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Abstract—In this paper, a progressive Chase type list decod-
ing algorithm for Reed-Solomon (RS) codes is proposed. The
decoding starts with constructing a set of 2η (η > 0) test-vectors
which will be arranged in a descending order according to their
potential of yielding the intended message. Interpolation and
factorization will be performed based on the ordered test-vectors.
It is shown significant performance improvement can be achieved
over Koetter-Vardy (KV) algorithm with a reduced complexity.

I. INTRODUCTION

We consider an (n, k) Reed-Solomon (RS) code defined
in the finite field Fq, and n = q − 1. Given a mes-
sage vector m = (m0 m1 · · · mk−1) ∈ Fk

q , the corre-
sponding message polynomial is m(x) =

∑k−1
u=0 mux

u. Let
{α0, α1, . . . , αn−1} ∈ Fq \ {0}, the codeword is generated by
c = (c0 c1 · · · cn−1) = (m(α0) m(α1) · · · m(αn−1)) ∈ Fn

q .
In the Chase type list decoding (CLD) algorithm [1], the
reliability matrix Π ∈ Rq×n will be given as the soft
information observed from the channel. Let πνj denote the
entry of Π, indicating Pr[cj = ρν ], and ρν ∈ Fq. Let y1j
and y2j denote the most likely and the second most likely

symbols for cj . We define γj =
Pr[cj=y2

j ]

Pr[cj=y1
j ]

as the reliability
of the jth received symbol. With γj → 1, the symbol is
less reliable and the η (η > 0) least reliable symbols will
be identified. We define Φ = {ϕ1, ϕ2, . . . , ϕη} as the set
of those symbols’ indices, and Φ = {0, 1, . . . , n − 1} \ Φ.
The test-set is constructed as the set of all vectors yi =
(yi,0 yi,1 · · · yi,n−1), where i = 0, 1, . . . , 2η − 1. yi,j = y1j ,
if j ∈ Φ, and yi,j ∈ {y1j , y2j }, if j ∈ Φ. Moreover, the k most
reliable symbols will be selected to perform the re-encoding
transform. For the 2η test-vectors, 2η bivariate polynomials
Qi(x, y) will be found by interpolation which is performed
based on the re-encoding outcome, forming a polynomial set
{Q0(x, y), Q1(x, y), . . . , Q2η−1(x, y)}. After factorizing all
these polynomials, at most 2η message vectors can be attained
and the one that corresponds to the most likely codeword will
be selected. In order to facilitate the decoding, the CLD can
be performed in a progressive manner [2].

II. PROGRESSIVE CHASE TYPE LIST DECODING

For the n received symbols of each test-vector, n cor-
responding reliability entries can be picked up from each
column of Π. In the progressive CLD (PCLD) algorithm,
all the test-vectors will be arranged in a descending order
according to their potential of yielding the intended message
and the potential can be assessed by the following function
Ωi =

∏n−1
j=0 {πνj |yi,j = ρν}. If a test-vector yi has larger Ωi

value, it is more reliable and should be guaranteed a priority

Fig. 1. PCLD Performance of the (15, 11) RS code over the AWGN channel.

TABLE I
AVERAGE COMPLEXITY FOR DECODING THE (15, 11) RS CODE.

SNR CLD PCLD CLD PCLD KV
(dB) (η = 2) (η = 2) (η = 4) (η = 4) (l = 3)

2 8371 7628 26656 23022 67277
4 7867 5018 25222 10785 61492
6 7493 3519 24324 3826 57291
8 7440 3436 24202 3440 56416

to be decoded. Hence, interpolation and factorization will be
performed for the test-vectors according to the above order.
Once a decoded codeword satisfies the maximum likelihood
(ML) criterion, the decoding will be terminated. Otherwise,
the most likely codeword will again be selected.

III. SIMULATION RESULT

Fig.1 shows the performance of the PCLD algorithm in
decoding the (15, 11) RS code. It can be seen that with η > 1,
the PCLD algorithm prevails the optimal Koetter-Vardy (KV)
decoding performance. Table I shows the average number of
finite field arithmetic computations that is required to decode
a codeword frame. It shows the PCLD algorithm offers a
significant complexity reduction over the CLD and KV (with
decoding output list size l = 3) algorithms. More importantly,
its complexity is channel dependent and can be reduced by
increasing the SNR. This is because with the above ordering,
a valid output can be delivered at an earlier decoding stage.
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