
Chapter 7 Reed-Solomon Codes

• 7.1 Finite Field Algebra

• 7.2 Reed-Solomon Codes

• 7.3 Syndrome Based Decoding

• 7.4 Interpolation Based Decoding

§7.1 Finite Field Algebra

– Nonbinary codes: message and codeword symbols are represented in a finite field of

size q, and q>2.

– Advantage of presenting a code in a nonbinary image.

A binary codeword sequence in {0,1}

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17

b18 b19 b20

A nonbinary codeword sequence in {0, 1, 2, 3, 4, 5, 6, 7}

c0 c1 c2 c3 c4 c5 c6

: where the channel error occurs

8 bit errors are treated as 3 symbol errors in a nonbinary image

– Finite field (Galois field) Fq: a set of q elements that perform “ + ” “ - ” “ × ” “ / ”

without leaving the set.

– Let p denote a prime, e.g., 2, 3, 5, 7, 11, ···, it is required q = p or q = pθ (θ is a

positive integer greater than 1). If q = pθ, Fq is an extension field of Fp.

– Example 7.1: “ + ” and “ × ” in Fq.

F2 = { 0, 1 }

F5 = { 0, 1, 2, 3, 4 }

§7.1 Finite Field Algebra

+ 0 1

0 0 1

1 1 0

× 0 1

0 0 0

1 0 1

all in

modulo-2

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

× 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

all in

modulo-5

– “ - ” and “ / ” can be performed as “ + ” and “ × ” with additive inverse and

multiplicative inverse, respectively.

Additive inverse of a a': a' + a = 0 and a' = -a

Multiplicative inverse of a a': a' • a = 1 and a' = 1 / a

– “ - ” operation:

Let h, a Fq .

h - a = h + (-a) = h + a'.

E.g., in F5, 1 - 3 = 1 + (-3) = 1 + 2 = 3;

– “ / ” operation:

Let h, a Fq .

h / a = h × a'.

E.g., in F5, 2 / 3 = 2 × (1 / 3) = 2 × 2 = 4.

§7.1 Finite Field Algebra





– Nonzero elements of Fq can be represented using a primitive element σ such that

Fq={ 0, 1, σ, σ2, ···, σq-2 }.

– Primitive element σ of Fq: σ Fq and unity can be produced by at least

, or σq-1 = 1. all in modulo-q

E.g., in F5, 2
4 = 1 and 34 = 1. Here, 2 and 3 are the primitive elements of F5.

– Example 7.2: In F5,

If 2 is chosen as the primitive element, then

F5 = { 0, 1, 2, 3, 4 } = {0, 20, 21, 23, 22 }= {0, 1, 21, 23, 22 }

If 3 is chosen as the primitive element, then

F5 = { 0, 1, 2, 3, 4 } = {0, 30, 33, 31, 32 } = {0, 1, 33, 31, 32 }

§7.1 Finite Field Algebra



1

1
q

  
−

=

– If Fq is an extension field of Fp such as q = pθ, elements of Fq can also be represented

by θ-dimensional vectors in Fp.

– Primitive polynomial p(x) of Fq (q = pθ): an irreducible polynomial of degree θ that

divides but not other polynomials xΦ - 1 with Φ < pθ - 1.

E.g., in F8, the primitive polynomial p(x) = x3 + x + 1 divides x7-1, but not x6-1, x5-1,

x4-1, x3-1.

– If variable δ is a root of p(x) such that p(δ) = 0, elements of Fq can be represented in
the form of

wθ-1δ
θ-1 + wθ-2δ

θ-2 + ... + w1δ
1 + w0δ

0

where w0, w1, ... ,wθ-2, wθ-1 Fp, or alteratively in

(wθ-1, wθ-2, ···, w1, w0)

§7.1 Finite Field Algebra

1 1px
 − −



– Example 7.3: If p(x) = x3 + x + 1 is the primitive polynomial of F8, and symbol δ
satisfies δ3 + δ + 1 = 0, then

§7.1 Finite Field Algebra

F8 w2 w1 w0

0 0 0 0 0

1 1 0 0 1

σ δ 0 1 0

σ2 δ2 1 0 0

σ3 δ + 1 0 1 1

σ4 δ2 + δ 1 1 0

σ5 δ2 + δ + 1 1 1 1

σ6 δ2 + 1 1 0 1

w2δ
2 + w1δ

1 + w0δ
0

– Representing Fq = { 0, 1, σ, ···, σq-2 }, “ × ” “ / ” “ + ” “ - ” operations become

“ × ”: σi× σj = σ(i + j) % (q - 1)

E.g., in F8, σ
4× σ5 = σ(4 + 5) % 7 = σ2

“ / ”: σi / σj = σ(i - j) % (q - 1)

E.g., in F8, σ4 / σ5 = σ(4 - 5) % 7 = σ6

“ + ”: if σi = wθ-1δ
θ-1 + wθ-2δ

θ-2 + ···+ w0δ
0

(&“ - ”) σj = w'θ-1δ
θ-1 + w'θ-2δ

θ-2 + ···+ w'0δ
0

σi + σj = (wθ-1 + w'θ-1)δ
θ-1 + (wθ-2 + w'θ-2) δθ-2 + ···+ (w0 + w'0)δ

0

E.g., in F8, σ
4 + σ5 = δ2 + δ + δ2 + δ + 1 = 1

§7.1 Finite Field Algebra

– An RS code[1] defined over Fq is characterized by its codeword length n = q - 1,

dimension k < n and the minimum Hamming distance d. It is often denoted as an

(n, k) (or (n, k, d)) RS code.

– It is a maximum distance separable (MDS) code such that

d = n - k + 1

– It is a linear block code and also cyclic.

– The widely used RS codes include the (255, 239) and the (255, 223) codes both of

which are defined in F256.

[1] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,” J. Soc. Indust. Appl. Math, vol. 8, pp. 300-304, 1960.

§7.2 Reed-Solomon Codes

– Notations

Fq [x], a univariate polynomial ring over Fq, i.e., and .

Fq [x, y], a bivariate polynomial ring over Fq, i.e., and .

, • - dimensional vector over Fq.

– Encoding of an (n, k) RS code.

Message vector

Message polynomial

Codeword

are the q - 1 nonzero elements of Fq. They are often called code

locators. Note that the above evaluation order can be arbitrary.

§7.2 Reed-Solomon Codes

() i

i

i

f x f x


= qif F

j

ji

i

ij yxfyxf 


=
,

),(
qijf F

•

qF

0 1 2 1(, , , ,) k

k qu u u u u −= F

2 1((1), (), (), , ())n n

qc u u u u   −= F

2 11, , , , n   −

– Encoding of an (n, k) RS code in a linear block code fashion

– Example 7.4: For a (7, 3) RS code that is defined in , if the

message is ,

the message polynomial will be , and

the codeword can be generated by

•

•

§7.2 Reed-Solomon Codes

c u= G

6

0 1 2(, ,) (0, ,)u u u u  = =

2 3 4 5 6 5 4 4 5((1), (), (), (), (), (), ()) (, ,0,1, ,1,)c u u u u u u u         = =

()6 1 2 3 4 5 6

2 4 6 1 3 5

1 1 1 1 1 1 1

0, , 1

1

c u        

     

 
 

=  = 
 
  

G 5 4 4 5(, ,0,1, ,1,)   =

0 1 1(, , ,)ku u u −

 
 
 =
 
 
 

0 0() 1 0() 1 0()n −

0 1() 1 1() 1 1()n −

0 1()k − 1 1()k − 1 1()kn − −

8F

– MDS property of RS codes d = n - k + 1

– Singleton bound for an (n, k) linear block code, d ≤ n - k + 1

– u(x) has at most k - 1 roots. Hence, has at most k - 1 zeros and

– Parity-check matrix of an (n, k) RS code

← an n - k all zero vector

§7.2 Reed-Solomon Codes

c

Ham (,0) 1d c n k=  − +

0T Tc u =   =H G H

 
 
 =
 
 
 

H

0 1() 1 1() 1 1()n −

0 2() 1 2() 1 2()n −

0()n k − 1()n k − 1()nn k − −

– Insight of

– Let , j = 0, 1, ···, n - 1, v = 1, 2, ···, n - k.

Entries of G can be denoted as [G]i,j = (σj)i

Entries of HT can be denoted as [HT]j,v-1 = (σj)v

Entries of G·HT is

Remark 1: v = 0 is illegitimate since

§7.2 Reed-Solomon Codes

TG H

,

1

0

1[] () ()
n

T j

v

ji v

j

i  
−

=

− = G H

1

0

() 0i v
n

j

j

 +
−

=

= =


−

=


1

0

0 0)(
n

j

j

0,1, , 1i k= −

   
   
   
   
   
   

0 0() 1 0() 1 0()n −

0 1() 1 1() 1 1()n −

0 1()k − 1 1()k − 1 1()kn − −

0 1() 0 2() 0()n k −

1 1() 1 2() 1()n k −

1 1()n − 1 2()n − 1()nn k − −

– Perceiving HT as in

– Perceiving codeword as in

– implies

are roots of RS codeword polynomial c(x).

§7.2 Reed-Solomon Codes

0 1 1(, , ,)nc c c c −=

0Tc  =H

1

0 1 1() n

nc x c c x c x −

−= + + +

1 2() () () 0n kc c c   −= = = =
1 2, , , n k   −

 
 
 
 
 
 

1 0() 2 0() 0()n k −

1 1() 2 1() 1()n k −

1 1()n − 2 1()n − 1()n k n − −

– An alternative encoding

– Message polynomial

– Codeword polynomial

– and deg(g(x)) = n - k

– Since are roots of c(x)

The generator polynomial of an (n, k) RS code

– Systematic encoding

– Example 7.5: For a (7, 3) RS code, its generator polynomial is

Given message vector ,

the codeword can be generated by

For systematic encoding, ,

and the codeword is

§7.2 Reed-Solomon Codes

1

0 1 1() k

ku x u u x u x −

−= + + +
1

0 1 1() n

nc x c c x c x −

−= + + +

() () ()c x u x g x= 
1 2, , , n k   −

1 2() ()() ()n kg x x x x   −= − − −

() () (()) mod ()n k n kc x x u x x u x g x− −= +

4 5

0 1 2(, ,) (,1,)u u u u  = =

1 2 3 4 4 3 3 2 3() ()()()()g x x x x x x x x x      = − − − − = + + + +

5 4 4 5(, ,0,1, ,1,)c    =

2 4 6 3 5() () () (1, , , , , ,)c x u x g x      =  =

– The channel:

– codeword polynomial

– error polynomial

– received word polynomial

– Let n - k = 2t, are roots of c(x)

– 2t syndromes can be determined as

If , r(x) is a valid codeword. Otherwise, , error-correction

is needed.

§7.3 Syndrome Based Decoding

1

0 1 1() n

nc x c c x c x −

−= + + +

0)(xe

1 2 2, , , t  

)()()(xexcxr +=

1

0 1 1() n

ne x e e x e x −

−= + + +
1

0 1 1() n

nr x r r x r x −

−= + + +

1 2 2

1 2 2(), (), , ()t

tS r S r S r  = = =

1 2 2 0tS S S= = = =

– If , we assume there are ω errors with .

– Let v = 1, 2, ··· ,2t

– For simplicity, let , we can list the 2t syndromes by

– In the above non-linear equation group, there are 2ω unknowns ,

. It will be solvable if . The number of correctable errors is

.

– Since , an exhaustive search solution will have a complexity of .

§7.3 Syndrome Based Decoding

1 2

1 1 1

1 1 2j j jS e X e X e X
 = + + +

0)(xe
1 2

0, 0, , 0j j je e e


  

1 1 1

0 0 0 1

()
n n n

jjv jv jv v

v j j j j

j j j

S c e e e 







   
− − −

= = = =

= + = =   
j

X 

 =

1 2

2 2 2

2 1 2j j jS e X e X e X
 = + + +

1 2

2 2 2

2 1 2

t t t

t j j jS e X e X e X
 = + + +



1 2, , ,X X X

1 2
, , ,j j je e e


2 2t 

2

n k


−


 , \ 0j j qX e
 

F 2()O n 

– In order to decode an RS code with a polynomial-time complexity, the decoding is

decomposed into determining the error locations and error magnitudes, i.e.,

and , respectively.

– Error locator polynomial

are roots of the polynomial such that

.

– Determine by finding out , and its roots tell the error
locations.

§7.3 Syndrome Based Decoding

1 2, , ,X X X
1 2
, , ,j j je e e



()
1

() 1x X x




 =

 = −
1

1 1 0x x x 

 

−

−= + + + +

0(1) =

1 21 1 1

1 2, , ,
jj j

X X X 

   −− −− − −= = =
1 1 1

1 2() () () 0X X X

− − − = = = =

()x 1 1, , , and  −  

– How to determine ?

Since

, for v = 1, 2, ···, 2t

– Error locator polynomial can be determined using the syndromes.

§7.3 Syndrome Based Decoding

1 1, , , and  −  
1 1 1

1 1 0() 0X X X X 

     

− − − −

− = + + + + =
1

1

() 0v

je X X




 


−

=

 =

1 1 1 11 1 0

1 1

1 1 1 1

v v v v

j j j je X e X e X e X







− − +

−

−=  +  + +  + 

2 2 2 21 1 0

1 1

2 2 2 2

v v v v

j j j je X e X e X e X







− − +

−

−+  +  + +  + 

1 1 0

1 1v v v v

j j j je X e X e X e X
   

 

    

− − +

−

−+  +  + +  + 

11 1 01v v v vS S S S  − − +− −= + + + +

1 1 1 1 0 0v v v vS S S S   − − − + − + + + + =

– List all

v = 1:

v = 2:

v = 3:

v = ω:

v = ω + 1:

v = ω + 2:

v = 2t:

§7.3 Syndrome Based Decoding

1 1 1 1 0 0v v v vS S S S   − − − + − + + + + =

1 0 0 1S S + = 

2 0 1 1 0 2S S S + + = 

3 0 2 1 1 2 0 3S S S S + + + =

0 1 1 1 1 0S S S S   − − + + + + =

1 1 2 1 0 1 0S S S S   − + + + + + =

2 1 3 1 1 0 2 0S S S S   − + + + + + + =

2 1 2 1 1 2 1 0 2 0t t t tS S S S   − − − + − + + + + =

1 2 1

2 3 1 21

2 2 1 2 1 21t t t t

S S S S

S S S S

S S S S

 

 

 

+

+ +−

− − + −

    
    


     = −
    
    

    

1

v vS S


 


−

=

= − 

Remark 2:

S0 is not one of the

n - k syndromes.

– Solving the linear system in finding has a complexity of . It can be

facilitated by the Berlekamp-Massey algorithm[2] whose complexity is .

– The Berlekamp-Massey algorithm can be implemented using the Linear Feedback

Shift Register. Its pseudo program is the follows.

§7.3 Syndrome Based Decoding

()x
3()O 

2()O 

The Berlekamp-Massey Algorithm

Input: Syndromes ;

Output: ;

Initialization: ;

1: Determine ;

2: If

3: ;

4: ;

5: If

6: Go to 1;

7: Else

8: Terminate the algorithm;

9: Else

10: Update ;

11: If

12: ;

13: Else

14: ; ; ; ; ;

15: ;

16: ;

17: If

18: Go to 1;

19: Else

20: Terminate the algorithm;

1 2 2, , , tS S S

()x
0, 0, 1, () 1, ()r z x T x x= = = −  = =

10 i r ii
S − +=

 = 
0 =
() ()T x xT x=

1r r= +
2r t

() () ()x x T x =  −

r z −
() ()x x = 

r z = − z r= − () () /T x x=   = () ()x x = 

() ()T x xT x=

1r r= +
2r t

[2] J. L. Massey, “Shift register synthesis and BCH decoding,” IEEE Trans. Inf. Theory, vol. 15(1), pp. 122-127, 1969.

– Example 7.6: Given the (7, 3) RS codeword generated in Example 7.5, after the

channel, the received word is

.

With the received word, we can calculate syndromes as

.

Running the above Berlekamp-Massey algorithm,we obtain

Therefore, the error locator polynomial is . In , and are its

roots. Therefore, and are corrupted.

5 4 3 0 4 2 5(, , , , , ,)r       =

§7.3 Syndrome Based Decoding

0 2 6 3 6 4 0

1 2 3 4() , () , () , ()S r S r S r S r       = = = = = = = =

r z ()x ()T x 
0



2

5

1 x− x

61 x− 2x
6 5 2x x −

6 2 5 3x x −

6 21 x x − −

3 2() 1x x x = − −

3 21 x x− −

1

1 1

1
1

x0 0

0

02

3

4

2

1−

2r

5 2

5r
8F

– Determine the error magnitudes , so that the erroneous symbols can be

corrected by

, , ···,

– The syndromes , v = 1, 2, ···, 2t. Knowing

from the error location polynomial , the above syndrome definition implies

– Error magnitudes can be determined from the above set of linear equations.

§7.3 Syndrome Based Decoding

1 2
, , ,j j je e e



1 1 1j j jc r e= −
2 2 2j j jc r e= − j j jc r e

  
= −

1

v

v jS e X





 =

= 1 2

1 2, , ,
jj j

X X X 

  = = =

()x

1

2

1 1 1
11 2

2 2 2
21 2

2 2 2
21 2

j

j

t t t
tj

e SX X X

e SX X X

SX X X e








    
    
    =    
    
       

– The linear equation set can be efficiently solved using Forney's algorithm.

– Syndrome polynomial

– Error evaluation polynomial (The key equation)

– Formal derivative of

– Error magnitude can be determined by .

§7.3 Syndrome Based Decoding

2
2 1 1

1 2 2

1

()
t

t v

t v

v

S x S S x S x S x− −

=

= + + + =

2() () () mod tx S x x x = 

1

1 1 0()x x x x 

 

−

− = + + + +
1 2

1 1'() (1)x x x 

  − −

− =  + −  + +

  



 + + + 1 1 1

1

  



− − −

−

 + + +

je


()
()

1

1'
j

X
e

X





−

−


= −



– Example 7.7: Continue from Example 7.6,

The syndrome polynomial is .

The error locator polynomial is .

The error evaluation polynomial is .

Formal derivative of is .

Error magnitudes are

,

.

As a result, , .

§7.3 Syndrome Based Decoding

4 4 0() () () modx S x x x x  =  = +

3 2() 1x x x = − −

2 3 0 6 6 2 0 3

1 2 3 4()S x S S x S x S x x x x   = + + + = + + +

()x
3'()x  =

()
()

2

3

2 2'
e






−

−


= − =



()
()

5

6

5 5'
e






−

−


= − =



2 2 2 0c r e= − = 0

5 5 5c r e = − =

– BM decoding performances over AWGN channel with BPSK.

§7.3 Syndrome Based Decoding

RS(127, 93)

RS(63, 47)

RS(255, 239) RS(15, 9)↑

RS(7, 3)↑

Uncoded↑

ҧ𝑟·

– Error-correction capability

§7.4 Interpolation Based Decoding

𝜏BM =
𝑑 − 1

2
=

𝑛 − 𝑘

2
𝜏GS = 𝑛 − 𝑛 𝑘 − 1 − 1 ≥ 𝜏BM

Bounded minimum distance
decoding: BM algorithm

List decoding: Guruswami-
Sudan (GS) algorithm [3]

[3] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-geometric codes,” IEEE Trans. Inform.

Theory, vol. 45, no. 6, pp. 1757-1767, Sept. 1999.

·ҧ𝑐0 ·ҧ𝑐1

ҧ𝑐2· ·ҧ𝑐3

dd

·ҧ𝑐0
·ҧ𝑐1

·ҧ𝑐2 ·ҧ𝑐3

ҧ𝑟·

– Fraction of number of correctable errors

§7.4 Interpolation Based Decoding

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

R

𝜏/𝑛

GS

BM

𝜏BM
𝑛

=
1 − 𝑅

2

𝜏GS
𝑛

= 1 − 𝑅

– GS algorithm

Code locators: ҧ𝑥 = {𝑥0, 𝑥1, …… , 𝑥𝑛−1}

Received word: ҧ𝑟 = {𝑟0, 𝑟1, …… , 𝑟𝑛−1}

Interpolation points: 𝑥0, 𝑟0 , 𝑥1, 𝑟1 , ⋯⋯ , (𝑥𝑛−1, 𝑟𝑛−1)

– Interpolation: Generate the minimum bivariate polynomial 𝑄 𝑥, 𝑦 that interpolates

the n points with a multiplicity of m.

– Factorization: Find the y-roots of 𝑄 𝑥, 𝑦 such that a list of polynomials can be

obtained as

𝐿 = 𝑓 𝑥 :𝑄 𝑥, 𝑓 𝑥 = 0 and deg 𝑓 𝑥 < 𝑘 .

All the polynomials in L have the possibility of being the transmitted message 𝑢 𝑥 .

– Interpolation dominates the GS decoding complexity.

§7.4 Interpolation Based Decoding

– What is “multiplicity”?

– Given a polynomial 𝑄 𝑥, 𝑦 = σ𝑎,𝑏𝑄𝑎𝑏𝑥
𝑎𝑦𝑏, it can also be written with respect to point

𝑥𝑗 , 𝑟𝑗 as

𝑄 𝑥, 𝑦 = σ𝛼,𝛽𝑄𝛼𝛽
𝑥𝑗,𝑟𝑗 𝑥 − 𝑥𝑗

𝛼
𝑦 − 𝑟𝑗

𝛽
,

where 𝑄
𝛼𝛽

𝑥𝑗,𝑟𝑗 ∈ Fq. If 𝑄𝛼𝛽
𝑥𝑗,𝑟𝑗 = 0 for 𝛼 + 𝛽 < 𝑚, then 𝑄 𝑥, 𝑦 interpolates 𝑥𝑗 , 𝑟𝑗 with a

multiplicity of m.

– Example 7.8: Given a polynomial 𝑄 𝑥, 𝑦 = 𝜎 𝑥 − 𝜎 𝑦 − 𝜎5 2 + 𝜎3 𝑥 − 𝜎 2(

)

𝑦 −

𝜎5 2, since 𝑄
𝛼𝛽

𝜎,𝜎5
= 0 for 𝛼 + 𝛽 < 3, it interpolates 𝜎, 𝜎5 with a multiplicity of 3.

§7.4 Interpolation Based Decoding

– Given 𝑄 𝑥, 𝑦 = σ𝑎,𝑏𝑄𝑎𝑏𝑥
𝑎𝑦𝑏, the (𝛼, 𝛽)-Hasse derivative evaluation at point 𝑥𝑗 , 𝑟𝑗 is

𝐷𝛼,𝛽 𝑄 𝑥𝑗 , 𝑟𝑗 ≜ 𝑄
𝛼𝛽

𝑥𝑗,𝑟𝑗 = σ𝑎≥𝛼,𝑏≥𝛽𝑄𝑎𝑏
𝑎
𝛼

𝑏
𝛽

𝑥𝑗
𝑎−𝛼𝑟𝑗

𝑏−𝛽
.

– Derivation: Given 𝑄 𝑥, 𝑦 = σ𝑎,𝑏𝑄𝑎𝑏𝑥
𝑎𝑦𝑏, it can also be written as

𝑄 𝑥, 𝑦 = σ𝛼,𝛽𝑄𝛼𝛽
𝑥𝑗,𝑟𝑗 𝑥 − 𝑥𝑗

𝛼
𝑦 − 𝑟𝑗

𝛽
.

Since

𝑥𝑎 = 𝑥 − 𝑥𝑗 + 𝑥𝑗
𝑎
= σ𝑎≥𝛼

𝑎
𝛼

𝑥 − 𝑥𝑗
𝛼
𝑥𝑗
𝑎−𝛼 ,

𝑦𝑏 = 𝑦 − 𝑟𝑗 + 𝑟𝑗
𝑏
= σ𝑏≥𝛽

𝑏
𝛽

𝑦 − 𝑟𝑗
𝛽
𝑟𝑗
𝑏−𝛽

,

we substitute them into 𝑄 𝑥, 𝑦 and get

𝑄 𝑥, 𝑦 = σ𝑎,𝑏𝑄𝑎𝑏 σ𝑎≥𝛼
𝑎
𝛼

𝑥 − 𝑥𝑗
𝛼
𝑥𝑗
𝑎−𝛼 σ𝑏≥𝛽

𝑏
𝛽

𝑦 − 𝑟𝑗
𝛽
𝑟𝑗
𝑏−𝛽

§7.4 Interpolation Based Decoding

= σ𝛼,𝛽σ𝑎≥𝛼,𝑏≥𝛽𝑄𝑎𝑏
𝑎
𝛼

𝑏
𝛽

𝑥𝑗
𝑎−𝛼𝑟𝑗

𝑏−𝛽
𝑥 − 𝑥𝑗

𝑎−𝛼
𝑦 − 𝑟𝑗

𝑏−𝛽
.

Therefore, 𝑄
𝛼𝛽

𝑥𝑗,𝑟𝑗 = σ𝑎≥𝛼,𝑏≥𝛽𝑄𝑎𝑏
𝑎
𝛼

𝑏
𝛽

𝑥𝑗
𝑎−𝛼𝑟𝑗

𝑏−𝛽
≜ 𝐷𝛼,𝛽 𝑄 𝑥𝑗 , 𝑟𝑗 .

– Interpolation Theorem: If 𝑚 𝑗: 𝑟𝑗 = 𝑐𝑗 > deg1,𝑘−1𝑄, then 𝑄 𝑥, 𝑢 𝑥 = 0.

– Proof:

① If 𝑄 𝑥, 𝑦 interpolates 𝑥𝑗 , 𝑐𝑗 with a multiplicity of m, then

𝑄 𝑥, 𝑦 = σ𝛼+𝛽≥𝑚𝑄
𝛼𝛽

𝑥𝑗,𝑐𝑗 𝑥 − 𝑥𝑗
𝛼
𝑦 − 𝑐𝑗

𝛽
.

② For the message 𝑢 𝑥 , 𝑢 𝑥𝑗 = 𝑐𝑗. Replace 𝑐𝑗 by 𝑢 𝑥𝑗 ,

𝑄 𝑥, 𝑦 = σ𝛼+𝛽≥𝑚𝑄
𝛼𝛽

𝑥𝑗,𝑐𝑗 𝑥 − 𝑥𝑗
𝛼

𝑦 − 𝑢 𝑥𝑗
𝛽

.

③ Replace y by 𝑢 𝑥 ,

𝑄 𝑥, 𝑢(𝑥) = σ𝛼+𝛽≥𝑚𝑄
𝛼𝛽

𝑥𝑗,𝑐𝑗 𝑥 − 𝑥𝑗
𝛼

𝑢(𝑥) − 𝑢 𝑥𝑗
𝛽

§7.4 Interpolation Based Decoding

= σ𝛼+𝛽≥𝑚𝑄
𝛼𝛽

𝑥𝑗,𝑐𝑗
𝑥 − 𝑥𝑗

𝛼
𝑥 − 𝑥𝑗 Φ(𝑥)

𝛽

= σ𝛼+𝛽≥𝑚𝑄
𝛼𝛽

𝑥𝑗,𝑐𝑗 𝑥 − 𝑥𝑗
𝛼+𝛽

Φ𝛽(𝑥)

When 𝑢 𝑥𝑗 = 𝑐𝑗, 𝑥 − 𝑥𝑗
𝑚
|𝑄 𝑥, 𝑢 𝑥 .

④ Since 𝑄 𝑥, 𝑦 interpolates 𝑥0, 𝑟0 , 𝑥1, 𝑟1 , …… , 𝑥𝑛−1, 𝑟𝑛−1 with a multiplicity

of m, then 𝑥 − 𝑥𝑗
𝑚
|𝑄 𝑥, 𝑢 𝑥 holds if 𝑟𝑗 = 𝑐𝑗 (or 𝑒𝑗 = 0).

⑤ In what condition will 𝑄 𝑥, 𝑢 𝑥 = 0?

⑥ Therefore, if 𝑚 𝑗: 𝑟𝑗 = 𝑐𝑗 > deg1,𝑘−1 𝑄, then 𝑄 𝑥, 𝑢 𝑥 = 0.

– The GS algorithm can correct 𝑛 − 𝑗: 𝑟𝑗 = 𝑐𝑗 errors.

– The interpolation problem is how to find the smallest 𝑄 𝑥, 𝑦 .

§7.4 Interpolation Based Decoding

The total number of roots of 𝑄 𝑥, 𝑢 𝑥 : 𝑚|{𝑗: 𝑟𝑗 = 𝑐𝑗}|

Degree of 𝑄 𝑥, 𝑢 𝑥 : deg𝑥𝑄 + 𝑘 − 1 deg𝑦 𝑄 = deg1,𝑘−1𝑄

ෑ

𝑗:𝑟𝑗=𝑐𝑗

𝑥 − 𝑥𝑗
𝑚
|𝑄 𝑥, 𝑢 𝑥

– Monomial ordering

– The (1, k – 1)-weighted degree of monomial 𝑥𝑎𝑦𝑏:

deg1,𝑘−1 𝑥
𝑎𝑦𝑏 = 𝑎 + (𝑘 − 1)𝑏

– The (1, k – 1)-lexicographic order (ord): ord(𝑥𝑎1𝑦𝑏1) < ord(𝑥𝑎2𝑦𝑏2) if deg1,𝑘−1 𝑥
𝑎1𝑦𝑏1

< deg1,𝑘−1 𝑥
𝑎2𝑦𝑏2, or deg1,𝑘−1 𝑥

𝑎1𝑦𝑏1 = deg1,𝑘−1 𝑥
𝑎2𝑦𝑏2 and 𝑏1 < 𝑏2.

– Example 7.9: In order to decode a (7, 3) RS code, (1, 2)-weighted degree and (1, 2)-

lexicographic order of monomial 𝑥𝑎𝑦𝑏 are used.

§7.4 Interpolation Based Decoding

0 1 2 3 4 5 6 7 8 ⋯

0 0 1 2 3 4 5 6 7 8 ⋯

1 2 3 4 5 6 7 8 9 10 ⋯

2 4 5 6 7 8 9 10 11 12 ⋯

3 6 7 8 9 10 11 12 13 14 ⋯

⋮

a
b 0 1 2 3 4 5 6 7 8 ⋯

0 0 1 2 4 6 9 12 16 20 ⋯

1 3 5 7 10 13 17 21 ⋯

2 8 11 14 18 22 ⋯

3 15 19 23 ⋯

⋮

a
b

(1, 2)-weighted degree (1, 2)-lexicographic order

– Polynomial ordering

– Any nonzero bivariate polynomial 𝑄(𝑥, 𝑦) can be written as

𝑄 𝑥, 𝑦 = 𝑄0𝑀0 + 𝑄1𝑀1 +⋯⋯+ 𝑄𝑇𝑀𝑇 ,

where 𝑄0, 𝑄1, …… , 𝑄𝑇 ∈ Fq and 𝑄𝑇 ≠ 0, 𝑀0 < 𝑀1 < ⋯⋯ < 𝑀𝑇 are monomials.

– The (1, k – 1)-weighted degree of 𝑄(𝑥, 𝑦) is

deg1,𝑘−1𝑄 𝑥, 𝑦 = deg1,𝑘−1𝑀𝑇 .

– Leading order (lod) of 𝑄(𝑥, 𝑦) is

lod 𝑄 𝑥, 𝑦 = ord 𝑀𝑇 = 𝑇.

– Example 7.10: Given a polynomial 𝑄 𝑥, 𝑦 = 1 + 𝑥2 + 𝑥2𝑦 + 𝑦2, applying the (1, 2)-

lexicographic order, it has leading monomial 𝑀𝑇 = 𝑦2. Therefore, deg1,2 𝑄 𝑥, 𝑦 =

deg1,2 𝑦
2 = 4 and lod 𝑄 𝑥, 𝑦 = ord 𝑦2 = 8.

– Given two polynomials 𝑄1(𝑥, 𝑦) and 𝑄2(𝑥, 𝑦), 𝑄1 ≤ 𝑄2 if lod 𝑄1 ≤ lod(𝑄2).

§7.4 Interpolation Based Decoding

– Decoding parameters: error-correction capability 𝜏𝑚 and maximum output list size 𝑙𝑚.

– Let

𝑆𝑥 𝐾 = max{𝑎: ord 𝑥𝑎𝑦𝑏 ≤ 𝐾}

𝑆𝑦 𝐾 = max{𝑏: ord 𝑥𝑎𝑦𝑏 ≤ 𝐾}

– The number of iterations in the interpolation process is

𝐶 = 𝑛 𝑚+1
2

.

– Error-correction capability is

𝜏𝑚 = 𝑛 − 1 −
𝑆𝑥(𝐶)

𝑚
.

– Maximum output list size is

𝑙𝑚 = 𝑆𝑦(𝐶).

– Example 7.11: To decode the (63, 21) RS code defined over F64, we obtain

§7.4 Interpolation Based Decoding

The BM algorithm can correct
𝑛−𝑘

2
= 21 errors.

m 1 2 3 5 16

𝜏𝑚 21 24 25 26 27

𝑙𝑚 2 3 5 9 28

– Koetter’s interpolation

– Hasse deriv. eval.: 𝐷𝛼,𝛽 𝑄 𝑥𝑗 , 𝑟𝑗 = 𝑄
𝛼𝛽

𝑥𝑗,𝑟𝑗 = σ𝑎≥𝛼,𝑏≥𝛽𝑄𝑎𝑏
𝑎
𝛼

𝑏
𝛽

𝑥𝑗
𝑎−𝛼𝑟𝑗

𝑏−𝛽

– Two properties of Hasse derivative evaluation

① Linear functional: Let 𝑄1, 𝑄2 ∈ F𝑞[𝑥, 𝑦], 𝑑1, 𝑑2 ∈ F𝑞, then

𝐷 𝑑1𝑄1 + 𝑑2𝑄2 = 𝑑1𝐷 𝑄1 + 𝑑2𝐷 𝑄2 .

② Bilinear Hasse derivative: Let 𝑄1, 𝑄2 ∈ F𝑞[𝑥, 𝑦], then

𝑄1, 𝑄2 𝐷 ≜ 𝑄1𝐷 𝑄2 − 𝑄2𝐷 𝑄1 .

With property ①, we have 𝐷 𝑄1, 𝑄2 𝐷 = 𝐷 𝑄1 𝐷 𝑄2 − 𝐷 𝑄2 𝐷 𝑄1 = 0.

– If lod 𝑄1 > lod(𝑄2), 𝑄1, 𝑄2 𝐷 has leading order lod 𝑄1 . Therefore, by performing

the bilinear Hasse derivative over two polynomials both of which have nonzero

evaluations, a polynomial can be reconstructed, which has a zero evaluation.

§7.4 Interpolation Based Decoding

– Koetter’s interpolation

– An iterative polynomial construction algorithm

– Find the minimum (1, k – 1)-weighted degree polynomial 𝑄(𝑥, 𝑦) that satisfies

𝑄 𝑥, 𝑦 = min
lod(𝑄)

𝑄 𝑥, 𝑦 ∈ F𝑞[𝑥, 𝑦]|𝐷𝛼,𝛽 𝑄 𝑥𝑗 , 𝑟𝑗 = 0 for 𝑗 = 0,1, … , 𝑛 − 1

and 𝛼 + 𝛽 < 𝑚
.

– Iteratively modify a set of polynomials through all n points with every possible (𝛼, 𝛽)

pair. With a multiplicity of m, there are
𝑚+1
2

pairs of (𝛼, 𝛽), i.e., 0,0 , 0,1 , … ,

0,𝑚 − 1 , 1,0 , … , 1,𝑚 − 2 ,… , (𝑚 − 1,0).

– For an (n, k) RS code, there are 𝐶 = 𝑛 𝑚+1
2

interpolation constraints. This means that

we need 𝐶 iterations to construct the interpolation polynomial 𝑄(𝑥, 𝑦).

§7.4 Interpolation Based Decoding

– Koetter’s interpolation

– At the beginning, a group of polynomials are initialized as

𝐆 = 𝑄0 𝑥, 𝑦 , 𝑄1 𝑥, 𝑦 , … , 𝑄𝑙𝑚 𝑥, 𝑦 = 1, 𝑦, 𝑦2, … , 𝑦𝑙𝑚 .

– For each point 𝑥𝑗 , 𝑟𝑗 and each (𝛼, 𝛽) pair, calculate Hasse derivative for each 𝑄𝑖, i.e.,

Δ𝑖 = 𝐷𝛼,𝛽 𝑄𝑖 𝑥𝑗 , 𝑟𝑗 .

– Those polynomials with Δ𝑖 = 0 do not need to be updated.

– Polynomial updating

Let 𝑖∗ = argmin𝑖{𝑄𝑖(𝑥, 𝑦)|Δ𝑖 ≠ 0} and 𝑄∗ 𝑥, 𝑦 = 𝑄𝑖∗(𝑥, 𝑦).

For those polynomials with Δ𝑖′ ≠ 0 but 𝑖′ ≠ 𝑖∗, update them (using Property ② of

Hasse derivative) without the leading order increasing as

𝑄𝑖′ 𝑥, 𝑦 = 𝑄𝑖′ 𝑥, 𝑦 , 𝑄∗(𝑥, 𝑦) 𝐷 = Δ𝑖∗𝑄𝑖′ 𝑥, 𝑦 − Δ𝑖′𝑄
∗ 𝑥, 𝑦 .

For 𝑄𝑖∗ 𝑥, 𝑦 itself, it is updated with the leading order increasing as

𝑄𝑖∗ 𝑥, 𝑦 = 𝑥𝑄∗ 𝑥, 𝑦 , 𝑄∗(𝑥, 𝑦) 𝐷 = Δ𝑖∗ 𝑥 − 𝑥𝑗 𝑄∗ 𝑥, 𝑦 .

§7.4 Interpolation Based Decoding

– Pseudo program of Koetter’s interpolation

§7.4 Interpolation Based Decoding

Koetter’s interpolation

1: Initialization: 𝐆 = 𝑄0 𝑥, 𝑦 , 𝑄1 𝑥, 𝑦 , … , 𝑄𝑙𝑚 𝑥, 𝑦 = {1, 𝑦, 𝑦2, … , 𝑦𝑙𝑚}

2: For j = 0 to n – 1 do

3: For 𝛼, 𝛽 = (0,0) to (𝑚 − 1,0) do

4: For i = 0 to 𝑙𝑚 do

5: Δ𝑖 = 𝐷𝛼,𝛽 𝑄𝑖 𝑥𝑗 , 𝑟𝑗

6: 𝐼 = {𝑖|Δ𝑖 ≠ 0}
7: If 𝐼 ≠ ∅ do

8: 𝑖∗ = argmin𝑖{𝑄𝑖(𝑥, 𝑦)|Δ𝑖 ≠ 0}
9: 𝑄∗ 𝑥, 𝑦 = 𝑄𝑖∗(𝑥, 𝑦)
10: For 𝑖′ ∈ 𝐼 do

11: If 𝑖′ ≠ 𝑖∗ do

12: 𝑄𝑖′ 𝑥, 𝑦 = Δ𝑖∗𝑄𝑖′ 𝑥, 𝑦 − Δ𝑖′𝑄
∗(𝑥, 𝑦)

13: Else if 𝑖′ = 𝑖∗ do

14: 𝑄𝑖∗ 𝑥, 𝑦 = Δ𝑖∗ 𝑥 − 𝑥𝑗 𝑄∗(𝑥, 𝑦)

15: Output: 𝑄 𝑥, 𝑦 = min{𝑄0 𝑥, 𝑦 , 𝑄1 𝑥, 𝑦 , … , 𝑄𝑙𝑚 𝑥, 𝑦 }

Use property ② of Hasse derivative

to update polynomials.

– Example 7.12: Given the received word generated in Example 7.6, i.e.,
ҧ𝑟 = (𝜎5, 𝜎4, 𝜎3, 𝜎0, 𝜎4, 𝜎2, 𝜎5)

The interpolation points are 𝜎0, 𝜎5 , 𝜎1, 𝜎4 , 𝜎2, 𝜎3 , 𝜎3, 𝜎0 , 𝜎4, 𝜎4 , 𝜎5, 𝜎2 ,
𝜎6, 𝜎5 .

Let m = 1, then 𝐶 = 7 and 𝑙𝑚 = 1. Initialize 𝐆 = {1, 𝑦}. Running Koetter’s
interpolation, we obtain

§7.4 Interpolation Based Decoding

j (𝛼, 𝛽) Δ0 Δ1 lod(𝑄0) lod(𝑄1) 𝑖
∗ 𝐆

0 (0, 0) 𝜎0 𝜎5 0 3 0 {1 + 𝑥, 𝜎5 + 𝑦}

1 (0, 0) 𝜎3 1 1 3 0 {𝜎4 + 𝜎6𝑥 + 𝜎3𝑥2, 𝜎3 + 𝑥 + 𝜎3𝑦}

2 (0, 0) 𝜎6 𝜎 2 3 0 {𝜎5+𝜎𝑥 + 𝑥2 + 𝜎2𝑥3, 𝜎3 + 𝜎2𝑥 + 𝜎4𝑥2 + 𝜎2𝑦}

3 (0, 0) 𝜎 𝜎3 4 3 1 {𝜎2 + 𝜎6𝑥 + 𝜎2𝑥2 + 𝜎5𝑥3 + 𝜎3𝑦, 𝜎2 + 𝜎5𝑥 + 𝜎2𝑥2 + 𝑥3 + 𝜎 + 𝜎5𝑥 𝑦}

4 (0, 0) 𝜎4 𝜎4 4 5 0 {𝜎3 + 𝜎2𝑥 + 𝜎2𝑥4 + 𝜎4 + 𝑥 𝑦, 𝜎5𝑥 + 𝜎𝑥3 + 𝜎4 + 𝜎2𝑥 𝑦}

5 (0, 0) 𝜎2 𝜎4 6 5 1 {1 + 𝜎2𝑥 + 𝜎3𝑥3 + 𝜎6𝑥4 + 𝜎5𝑦, 𝑥 + 𝜎2𝑥2 + 𝜎3𝑥3 + 𝜎5𝑥4 + 𝜎6 + 𝜎2𝑥 + 𝜎6𝑥2 𝑦}

6 (0, 0) 𝜎6 0 6 7 0
{𝜎5 + 𝜎2𝑥 + 𝜎𝑥2 + 𝜎𝑥3 + 𝜎𝑥4 + 𝜎5𝑥5 + 𝜎3 + 𝜎4𝑥 𝑦,
𝑥 + 𝜎2𝑥2 + 𝜎3𝑥3 + 𝜎5𝑥4 + 𝜎6 + 𝜎2𝑥 + 𝜎6𝑥2 𝑦}

Since lod 𝑄0 𝑥, 𝑦 = 9, lod 𝑄1 𝑥, 𝑦 = 7, the interpolation polynomial 𝑄 𝑥, 𝑦 =

𝑄1 𝑥, 𝑦 = 𝑥 + 𝜎2𝑥2 + 𝜎3𝑥3 + 𝜎5𝑥4 + 𝜎6 + 𝜎2𝑥 + 𝜎6𝑥2 𝑦.

– Factorization: Recursive coefficients search algorithm

– Let 𝑓 𝑥 = 𝑓0 + 𝑓1𝑥 + 𝑓2𝑥
2 +⋯+ 𝑓𝑘−1𝑥

𝑘−1 denote a y-root of 𝑄(𝑥, 𝑦). Factorization
can be realized through recursively deducing 𝑓0, 𝑓1, 𝑓2, … , 𝑓𝑘−1 one by one.

– For any bivariate polynomial, if h is the highest degree such that 𝑥ℎ|𝑄(𝑥, 𝑦), we define

𝑄′ 𝑥, 𝑦 =
𝑄(𝑥, 𝑦)

𝑥ℎ
.

– Denote 𝑄0 𝑥, 𝑦 = 𝑄′(𝑥, 𝑦), we define the recursively updated polynomial 𝑄𝑠 𝑥, 𝑦

(𝑠 ≥ 1) as
𝑄𝑠 𝑥, 𝑦 = 𝑄𝑠−1

′ 𝑥, 𝑥𝑦 + 𝑓𝑠−1 ,

where 𝑓𝑠−1 is the roots of 𝑄𝑠−1 0, 𝑦 = 0.

– Pseudo program of factorization

§7.4 Interpolation Based Decoding

Factorization

1: Initialization: 𝑄0 𝑥, 𝑦 = 𝑄′ 𝑥, 𝑦 , 𝑠 = 0
2: Find roots 𝑓𝑠 of 𝑄𝑠 0, 𝑦 = 0
3: For each 𝑓𝑠, perform 𝑄𝑠+1 𝑥, 𝑦 = 𝑄𝑠

′ 𝑥, 𝑥𝑦 + 𝑓𝑠
4: 𝑠 = 𝑠 + 1
5: If 𝑠 < 𝑘, go to Step 2. If 𝑠 = 𝑘 and 𝑄𝑠 𝑥, 0 ≠ 0, stop this deduction root. If 𝑠 = 𝑘
and 𝑄𝑠 𝑥, 0 = 0, trace the deduction root to find 𝑓𝑠−1, … , 𝑓1, 𝑓0.

– Example 7.13: Given the interpolation polynomial 𝑄(𝑥, 𝑦) obtained in Example 7.12,

initialize 𝑄0 𝑥, 𝑦 = 𝑄′ 𝑥, 𝑦 = (𝑥 + 𝜎2𝑥2 + 𝜎3𝑥3 + 𝜎5𝑥4) + 𝜎6 + 𝜎2𝑥 + 𝜎6𝑥2 𝑦

and s = 0. Then, 𝑄0 0, 𝑦 = 𝜎6𝑦 and 𝑓0 = 0 is the root of 𝑄0 0, 𝑦 = 0.

Update 𝑄1 𝑥, 𝑦 = 𝑄0
′ 𝑥, 𝑥𝑦 + 𝑓0 = (1 + 𝜎2𝑥 + 𝜎3𝑥2 + 𝜎5𝑥3) + (

)

𝜎6 + 𝜎2𝑥 +

𝜎6𝑥2 𝑦 and s = s + 1 = 1.

As s < k, go to Step 2.

Then, 𝑄1 0, 𝑦 = 1 + 𝜎6𝑦 and 𝑓1 = 𝜎 is the root of 𝑄1 0, 𝑦 = 0.

Update 𝑄2 𝑥, 𝑦 = 𝑄1
′ 𝑥, 𝑥𝑦 + 𝑓1 = (𝜎5 + 𝜎𝑥 + 𝜎5𝑥2) + 𝜎6 + 𝜎2𝑥 + 𝜎6𝑥2 𝑦 and

s = s + 1 = 2.

As s < k, go to Step 2.

Then, 𝑄2 0, 𝑦 = 𝜎5 + 𝜎6𝑦 and 𝑓2 = 𝜎6 is the root of 𝑄2 0, 𝑦 = 0.

Update 𝑄3 𝑥, 𝑦 = 𝑄2
′ 𝑥, 𝑥𝑦 + 𝑓2 = 𝜎6 + 𝜎2𝑥 + 𝜎6𝑥2 𝑦 and s = s + 1 = 3.

As s = k and 𝑄3 𝑥, 0 = 0, trace this deduction root to find the coefficients 𝑓0 = 0,

𝑓1 = 𝜎, 𝑓2 = 𝜎6. Therefore, the factorization output is 𝑓 𝑥 = 𝜎𝑥 + 𝜎6𝑥2. According to

Example 7.4 𝑓 𝑥 matches the transmitted message polynomial 𝑢 𝑥 .

§7.4 Interpolation Based Decoding

– Performance of the (63, 21) RS code over the AWGN channel using BPSK

§7.4 Interpolation Based Decoding

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

5 5.5 6 6.5 7 7.5 8

F
E

R

SNR (dB)

BM

GS (m = 1)

GS (m = 2)

GS (m = 3)

GS (m = 5)

GS (m = 16)

