need to update the poly-
nomials in g(ν−1). The process of progressive interpolation
can be illustrated as follows.

Step 1 Perform Koetter’s interpolation algorithm for the
constraints defined by mρ−1.
Initialization: G(ρ−1)

0 = {1, y, · · · , yLρ−1}.

Iterations: For 1 ≤ ν ≤ Cρ−1, the polynomials g
(ν)
j

can be modified from g
(ν−1)
j ∈ g(ν−1) as

g
(ν)
j =

{
∆∗g

(ν−1)
j −∆jf

(ν−1), if j ̸= j∗

(x− xi)f
(ν−1), if j = j∗

.

Note that Rank(Q(ρ−1)) < Rank(yLρ−1+1). Thus
the polynomial set G(ρ)ν can be expanded from G(ρ−1)

ν

by the following steps.
Step 2 Consider the Cρ−1 constraints defined by mρ−1 at

first. Let Ĝ(ρ)ν be the polynomial set at the ν-th
iteration with the progressive number ρ such that

Ĝ(ρ)ν = G(ρ)ν

∪
∆G(ρ)ν , (18)

where ∆G(ρ)ν = {g(ν)Lρ−1+1, · · · , g
(ν)
Lρ
}. In other

words, the polynomials in G(ρ)ν do not need to be
modified for all 1 ≤ ν ≤ Cρ−1. Thus it needs to
construct ∆G(ρ)ν , which can be initialized as

∆G(ρ)0 = {yLρ−1+1, · · · , yLρ}. (19)

Note that Rank(Q(ρ−1)) < Rank(yLρ−1+1). Thus
the polynomial f (ν) can be shared between the
(ρ − 1)-th and ρ-th progressive iteration for 1 ≤
ν ≤ Cρ−1. Then the polynomials in ∆G(ρ)ν can
be modified using the identified polynomial f (ν) in
(ρ− 1)-th progressive iteration.

Step 3 Notice that the polynomial set Ĝ(ρ) needs to satisfy
all Cρ constraints. Now Ĝ(ρ) has been updated for
Cρ−1 constraints. In the following, the polynomials
in Ĝ(ρ) can be modified such that Dr,sg

(ν)
j (xi, yi) =

0 for mρ−1 ≤ r + s < mρ and 0 ≤ j ≤ Lρ.

Based on the above discussion of the progressive interpola-
tion, we summarize the progressive process for GS decoding
of RS codes in Algorithm 1.

IV. PERFORMANCE ANALYSIS

We will compare the interpolation using the progressive ap-
proach with the conventional interpolation using a prescribed
multiplicity in terms of average computational complexity.
The complexity is measured by the number of arithmetic
calculations, i.e., additions and multiplications.

We first consider the computational complexity of the
conventional interpolation over different choices for the multi-
plicity. Here the number of operations over Fq in the iterative
interpolation algorithm is O(C2L), where C = nm(m+1)

2 is
the total number of linear constraints. As shown in Table I,
the decoding parameters and the computational complexity in
the conventional interpolation are summarized for the (63, 12)
and (63, 32) RS codes.

We have evaluated the performance of GS algorithm us-
ing the progressive approach to decode the (63, 12) and
(63, 32) RS codes with binary phase-shift keying (BPSK) sig-
nalling over additive white Gaussian noise (AWGN) channels.
The performance is measured by the frame-error-rate (FER)



Algorithm 1 The Progressive Interpolation Approach for GS
algorithm
se
Input: Points {(xi, yi)}n−1

i=0 and the multiplicity mρ and the
list-size Lρ.

Initialization: i. Set the progressive index ρ = 1;
ii. G0 = {1}, m0 = 0 and L0 = 0;

Iterations:
S1.(Progressive Interpolation)

Initialize Ĝ(ρ)ν = G(ρ)ν
∪
{yLρ−1+1, · · · , yLρ} ;

for (i = 0; i < n; i++)
S1.1 for (0 ≤ r + s < mρ−1)

Compute ∆j = Dr,sgj(xi, yi);
gj = ∆∗gj −∆jf, Lρ−1 + 1 ≤ j ≤ Lρ;

S1.2 for (mρ−1 ≤ r + s < mρ)
Compute ∆j = Dr,sgj(xi, yi), 0 ≤ j ≤ Lρ;
j∗ = arg min

∆j ̸=0
gj(x, y),∆

∗ = ∆j∗ , f = gj∗ ;

if (j ̸= j∗)
Compute gj = ∆∗gj −∆jf ;

else gj∗ = (x− xi)f ;
Find Qρ(x, y) = min

0≤j≤Lρ

{gj |gj ∈ G(ρ)};
S2. (Factorization) Perform Roth-Ruckenstein algorithm to
check if the output list L is nonempty. If L ≠ ∅, the decoder
declares “decoding success” and output f(x). Otherwise, go
to S3.
S3. (Update) ρ ← ρ + 1 and update mρ. If mρ > mτ and
L = ∅, the decoder declares “decoding failure.” Otherwise,
G(ρ)ν ← Ĝ(ρ−1)

ν and go to S1.

TABLE I
THE COMPUTATIONAL COMPLEXITY OF THE CONVENTIONAL

INTERPOLATION WITH DIFFERENT MULTIPLICITIES

RS codes Multiplicity Constraints Capability List-Size Complexity
m1 = 1 63 30 2 7.938× 103

m2 = 2 189 33 5 1.7861× 105

(63, 12) m3 = 3 378 34 7 1.0002× 106

m4 = 5 945 35 12 1.0716× 107

mGS = 12 4914 36 29 7.0027× 108

m1 = 1 63 15 1 3.969× 103

m2 = 2 189 16 3 1.0716× 105

(63, 32) m3 = 3 378 17 4 5.7154× 105

mGS = 8 2268 18 11 5.6582× 107

v.s. SNR. The error-correction performance of decoding the
(63, 12) and (63, 32) RS codes are shown in Fig. 2 and Fig. 3,
respectively. For practical implementations, we set a threshold
value mτ in the interpolation using the progressive approach.

Fig. 4 shows that the complexity reduction of the interpola-
tion using the progressive approach with mτ = 5 compared to
the conventional interpolation with the multiplicity m = 1, 3, 5
for decoding the (63, 12) RS code. From Fig. 4, we can see
that there is a significant complexity reduction for the pro-
posed interpolation algorithm compared with the conventional
interpolation for the multiplicity m = 5. Moreover, we achieve
a significant complexity reduction in the working region for
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Fig. 2. The Performance of List Decoding Algorithms for RS (63, 12) codes.

2 3 4 5 6 7 8 9 10 11
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

E
b
/N

0
 (dB)

F
E

R

Uncoded

BM

GS (m=1)

GS (m=2)

GS (m=3)

GS (Optimal)

Proposed (m
 
=3)

Fig. 3. The Performance of List Decoding Algorithms for RS (63, 32) codes.

SNR ≥ 7.0 dB since most of received words can be decoded
successfully with m = 1. For example, at SNR = 8.0 dB,
where the FER is about 10−5, the complexity of the proposed
interpolation using the progressive approach can be reduced
by 99.97% compared with the iterative interpolation in GS
algorithm. Due to the elimination of unnecessary polynomi-
als [13], the complexity of the proposed algorithm is still less
than GS algorithm with m = 1.

Fig. 5 shows that the complexity reduction of the interpola-
tion using the progressive approach with mτ = 3 compared to
the conventional interpolation with the multiplicity m = 1, 2, 3
for decoding the (63, 32) RS code. From Fig. 5, we can see
that there is also a significant complexity reduction in the
working region for SNR ≥ 5.0 dB. For example, at SNR
= 6.5 dB, where the FER is about 10−5, the complexity
of the proposed interpolation using the progressive approach
can be reduced by 99.28% compared with the conventional
interpolation in GS algorithm.
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Fig. 4. The complexity reduction using the progressive approach in the
interpolation for RS (63, 12) codes.
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Fig. 5. The complexity reduction using the progressive approach in the
interpolation for RS (63, 32) codes.

V. CONCLUSION

In this paper, a progressive approach to the interpolation has
been proposed for GS decoding of RS codes. Since the most
likely errors patterns can be corrected by GS list decoding
algorithm with a small multiplicity value, the interpolation
will be terminated by the progressive approach as soon as the
decoder declares decoding success. An important advantage
of the progressive approach is that the procedure will be
modified on the basis of the previous interpolation results.
It has been shown the progressive interpolation approach
achieves a significant complexity reduction compared to the
conventional interpolation approach.
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