Chapter 7 Reed-Solomon Codes

- 7.1 Finite Field Algebra
- 7.2 Reed-Solomon Codes
- 7.3 Syndrome Based Decoding
- 7.4 Interpolation Based Decoding

§ 7.1 Finite Field Algebra

- Nonbinary codes: message and codeword symbols are represented in a finite field of size q, and $q>2$.
- Advantage of presenting a code in a nonbinary image.

A binary codeword sequence in $\{0,1\}$
$\begin{array}{llllllllllllllllllll}b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6} & b_{7} & b_{8} & b_{9} & b_{10} & b_{11} & b_{12} & b_{13} & b_{14} & b_{15} & b_{16} & b_{17}\end{array}$
$\begin{array}{lll}b_{18} & b_{19} & b_{20}\end{array}$
A nonbinary codeword sequence in $\{0,1,2,3,4,5,6,7\}$
$\begin{array}{llllllll}c_{0} & c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6}\end{array}$
\square : where the channel error occurs

8 bit errors are treated as 3 symbol errors in a nonbinary image

§ 7.1 Finite Field Algebra

- Finite field (Galois field) \mathbf{F}_{q} : a set of q elements that perform " + " " - "" \times ""/" without leaving the set.
- Let p denote a prime, e.g., $2,3,5,7,11, \cdots$, it is required $q=p$ or $q=p^{\theta}(\theta$ is a positive integer greater than 1). If $q=p^{\theta}, \mathbf{F}_{q}$ is an extension field of \mathbf{F}_{p}.
- Example 7.1: " + " and " \times " in \mathbf{F}_{q}.

$$
\mathbf{F}_{2}=\{0,1\}
$$

+	0	1
0	0	1
1	1	0

\times	0	1
0	0	0
1	0	1

all in modulo-2
all in modulo-5

§ 7.1 Finite Field Algebra

- " - " and " / " can be performed as " + " and " \times " with additive inverse and multiplicative inverse, respectively.
Additive inverse of $a \quad a^{\prime}: a^{\prime}+a=0$ and $a^{\prime}=-a$
$\underline{\text { Multiplicative inverse of } a} \quad a^{\prime}: a^{\prime} \cdot a=1$ and $a^{\prime}=1 / a$
- " - " operation:

Let $h, a \in \mathbf{F}_{q}$.
$h-a=h+(-a)=h+a^{\prime}$.
E.g., in $\mathbf{F}_{5}, 1-3=1+(-3)=1+2=3$;

- " / " operation:

Let $h, a \in \mathbf{F}_{q}$.
$h / a=h \times a^{\prime}$.
E.g., in $\mathbf{F}_{5}, 2 / 3=2 \times(1 / 3)=2 \times 2=4$.

§ 7.1 Finite Field Algebra

- Nonzero elements of \mathbf{F}_{q} can be represented using a primitive element σ such that $\mathbf{F}_{q}=\left\{0,1, \sigma, \sigma^{2}, \cdots, \sigma^{q-2}\right\}$.
- Primitive element σ of $\mathbf{F}_{q}: \sigma \in \mathbf{F}_{q}$ and unity can be produced by at least

$$
\underbrace{\sigma \square \sigma \square \cdot \cdot \square \sigma}_{q-1}=1, \text { or } \sigma^{q-1}=1
$$

all in modulo- q
E.g., in $\mathbf{F}_{5}, 2^{4}=1$ and $3^{4}=1$. Here, 2 and 3 are the primitive elements of \mathbf{F}_{5}.

- Example 7.2: $\operatorname{In} \mathbf{F}_{5}$,

If 2 is chosen as the primitive element, then

$$
\mathbf{F}_{5}=\{0,1,2,3,4\}=\left\{0,2^{0}, 2^{1}, 2^{3}, 2^{2}\right\}=\left\{0,1,2^{1}, 2^{3}, 2^{2}\right\}
$$

If 3 is chosen as the primitive element, then

$$
\mathbf{F}_{5}=\{0,1,2,3,4\}=\left\{0,3^{0}, 3^{3}, 3^{1}, 3^{2}\right\}=\left\{0,1,3^{3}, 3^{1}, 3^{2}\right\}
$$

§ 7.1 Finite Field Algebra

- If \mathbf{F}_{q} is an extension field of \mathbf{F}_{p} such as $q=p^{\theta}$, elements of \mathbf{F}_{q} can also be represented by θ-dimensional vectors in \mathbf{F}_{p}.
- Primitive polynomial $p(x)$ of $\mathbf{F}_{q}\left(q=p^{\theta}\right)$: an irreducible polynomial of degree θ that divides $x^{p^{\theta}-1}-1$ but not other polynomials $x^{\Phi}-1$ with $\Phi<p^{\theta}-1$.
E.g., in \mathbf{F}_{8}, the primitive polynomial $p(x)=x^{3}+x+1$ divides $x^{7}-1$, but not $x^{6}-1, x^{5}-1$, $x^{4}-1, x^{3}-1$.
- If variable δ is a root of $p(x)$ such that $p(\delta)=0$, elements of \mathbf{F}_{q} can be represented in the form of

$$
w_{\theta-1} \delta^{\theta-1}+w_{\theta-2} \delta^{\theta-2}+\ldots+w_{1} \delta^{1}+w_{0} \delta^{0}
$$

where $w_{0}, w_{1}, \ldots, w_{\theta-2}, w_{\theta-1} \in \mathbf{F}_{p}$, or alteratively in

$$
\left(w_{\theta-1}, w_{\theta-2}, \cdots, w_{1}, w_{0}\right)
$$

§ 7.1 Finite Field Algebra

- Example 7.3: If $p(x)=x^{3}+x+1$ is the primitive polynomial of \mathbf{F}_{8}, and symbol δ satisfies $\delta^{3}+\delta+1=0$, then

\mathbf{F}_{8}	$w_{2} \delta^{2}+w_{1} \delta^{1}+w_{0} \delta^{0}$	w_{2}	w_{1}	w_{0}
0	0	0	0	0
1	1	0	0	1
σ	δ	0	1	0
σ^{2}	δ^{2}	1	0	0
σ^{3}	$\delta+1$	0	1	1
σ^{4}	$\delta^{2}+\delta$	1	1	0
σ^{5}	$\delta^{2}+\delta+1$	1	1	1
σ^{6}	1	0	1	

§ 7.1 Finite Field Algebra

- Representing $\mathbf{F}_{q}=\left\{0,1, \sigma, \cdots, \sigma^{q-2}\right\}, " \times " \cdots / " "+" "-"$ operations become
$" \times ": \sigma^{i} \times \sigma^{j}=\sigma^{(i+j) \%(q-1)}$

$$
\text { E.g., in } \mathbf{F}_{8}, \sigma^{4} \times \sigma^{5}=\sigma^{(4+5)} \% 7=\sigma^{2}
$$

$" / ": \sigma^{i} / \sigma^{j}=\sigma^{(i-j) \%(q-1)}$
E.g., in $\mathbf{F}_{8}, \sigma^{4} / \sigma^{5}=\sigma^{(4-5) \% 7}=\sigma^{6}$
$"+":$ if $\sigma^{i}=w_{\theta-1} \delta^{\theta-1}+w_{\theta-2} \delta^{\theta-2}+\cdots+w_{0} \delta^{0}$
(\&" - ") $\quad \sigma^{j}=w_{\theta-1}^{\prime} \delta^{\theta-1}+w_{\theta-2}^{\prime} \delta^{\theta-2}+\cdots+w_{0}^{\prime} \delta^{0}$
$\sigma^{i}+\sigma^{j}=\left(w_{\theta-1}+w_{\theta-1}^{\prime}\right) \delta^{\theta-1}+\left(w_{\theta-2}+w_{\theta-2}^{\prime}\right) \delta^{\theta-2}+\cdots+\left(w_{0}+w_{0}^{\prime}\right) \delta^{0}$
E.g., in $\mathbf{F}_{8}, \sigma^{4}+\sigma^{5}=\delta^{2}+\delta+\delta^{2}+\delta+1=1$

§ 7.2 Reed-Solomon Codes

- An RS code ${ }^{[1]}$ defined over \mathbf{F}_{q} is characterized by its codeword length $n=q-1$, dimension $k<n$ and the minimum Hamming distance d. It is often denoted as an (n, k) (or (n, k, d)) RS code.
- It is a maximum distance separable (MDS) code such that

$$
d=n-k+1
$$

- It is a linear block code and also cyclic.
- The widely used RS codes include the $(255,239)$ and the $(255,223)$ codes both of which are defined in \mathbf{F}_{256}.

§ 7.2 Reed-Solomon Codes

- Notations
$\mathbf{F}_{q}[x]$, a univariate polynomial ring over \mathbf{F}_{q}, i.e., $f(x)=\sum_{i \in \mathrm{~N}} f_{i} x^{i}$ and $f_{i} \in \mathbf{F}_{q}$.
$\mathbf{F}_{q}[x, y]$, a bivariate polynomial ring over \mathbf{F}_{q}, i.e., $f(x, y)=\sum_{i, j \in \mathrm{~N}} f_{i j} x^{i} y^{j}$ and $f_{i j} \in \mathbf{F}_{q}$.
$\mathbf{F}_{q}^{\bullet}, \bullet$ - dimensional vector over \mathbf{F}_{q}.
- Encoding of an $(n, k) \mathrm{RS}$ code.

Message vector $\bar{u}=\left(u_{0}, u_{1}, u_{2}, \cdots, u_{k-1}\right) \in \mathbf{F}_{q}^{k}$
Message polynomial

$$
u(x)=u_{0}+u_{1} x+u_{2} x^{2}+\cdots+u_{k-1} x^{k-1} \in \mathbf{F}_{q}[x]
$$

Codeword

$$
\bar{c}=\left(u(1), u(\sigma), u\left(\sigma^{2}\right), \cdots, u\left(\sigma^{n-1}\right)\right) \in \mathbf{F}_{q}^{n}
$$

$1, \sigma, \sigma^{2}, \cdots, \sigma^{n-1}$ are the $q-1$ nonzero elements of \mathbf{F}_{q}. They are often called code locators. Note that the above evaluation order can be arbitrary.

§ 7.2 Reed-Solomon Codes

- Encoding of an (n, k) RS code in a linear block code fashion

$$
\begin{aligned}
\bar{c} & =\bar{u} \cdot \mathbf{G} \\
& =\left(u_{0}, u_{1}, \cdots, u_{k-1}\right)\left[\begin{array}{cccc}
\left(\sigma^{0}\right)^{0} & \left(\sigma^{1}\right)^{0} & \cdots & \left(\sigma^{n-1}\right)^{0} \\
\left(\sigma^{0}\right)^{1} & \left(\sigma^{1}\right)^{1} & \cdots & \left(\sigma^{n-1}\right)^{1} \\
\vdots & \vdots & \ddots & \vdots \\
\left(\sigma^{0}\right)^{k-1} & \left(\sigma^{1}\right)^{k-1} & \cdots & \left(\sigma^{n-1}\right)^{k-1}
\end{array}\right]
\end{aligned}
$$

- Example 7.4: For a $(7,3)$ RS code that is defined in \mathbf{F}_{8}, if the message is $\bar{u}=\left(u_{0}, u_{1}, u_{2}\right)=\left(0, \sigma, \sigma^{6}\right)$,
the message polynomial will be $u(x)=\sigma x+\sigma^{6} x^{2}$, and the codeword can be generated by
- $\bar{c}=\left(u(1), u(\sigma), u\left(\sigma^{2}\right), u\left(\sigma^{3}\right), u\left(\sigma^{4}\right), u\left(\sigma^{5}\right), u\left(\sigma^{6}\right)\right)=\left(\sigma^{5}, \sigma^{4}, 0,1, \sigma^{4}, 1, \sigma^{5}\right)$
$\bar{c}=\bar{u} \cdot \mathbf{G}=\left(0, \sigma, \sigma^{6}\right) \cdot\left[\begin{array}{ccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \sigma^{1} & \sigma^{2} & \sigma^{3} & \sigma^{4} & \sigma^{5} & \sigma^{6} \\ 1 & \sigma^{2} & \sigma^{4} & \sigma^{6} & \sigma^{1} & \sigma^{3} & \sigma^{5}\end{array}\right]=\left(\sigma^{5}, \sigma^{4}, 0,1, \sigma^{4}, 1, \sigma^{5}\right)$

§ 7.2 Reed-Solomon Codes

- MDS property of RS codes $d=n-k+1$
- Singleton bound for an (n, k) linear block code, $d \leq n-k+1$
$-u(x)$ has at most $k-1$ roots. Hence, \bar{c} has at most $k-1$ zeros and

$$
d_{\mathrm{Ham}}=(\bar{c}, \overline{0}) \geq n-k+1
$$

- Parity-check matrix of an $(n, k) \mathrm{RS}$ code

$$
\mathbf{H}=\left[\begin{array}{cccc}
\left(\sigma^{0}\right)^{1} & \left(\sigma^{1}\right)^{1} & \cdots & \left(\sigma^{n-1}\right)^{1} \\
\left(\sigma^{0}\right)^{2} & \left(\sigma^{1}\right)^{2} & \cdots & \left(\sigma^{n-1}\right)^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\left(\sigma^{0}\right)^{n-k} & \left(\sigma^{1}\right)^{n-k} & \cdots & \left(\sigma^{n-1}\right)^{n-k}
\end{array}\right]
$$

$\bar{c} \cdot \mathbf{H}^{T}=\bar{u} \cdot \mathbf{G} \cdot \mathbf{H}^{T}=\overline{0} \quad \leftarrow$ an $n-k$ all zero vector

§ 7.2 Reed-Solomon Codes

- Insight of $\mathbf{G} \cdot \mathbf{H}^{T}$

$$
\left[\begin{array}{cccc}
\left(\sigma^{0}\right)^{0} & \left(\sigma^{1}\right)^{0} & \cdots & \left(\sigma^{n-1}\right)^{0} \\
\left(\sigma^{0}\right)^{1} & \left(\sigma^{1}\right)^{1} & \cdots & \left(\sigma^{n-1}\right)^{1} \\
\vdots & \vdots & \ddots & \vdots \\
\left(\sigma^{0}\right)^{k-1} & \left(\sigma^{1}\right)^{k-1} & \cdots & \left(\sigma^{n-1}\right)^{k-1}
\end{array}\right] \cdot\left[\begin{array}{cccc}
\left(\sigma^{0}\right)^{1} & \left(\sigma^{0}\right)^{2} & \cdots & \left(\sigma^{0}\right)^{n-k} \\
\left(\sigma^{1}\right)^{1} & \left(\sigma^{1}\right)^{2} & \cdots & \left(\sigma^{1}\right)^{n-k} \\
\vdots & \vdots & \ddots & \vdots \\
\left(\sigma^{n-1}\right)^{1} & \left(\sigma^{n-1}\right)^{2} & \cdots & \left(\sigma^{n-1}\right)^{n-k}
\end{array}\right]
$$

- Let $i=0,1, \cdots, k-1, j=0,1, \cdots, n-1, v=1,2, \cdots, n-k$.

Entries of \mathbf{G} can be denoted as $[\mathbf{G}]_{i j}=\left(\sigma^{j}\right)^{i}$
Entries of \mathbf{H}^{T} can be denoted as $\left[\mathbf{H}^{T}\right]_{j, v-1}=\left(\sigma^{j}\right)^{v}$
Entries of $\mathbf{G} \cdot \mathbf{H}^{T}$ is

$$
\begin{aligned}
{\left[\mathbf{G} \cdot \mathbf{H}^{T}\right]_{i, v-1} } & =\sum_{j=0}^{n-1}\left(\sigma^{j}\right)^{i} \cdot\left(\sigma^{j}\right)^{v} \\
& =\sum_{j=0}^{n-1}\left(\sigma^{j}\right)^{i+v}=0
\end{aligned}
$$

Remark 1: $v=0$ is illegitimate since $\sum_{j=0}^{n-1}\left(\sigma^{j}\right)^{0} \neq 0$

§ 7.2 Reed-Solomon Codes

- Perceiving \mathbf{H}^{T} as in

$$
\left[\begin{array}{cccc}
\left(\sigma^{1}\right)^{0} & \left(\sigma^{2}\right)^{0} & \cdots & \left(\sigma^{n-k}\right)^{0} \\
\left(\sigma^{1}\right)^{1} & \left(\sigma^{2}\right)^{1} & \cdots & \left(\sigma^{n-k}\right)^{1} \\
\vdots & \vdots & \ddots & \vdots \\
\left(\sigma^{1}\right)^{n-1} & \left(\sigma^{2}\right)^{n-1} & \cdots & \left(\sigma^{n-k}\right)^{n-1}
\end{array}\right]
$$

- Perceiving codeword $\bar{c}=\left(c_{0}, c_{1}, \cdots, c_{n-1}\right)$ as in

$$
c(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}
$$

$-\bar{c} \cdot \mathbf{H}^{T}=\overline{0}$ implies

$$
c\left(\sigma^{1}\right)=c\left(\sigma^{2}\right)=\cdots=c\left(\sigma^{n-k}\right)=0
$$

$\sigma^{1}, \sigma^{2}, \cdots, \sigma^{n-k}$ are roots of RS codeword polynomial $c(x)$.

§ 7.2 Reed-Solomon Codes

- An alternative encoding
- Message polynomial $u(x)=u_{0}+u_{1} x+\cdots+u_{k-1} x^{k-1}$
- Codeword polynomial $c(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
$-c(x)=u(x) \cdot g(x)$ and $\operatorname{deg}(\mathrm{g}(x))=n-k$
- Since $\sigma^{1}, \sigma^{2}, \cdots, \sigma^{n-k}$ are roots of $c(x)$ $g(x)=\left(x-\sigma^{1}\right)\left(x-\sigma^{2}\right) \cdots\left(x-\sigma^{n-k}\right)$
\uparrow The generator polynomial of an (n, k) RS code
- Systematic encoding

$$
c(x)=x^{n-k} u(x)+\left(x^{n-k} u(x)\right) \bmod g(x)
$$

- Example 7.5: For a $(7,3) \mathrm{RS}$ code, its generator polynomial is $g(x)=\left(x-\sigma^{1}\right)\left(x-\sigma^{2}\right)\left(x-\sigma^{3}\right)\left(x-\sigma^{4}\right)=x^{4}+\sigma^{3} x^{3}+x^{2}+\sigma x+\sigma^{3}$
Given message vector $\bar{u}=\left(u_{0}, u_{1}, u_{2}\right)=\left(\sigma^{4}, 1, \sigma^{5}\right)$,
the codeword can be generated by $c(x)=u(x) \cdot g(x)=\left(1, \sigma^{2}, \sigma^{4}, \sigma^{6}, \sigma, \sigma^{3}, \sigma^{5}\right)$ For systematic encoding, $\left(x^{n-k} u(x)\right) \bmod g(x)=\left(x^{4} \cdot u(x)\right) \bmod g(x)=x^{3}+\sigma^{4} x+\sigma^{5}$, and the codeword is $\quad \bar{c}=\left(\sigma^{5}, \sigma^{4}, 0,1, \sigma^{4}, 1, \sigma^{5}\right)$

§ 7.3 Syndrome Based Decoding

- The channel: $r(x)=c(x)+e(x)$ $c(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1} \quad$ - codeword polynomial $e(x)=e_{0}+e_{1} x+\cdots+e_{n-1} x^{n-1} \quad$ - error polynomial $r(x)=r_{0}+r_{1} x+\cdots+r_{n-1} x^{n-1} \quad-$ received word polynomial
- Let $n-k=2 t, \sigma^{1}, \sigma^{2}, \cdots, \sigma^{2 t}$ are roots of $c(x)$
$-2 t$ syndromes can be determined as

$$
S_{1}=r\left(\sigma^{1}\right), S_{2}=r\left(\sigma^{2}\right), \cdots, S_{2 t}=r\left(\sigma^{2 t}\right)
$$

If $S_{1}=S_{2}=\cdots=S_{2 t}=0, r(x)$ is a valid codeword. Otherwise, $e(x) \neq 0$, error-correction is needed.

§ 7.3 Syndrome Based Decoding

- If $e(x) \neq 0$, we assume there are ω errors with $e_{j_{1}} \neq 0, e_{j_{2}} \neq 0, \cdots, e_{j_{\omega}} \neq 0$.
- Let $v=1,2, \cdots, 2 t$

$$
S_{v}=\sum_{j=0}^{n-1} c_{j} \sigma^{j v}+\sum_{j=0}^{n-1} e_{j} \sigma^{j v}=\sum_{j=0}^{n-1} e_{j} \sigma^{j v}=\sum_{\tau=1}^{\omega} e_{j_{\tau}}\left(\sigma^{j_{\tau}}\right)^{v}
$$

- For simplicity, let $X_{\tau}=\sigma^{j_{\tau}}$, we can list the $2 t$ syndromes by

$$
\begin{gathered}
S_{1}=e_{j_{1}} X_{1}^{1}+e_{j_{2}} X_{2}^{1}+\cdots+e_{j_{\omega}} X_{\omega}^{1} \\
S_{2}=e_{j_{1}} X_{1}^{2}+e_{j_{2}} X_{2}^{2}+\cdots+e_{j_{\omega}} X_{\omega}^{2} \\
S_{2 t}=e_{j_{1}} X_{1}^{2 t}+e_{j_{2}} X_{2}^{2 t}+\cdots+e_{j_{\omega}} X_{\omega}^{2 t}
\end{gathered}
$$

- In the above non-linear equation group, there are 2ω unknowns $X_{1}, X_{2}, \cdots, X_{\omega}$, $e_{j_{1}}, e_{j_{2}}, \cdots, e_{j_{\rho}}$. It will be solvable if $2 \omega \leq 2 t$. The number of correctable errors is $\omega \leq \frac{n-k}{2}$.
- Since $X_{j_{\tau}}, e_{j_{\tau}} \in \mathbf{F}_{q} \backslash\{0\}$, an exhaustive search solution will have a complexity of $O\left(n^{2 \omega}\right)$.

§ 7.3 Syndrome Based Decoding

- In order to decode an RS code with a polynomial-time complexity, the decoding is decomposed into determining the error locations and error magnitudes, i.e., $X_{1}, X_{2}, \cdots, X_{\omega}$ and $e_{j_{1}}, e_{j_{2}}, \cdots, e_{j_{\omega}}$, respectively.
- Error locator polynomial

$$
\begin{aligned}
\Lambda(x) & =\prod_{\tau=1}^{\omega}\left(1-X_{\tau} x\right) \\
& =\Lambda_{\omega} x^{\omega}+\Lambda_{\omega-1} x^{\omega-1}+\cdots+\Lambda_{1} x+\Lambda_{0}\left(\Lambda_{0}=1\right)
\end{aligned}
$$

$X_{1}^{-1}=\sigma^{-j_{1}}, X_{2}^{-1}=\sigma^{-j_{2}}, \cdots, X_{\omega}^{-1}=\sigma^{-j_{\omega}}$ are roots of the polynomial such that $\Lambda\left(X_{1}^{-1}\right)=\Lambda\left(X_{2}^{-1}\right)=\cdots=\Lambda\left(X_{\omega}^{-1}\right)=0$.

- Determine $\Lambda(x)$ by finding out $\Lambda_{\omega}, \Lambda_{\omega-1}, \cdots$, and Λ_{1}, and its roots tell the error locations.

§ 7.3 Syndrome Based Decoding

- How to determine $\Lambda_{\omega}, \Lambda_{\omega-1}, \cdots$, and Λ_{1} ?

Since $\Lambda\left(X_{\tau}^{-1}\right)=\Lambda_{\omega} X_{\tau}^{-\omega}+\Lambda_{\omega-1} X_{\tau}^{1-\omega}+\cdots+\Lambda_{1} X_{\tau}^{-1}+\Lambda_{0}=0$

$$
\begin{aligned}
& \quad \sum_{\tau=1}^{\omega} e_{j_{\tau}} X_{\tau}^{v} \Lambda\left(X_{\tau}^{-1}\right)=0, \text { for } v=1,2, \cdots, 2 t \\
& \quad{ }^{v} \\
& =e_{j_{1}} \Lambda_{\omega} X_{1}^{v-\omega}+e_{j_{1}} \Lambda_{\omega-1} X_{1}^{v-\omega+1}+\cdots+e_{j_{1}} \Lambda_{1} X_{1}^{v-1}+e_{j_{1}} \Lambda_{0} X_{1}^{v} \\
& +e_{j_{2}} \Lambda_{\omega} X_{2}^{v-\omega}+e_{j_{2}} \Lambda_{\omega-1} X_{2}^{v-\omega+1}+\cdots+e_{j_{2}} \Lambda_{1} X_{2}^{v-1}+e_{j_{2}} \Lambda_{0} X_{2}^{v} \\
& \vdots \\
& +e_{j_{\omega}} \Lambda_{\omega} X_{\omega}^{v-\omega}+e_{j_{\omega}} \Lambda_{\omega-1} X_{\omega}^{v-\omega+1}+\cdots+e_{j_{\omega}} \Lambda_{1} X_{\omega}^{v-1}+e_{j_{\omega}} \Lambda_{0} X_{\omega}^{v} \\
& =\Lambda_{\omega} S_{v-\omega}+\Lambda_{\omega-1} S_{v-\omega+1}+\cdots+\Lambda_{1} S_{v-1}+\Lambda_{0} S_{v} \\
& \quad \Lambda_{\omega} S_{v-\omega}+\Lambda_{\omega-1} S_{v-\omega+1}+\cdots+\Lambda_{1} S_{v-1}+\Lambda_{0} S_{v}=0
\end{aligned}
$$

- Error locator polynomial can be determined using the syndromes.

§ 7.3 Syndrome Based Decoding

- List all $\Lambda_{\omega} S_{v-\omega}+\Lambda_{\omega-1} S_{v-\omega+1}+\cdots+\Lambda_{1} S_{v-1}+\Lambda_{0} S_{v}=0$

$$
\begin{gathered}
v=1: \\
v=2: \\
v=3: \\
\vdots \\
v=\omega:
\end{gathered}
$$

$$
\Lambda_{1} S_{0}+\Lambda_{0} S_{1}=\cdot \cdot
$$

$$
\Lambda_{2} S_{0}+\Lambda_{1} S_{1}+\Lambda_{0} S_{2}=\cdot \cdot
$$

$$
\Lambda_{3} S_{0}+\Lambda_{2} S_{1}+\Lambda_{1} S_{2}+\Lambda_{0} S_{3}=\cdot \cdot
$$

$$
\Lambda_{\omega} S_{0}+\Lambda_{\omega-1} S_{1}+\cdots+\Lambda_{1} S_{\omega-1}+\Lambda_{0} S_{\omega}=\cdot \cdot
$$

$$
v=\omega+1: \quad \Lambda_{\omega} S_{1}+\Lambda_{\omega-1} S_{2}+\cdots+\Lambda_{1} S_{\omega}+\Lambda_{0} S_{\omega+1}=0
$$

$$
\begin{aligned}
& v=\omega+2: \quad \Lambda_{\omega} S_{2}+\Lambda_{\omega-1} S_{3}+\cdots+\Lambda_{1} S_{\omega+1}+\Lambda_{0} S_{\omega+2}=0 \\
& \quad:
\end{aligned}
$$

$$
\begin{aligned}
& \vdots \\
& v=2 t: \quad \Lambda_{\omega} S_{2 t-\omega}+\Lambda_{\omega-1} S_{2 t-\omega+1}+\cdots+\Lambda_{1} S_{2 t-1}+\Lambda_{0} S_{2 t}=0
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
S_{1} & S_{2} & \cdots & S_{\omega} \\
S_{2} & S_{3} & \cdots & S_{\omega+1} \\
\vdots & \vdots & \ddots & \vdots \\
S_{2 t-\omega} & S_{2 t-\omega+1} & \cdots & S_{2 t-1}
\end{array}\right] \cdot\left[\begin{array}{c}
\Lambda_{\omega} \\
\Lambda_{\omega-1} \\
\vdots \\
\Lambda_{1}
\end{array}\right]=-\left[\begin{array}{c}
S_{\omega+1} \\
S_{\omega+2} \\
\vdots \\
S_{2 t}
\end{array}\right]
$$

$S_{v}=-\sum_{\tau=1}^{\omega} \Lambda_{\tau} S_{v-\tau}$

Remark 2:

S_{0} is not one of the $n-k$ syndromes.

§ 7.3 Syndrome Based Decoding

- Solving the linear system in finding $\Lambda(x)$ has a complexity of $O\left(\omega^{3}\right)$. It can be facilitated by the Berlekamp-Massey algorithm ${ }^{[2]}$ whose complexity is $O\left(\omega^{2}\right)$.
- The Berlekamp-Massey algorithm can be implemented using the Linear Feedback Shift Register. Its pseudo program is the follows.

```
The Berlekamp-Massey Algorithm
```

```
Input: Syndromes }\mp@subsup{S}{1}{},\mp@subsup{S}{2}{},\ldots,\mp@subsup{S}{2t}{}\mathrm{ ;
```

Input: Syndromes }\mp@subsup{S}{1}{},\mp@subsup{S}{2}{},···,\mp@subsup{S}{2t}{}\mathrm{ ;
Output: }\Lambda(x)\mathrm{ ;
Output: }\Lambda(x)\mathrm{ ;
Initialization: }r=0,\ell=0,z=-1,\Lambda(x)=1,T(x)=x
Initialization: }r=0,\ell=0,z=-1,\Lambda(x)=1,T(x)=x
Determine }\Delta=\mp@subsup{\sum}{i=0}{\ell}\mp@subsup{\Lambda}{i}{}\mp@subsup{S}{r-i+1}{\prime}
Determine }\Delta=\mp@subsup{\sum}{i=0}{\ell}\mp@subsup{\Lambda}{i}{}\mp@subsup{S}{r-i+1}{\prime}
If }\Delta=
If }\Delta=
T(x)=xT(x) ;
T(x)=xT(x) ;
r=r+1
r=r+1
If r<2t
If r<2t
Go to 1;
Go to 1;
Else
Else
Terminate the algorithm;
Terminate the algorithm;
Else
Else
Update }\mp@subsup{\Lambda}{}{*}(x)=\Lambda(x)-\DeltaT(x)
Update }\mp@subsup{\Lambda}{}{*}(x)=\Lambda(x)-\DeltaT(x)
If }\ell\geqr-
If }\ell\geqr-
\Lambda(x)=\Lambda*(x);
\Lambda(x)=\Lambda*(x);
Else
Else
\ell*}=r-z;z=r-\ell;T(x)=\Lambda(x)/\Delta;\ell=\mp@subsup{\ell}{}{*};\Lambda(x)=\mp@subsup{\Lambda}{}{*}(x)
\ell*}=r-z;z=r-\ell;T(x)=\Lambda(x)/\Delta;\ell=\mp@subsup{\ell}{}{*};\Lambda(x)=\mp@subsup{\Lambda}{}{*}(x)
T(x)=xT(x);
T(x)=xT(x);
r=r+1 ;
r=r+1 ;
If}r<2
If}r<2
Go to 1;
Go to 1;
Else
Else
Terminate the algorithm;

```
            Terminate the algorithm;
```

[2] J. L. Massey, "Shift register synthesis and BCH decoding," IEEE Trans. Inf. Theory, vol. 15(1), pp. 122-127, 1969.

§ 7.3 Syndrome Based Decoding

- Example 7.6: Given the (7, 3) RS codeword generated in Example 7.5, after the channel, the received word is

$$
\bar{r}=\left(\sigma^{5}, \sigma^{4}, \sigma^{3}, \sigma^{0}, \sigma^{4}, \sigma^{2}, \sigma^{5}\right) .
$$

With the received word, we can calculate syndromes as

$$
S_{1}=r(\sigma)=\sigma^{0}, S_{2}=r\left(\sigma^{2}\right)=\sigma^{6}, S_{3}=r\left(\sigma^{3}\right)=\sigma^{6}, S_{4}=r\left(\sigma^{4}\right)=\sigma^{0} .
$$

Running the above Berlekamp-Massey algorithm, we obtain

r	ℓ	z	$\Lambda(x)$	$T(x)$	Δ
0	0	-1	1	x	σ^{0}
1	1	0	$1-x$	x	σ^{2}
2	1	0	$1-\sigma^{6} x$	x^{2}	σ
3	2	1	$1-\sigma^{6} x-\sigma x^{2}$	$\sigma^{6} x-\sigma^{5} x^{2}$	σ^{5}
4			$1-\sigma^{3} x-x^{2}$	$\sigma^{6} x^{2}-\sigma^{5} x^{3}$	

Therefore, the error locator polynomial is $\Lambda(x)=1-\sigma^{3} x-x^{2} . \operatorname{In} \mathbf{F}_{8}, \sigma^{5}$ and σ^{2} are its roots. Therefore, r_{2} and r_{5} are corrupted.

§ 7.3 Syndrome Based Decoding

- Determine the error magnitudes $e_{j_{1}}, e_{j_{2}}, \cdots, e_{j_{o}}$, so that the erroneous symbols can be corrected by

$$
c_{j_{1}}=r_{j_{1}}-e_{j_{1}}, c_{j_{2}}=r_{j_{2}}-e_{j_{2}}, \cdots, c_{j_{\omega}}=r_{j_{\omega}}-e_{j_{\omega}}
$$

- The syndromes $S_{v}=\sum_{\tau=1}^{\omega} e_{j_{\tau}} X_{\tau}^{v}, v=1,2, \cdots, 2 t$. Knowing $X_{1}=\sigma^{j_{1}}, X_{2}=\sigma^{j_{2}}, \cdots, X_{\omega}=\sigma^{j_{\omega}}$ from the error location polynomial $\Lambda(x)$, the above syndrome definition implies

$$
\left[\begin{array}{cccc}
X_{1}^{1} & X_{2}^{1} & \cdots & X_{\omega}^{1} \\
X_{1}^{2} & X_{2}^{2} & \cdots & X_{\omega}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
X_{1}^{2 t} & X_{2}^{2 t} & \cdots & X_{\omega}^{2 t}
\end{array}\right]\left[\begin{array}{c}
e_{j_{1}} \\
e_{j_{2}} \\
\vdots \\
e_{j_{\omega}}
\end{array}\right]=\left[\begin{array}{c}
S_{1} \\
S_{2} \\
\vdots \\
S_{2 t}
\end{array}\right]
$$

- Error magnitudes can be determined from the above set of linear equations.

§ 7.3 Syndrome Based Decoding

- The linear equation set can be efficiently solved using Forney's algorithm.
- Syndrome polynomial

$$
S(x)=S_{1}+S_{2} x+\cdots+S_{2 t} x^{2 t-1}=\sum_{v=1}^{2 t} S_{v} x^{v-1}
$$

- Error evaluation polynomial (The key equation)

$$
\Omega(x)=S(x) \cdot \Lambda(x) \bmod x^{2 t}
$$

- Formal derivative of $\Lambda(x)=\Lambda_{\omega} x^{\omega}+\Lambda_{\omega-1} x^{\omega-1}+\cdots+\Lambda_{1} x+\Lambda_{0}$

$$
\begin{aligned}
& \Lambda^{\prime}(x)=\underbrace{\zeta}_{\omega_{\omega} \Lambda_{\omega}} x^{\omega-1}+\frac{(\omega-1) \Lambda_{\omega-1}}{\omega_{\omega}} x^{\omega-2}+\cdots+\Lambda_{1} \\
& \underbrace{\Lambda_{\omega}+\Lambda_{\omega}+\cdots+\Lambda_{\omega}}_{\omega} \\
& \underbrace{\Lambda_{\omega-1}+\Lambda_{\omega-1}+\cdots+\Lambda_{\omega-1}}_{\omega-1}
\end{aligned}
$$

- Error magnitude $e_{j_{\tau}}$ can be determined by $e_{j_{\tau}}=-\frac{\Omega\left(X_{\tau}^{-1}\right)}{\Lambda^{\prime}\left(X_{\tau}^{-1}\right)}$.

§ 7.3 Syndrome Based Decoding

- Example 7.7: Continue from Example 7.6,

The syndrome polynomial is $S(x)=S_{1}+S_{2} x+S_{3} x^{2}+S_{4} x^{3}=\sigma^{0}+\sigma^{6} x+\sigma^{6} x^{2}+\sigma^{0} x^{3}$.
The error locator polynomial is $\Lambda(x)=1-\sigma^{3} x-x^{2}$.
The error evaluation polynomial is $\Omega(x)=S(x) \cdot \Lambda(x) \bmod x^{4}=\sigma^{4} x+\sigma^{0}$.
Formal derivative of $\Lambda(x)$ is $\Lambda^{\prime}(x)=\sigma^{3}$.
Error magnitudes are

$$
\begin{aligned}
& e_{2}=-\frac{\Omega\left(\sigma^{-2}\right)}{\Lambda^{\prime}\left(\sigma^{-2}\right)}=\sigma^{3}, \\
& e_{5}=-\frac{\Omega\left(\sigma^{-5}\right)}{\Lambda^{\prime}\left(\sigma^{-5}\right)}=\sigma^{6} .
\end{aligned}
$$

As a result, $c_{2}=r_{2}-e_{2}=0, c_{5}=r_{5}-e_{5}=\sigma^{0}$.

§ 7.3 Syndrome Based Decoding

- BM decoding performances over AWGN channel with BPSK.

§ 7.4 Interpolation Based Decoding

- Error-correction capability

Bounded minimum distance decoding: BM algorithm

$$
\tau_{\mathrm{BM}}=\left\lfloor\frac{d-1}{2}\right\rfloor=\left\lfloor\frac{n-k}{2}\right\rfloor
$$

List decoding: GuruswamiSudan (GS) algorithm [3]

$\tau_{\mathrm{GS}}=n-\lfloor\sqrt{n(k-1)}\rfloor-1 \geq \tau_{\mathrm{BM}}$
[3] V. Guruswami and M. Sudan, "Improved decoding of Reed-Solomon and algebraic-geometric codes," IEEE Trans. Inform. Theory, vol. 45, no. 6, pp. 1757-1767, Sept. 1999.

§ 7.4 Interpolation Based Decoding

- Fraction of number of correctable errors

§ 7.4 Interpolation Based Decoding

- GS algorithm

Code locators: $\bar{x}=\left\{x_{0}, x_{1}, \ldots \ldots, x_{n-1}\right\}$
Received word: $\bar{r}=\left\{r_{0}, r_{1}, \ldots \ldots, r_{n-1}\right\}$
Interpolation points: $\left(x_{0}, r_{0}\right),\left(x_{1}, r_{1}\right), \cdots \cdots,\left(x_{n-1}, r_{n-1}\right)$

- Interpolation: Generate the minimum bivariate polynomial $Q(x, y)$ that interpolates the n points with a multiplicity of m.
- Factorization: Find the y-roots of $Q(x, y)$ such that a list of polynomials can be obtained as

$$
L=\{f(x): Q(x, f(x))=0 \text { and } \operatorname{deg} f(x)<k\} .
$$

All the polynomials in L have the possibility of being the transmitted message $u(x)$.

- Interpolation dominates the GS decoding complexity.

§ 7.4 Interpolation Based Decoding

- What is "multiplicity"?
- Given a polynomial $Q(x, y)=\sum_{a, b} Q_{a b} x^{a} y^{b}$, it can also be written with respect to point $\left(x_{j}, r_{j}\right)$ as

$$
Q(x, y)=\sum_{\alpha, \beta} Q_{\alpha \beta}^{\left(x_{j}, r_{j}\right)}\left(x-x_{j}\right)^{\alpha}\left(y-r_{j}\right)^{\beta}
$$

where $Q_{\alpha \beta}^{\left(x_{j}, r_{j}\right)} \in \mathbf{F}_{q}$. If $Q_{\alpha \beta}^{\left(x_{j}, r_{j}\right)}=0$ for $\alpha+\beta<m$, then $Q(x, y)$ interpolates $\left(x_{j}, r_{j}\right)$ with a multiplicity of m.

- Example 7.8: Given a polynomial $Q(x, y)=\sigma(x-\sigma)\left(y-\sigma^{5}\right)^{2}+\sigma^{3}(x-\sigma)^{2}(y-$ $\left.\sigma^{5}\right)^{2}$, since $Q_{\alpha \beta}^{\left(\sigma, \sigma^{5}\right)}=0$ for $\alpha+\beta<3$, it interpolates $\left(\sigma, \sigma^{5}\right)$ with a multiplicity of 3 .

§ 7.4 Interpolation Based Decoding

- Given $Q(x, y)=\sum_{a, b} Q_{a b} x^{a} y^{b}$, the (α, β)-Hasse derivative evaluation at point $\left(x_{j}, r_{j}\right)$ is

$$
D_{\alpha, \beta}\left(Q\left(x_{j}, r_{j}\right)\right) \triangleq Q_{\alpha \beta}^{\left(x_{j}, r_{j}\right)}=\sum_{a \geq \alpha, b \geq \beta} Q_{a b}\binom{a}{\alpha}\binom{b}{\beta} x_{j}^{a-\alpha} r_{j}^{b-\beta}
$$

- Derivation: Given $Q(x, y)=\sum_{a, b} Q_{a b} x^{a} y^{b}$, it can also be written as

$$
Q(x, y)=\sum_{\alpha, \beta} Q_{\alpha \beta}^{\left(x_{j}, r_{j}\right)}\left(x-x_{j}\right)^{\alpha}\left(y-r_{j}\right)^{\beta}
$$

Since

$$
\begin{aligned}
& x^{a}=\left(x-x_{j}+x_{j}\right)^{a}=\sum_{a \geq \alpha}\binom{a}{\alpha}\left(x-x_{j}\right)^{\alpha} x_{j}^{a-\alpha}, \\
& y^{b}=\left(y-r_{j}+r_{j}\right)^{b}=\sum_{b \geq \beta}\binom{b}{\beta}\left(y-r_{j}\right)^{\beta} r_{j}^{b-\beta},
\end{aligned}
$$

we substitute them into $Q(x, y)$ and get

$$
\begin{aligned}
Q(x, y) & =\sum_{a, b} Q_{a b} \sum_{a \geq \alpha}\binom{a}{\alpha}\left(x-x_{j}\right)^{\alpha} x_{j}^{a-\alpha} \sum_{b \geq \beta}\binom{b}{\beta}\left(y-r_{j}\right)^{\beta} r_{j}^{b-\beta} \\
& =\sum_{\alpha, \beta} \sum_{a \geq \alpha, b \geq \beta} Q_{a b}\binom{a}{\alpha}\binom{b}{\beta} x_{j}^{a-\alpha} r_{j}^{b-\beta}\left(x-x_{j}\right)^{a-\alpha}\left(y-r_{j}\right)^{b-\beta} .
\end{aligned}
$$

Therefore, $Q_{\alpha \beta}^{\left(x_{j}, r_{j}\right)}=\sum_{a \geq \alpha, b \geq \beta} Q_{a b}\binom{a}{\alpha}\binom{b}{\beta} x_{j}^{a-\alpha} r_{j}^{b-\beta} \triangleq D_{\alpha, \beta}\left(Q\left(x_{j}, r_{j}\right)\right)$.

§ 7.4 Interpolation Based Decoding

- Interpolation Theorem: If $m\left|\left\{j: r_{j}=c_{j}\right\}\right|>\operatorname{deg}_{1, k-1} Q$, then $Q(x, u(x))=0$.
- Proof:
(1) If $Q(x, y)$ interpolates $\left(x_{j}, c_{j}\right)$ with a multiplicity of m, then

$$
Q(x, y)=\sum_{\alpha+\beta \geq m} Q_{\alpha \beta}^{\left(x_{j}, c_{j}\right)}\left(x-x_{j}\right)^{\alpha}\left(y-c_{j}\right)^{\beta}
$$

(2) For the message $u(x), u\left(x_{j}\right)=c_{j}$. Replace c_{j} by $u\left(x_{j}\right)$,

$$
Q(x, y)=\sum_{\alpha+\beta \geq m} Q_{\alpha \beta}^{\left(x_{j}, c_{j}\right)}\left(x-x_{j}\right)^{\alpha}\left(y-u\left(x_{j}\right)\right)^{\beta}
$$

(3) Replace y by $u(x)$,

$$
\begin{aligned}
Q(x, u(x)) & =\sum_{\alpha+\beta \geq m} Q_{\alpha \beta}^{\left(x_{j}, c_{j}\right)}\left(x-x_{j}\right)^{\alpha}\left(u(x)-u\left(x_{j}\right)\right)^{\beta} \\
& =\sum_{\alpha+\beta \geq m} Q_{\alpha \beta}^{\left(x_{j}, c_{j}\right)}\left(x-x_{j}\right)^{\alpha}\left(\left(x-x_{j}\right) \Phi(x)\right)^{\beta} \\
& =\sum_{\alpha+\beta \geq m} Q_{\alpha \beta}^{\left(x_{j}, c_{j}\right)}\left(x-x_{j}\right)^{\alpha+\beta} \Phi^{\beta}(x)
\end{aligned}
$$

When $u\left(x_{j}\right)=c_{j},\left(x-x_{j}\right)^{m} \mid Q(x, u(x))$.

§ 7.4 Interpolation Based Decoding

(4) Since $Q(x, y)$ interpolates $\left(x_{0}, r_{0}\right),\left(x_{1}, r_{1}\right), \ldots \ldots,\left(x_{n-1}, r_{n-1}\right)$ with a multiplicity of m, then $\left(x-x_{j}\right)^{m} \mid Q(x, u(x))$ holds if $r_{j}=c_{j}$ (or $e_{j}=0$).

$$
\square \prod_{j: r_{j}=c_{j}}\left(x-x_{j}\right)^{m} \mid Q(x, u(x))
$$

(5) In what condition will $Q(x, u(x))=0$?

The total number of roots of $Q(x, u(x)): m\left|\left\{j: r_{j}=c_{j}\right\}\right|$
Degree of $Q(x, u(x)): \operatorname{deg}_{x} Q+(k-1) \operatorname{deg}_{y} Q=\operatorname{deg}_{1, k-1} Q$
(6) Therefore, if $m\left|\left\{j: r_{j}=c_{j}\right\}\right|>\operatorname{deg}_{1, k-1} Q$, then $Q(x, u(x))=0$.

- The GS algorithm can correct $n-\left|\left\{j: r_{j}=c_{j}\right\}\right|$ errors.
- The interpolation problem is how to find the smallest $Q(x, y)$.

§ 7.4 Interpolation Based Decoding

- Monomial ordering

- The (1,k-1)-weighted degree of monomial $x^{a} y^{b}$:

$$
\operatorname{deg}_{1, k-1} x^{a} y^{b}=a+(k-1) b
$$

- The (1,k-1)-lexicographic order (ord): ord $\left(x^{a_{1}} y^{b_{1}}\right)<\operatorname{ord}\left(x^{a_{2}} y^{b_{2}}\right)$ if $\operatorname{deg}_{1, k-1} x^{a_{1}} y^{b_{1}}$ $<\operatorname{deg}_{1, k-1} x^{a_{2}} y^{b_{2}}$, or $\operatorname{deg}_{1, k-1} x^{a_{1}} y^{b_{1}}=\operatorname{deg}_{1, k-1} x^{a_{2}} y^{b_{2}}$ and $b_{1}<b_{2}$.
- Example 7.9: In order to decode a (7, 3) RS code, (1, 2)-weighted degree and (1, 2)lexicographic order of monomial $x^{a} y^{b}$ are used.

b	0	1	2	3	4	5	6	7	8	\cdots
0	0	1	2	3	4	5	6	7	8	\cdots
1	2	3	4	5	6	7	8	9	10	\cdots
2	4	5	6	7	8	9	10	11	12	\cdots
3	6	7	8	9	10	11	12	13	14	\cdots
\vdots										

(1, 2)-weighted degree

b	0	1	2	3	4	5	6	7	8	\cdots
0	0	1	2	4	6	9	12	16	20	\cdots
1	3	5	7	10	13	17	21	\cdots		
2	8	11	14	18	22	\cdots				
3	15	19	23	\cdots						
\vdots										

(1,2)-lexicographic order

§ 7.4 Interpolation Based Decoding

- Polynomial ordering

- Any nonzero bivariate polynomial $Q(x, y)$ can be written as

$$
Q(x, y)=Q_{0} M_{0}+Q_{1} M_{1}+\cdots \cdots+Q_{T} M_{T},
$$

where $Q_{0}, Q_{1}, \ldots \ldots, Q_{T} \in \mathbf{F}_{q}$ and $Q_{T} \neq 0, M_{0}<M_{1}<\cdots \cdots<M_{T}$ are monomials.

- The $(1, k-1)$-weighted degree of $Q(x, y)$ is

$$
\operatorname{deg}_{1, k-1} Q(x, y)=\operatorname{deg}_{1, k-1} M_{T} .
$$

- Leading order (lod) of $Q(x, y)$ is

$$
\operatorname{lod}(Q(x, y))=\operatorname{ord}\left(M_{T}\right)=T
$$

- Example 7.10: Given a polynomial $Q(x, y)=1+x^{2}+x^{2} y+y^{2}$, applying the (1, 2)lexicographic order, it has leading monomial $M_{T}=y^{2}$. Therefore, $\operatorname{deg}_{1,2}(Q(x, y))=$ $\operatorname{deg}_{1,2} y^{2}=4$ and $\operatorname{lod}(Q(x, y))=\operatorname{ord}\left(y^{2}\right)=8$.
- Given two polynomials $Q_{1}(x, y)$ and $Q_{2}(x, y), Q_{1} \leq Q_{2}$ if $\operatorname{lod}\left(Q_{1}\right) \leq \operatorname{lod}\left(Q_{2}\right)$.

§ 7.4 Interpolation Based Decoding

- Decoding parameters: error-correction capability τ_{m} and maximum output list size l_{m}.
- Let

$$
\begin{aligned}
& S_{x}(K)=\max \left\{a: \operatorname{ord}\left(x^{a} y^{b}\right) \leq K\right\} \\
& S_{y}(K)=\max \left\{b: \operatorname{ord}\left(x^{a} y^{b}\right) \leq K\right\}
\end{aligned}
$$

- The number of iterations in the interpolation process is

$$
C=n\binom{m+1}{2}
$$

- Error-correction capability is

$$
\tau_{m}=n-1-\left\lfloor\frac{S_{x}(C)}{m}\right\rfloor .
$$

- Maximum output list size is

$$
l_{m}=S_{y}(C)
$$

- Example 7.11: To decode the $(63,21)$ RS code defined over \mathbf{F}_{64}, we obtain

m	1	2	3	5	16
τ_{m}	21	24	25	26	27
l_{m}	2	3	5	9	28

The BM algorithm can correct $\left\lfloor\frac{n-k}{2}\right\rfloor=21$ errors.

§ 7.4 Interpolation Based Decoding

- Koetter's interpolation

- Hasse deriv. eval.: $D_{\alpha, \beta}\left(Q\left(x_{j}, r_{j}\right)\right)=Q_{\alpha \beta}^{\left(x_{j}, r_{j}\right)}=\sum_{a \geq \alpha, b \geq \beta} Q_{a b}\binom{a}{\alpha}\binom{b}{\beta} x_{j}^{a-\alpha} r_{j}^{b-\beta}$
- Two properties of Hasse derivative evaluation
(1) Linear functional: Let $Q_{1}, Q_{2} \in \mathbf{F}_{q}[x, y], d_{1}, d_{2} \in \mathbf{F}_{q}$, then

$$
D\left(d_{1} Q_{1}+d_{2} Q_{2}\right)=d_{1} D\left(Q_{1}\right)+d_{2} D\left(Q_{2}\right)
$$

(2) Bilinear Hasse derivative: Let $Q_{1}, Q_{2} \in \mathbf{F}_{q}[x, y]$, then

$$
\left[Q_{1}, Q_{2}\right]_{D} \triangleq Q_{1} D\left(Q_{2}\right)-Q_{2} D\left(Q_{1}\right)
$$

With property (1), we have $D\left(\left[Q_{1}, Q_{2}\right]_{D}\right)=D\left(Q_{1}\right) D\left(Q_{2}\right)-D\left(Q_{2}\right) D\left(Q_{1}\right)=0$.

- If $\operatorname{lod}\left(Q_{1}\right)>\operatorname{lod}\left(Q_{2}\right),\left[Q_{1}, Q_{2}\right]_{D}$ has leading order $\operatorname{lod}\left(Q_{1}\right)$. Therefore, by performing the bilinear Hasse derivative over two polynomials both of which have nonzero evaluations, a polynomial can be reconstructed, which has a zero evaluation.

§ 7.4 Interpolation Based Decoding

- Koetter's interpolation

- An iterative polynomial construction algorithm
- Find the minimum ($1, k-1$)-weighted degree polynomial $Q(x, y)$ that satisfies

$$
Q(x, y)=\min _{\operatorname{lod}(Q)}\left\{\begin{array}{c}
Q(x, y) \in \mathbf{F}_{q}[x, y] \mid D_{\alpha, \beta}\left(Q\left(x_{j}, r_{j}\right)\right)=0 \text { for } j=0,1, \ldots, n-1 \\
\text { and } \alpha+\beta<m
\end{array}\right\} .
$$

- Iteratively modify a set of polynomials through all n points with every possible (α, β) pair. With a multiplicity of m, there are $\binom{m+1}{2}$ pairs of (α, β), i.e., $(0,0),(0,1), \ldots$, $(0, m-1),(1,0), \ldots,(1, m-2), \ldots,(m-1,0)$.
- For an (n, k) RS code, there are $C=n\binom{m+1}{2}$ interpolation constraints. This means that we need C iterations to construct the interpolation polynomial $Q(x, y)$.

§ 7.4 Interpolation Based Decoding

- Koetter's interpolation

- At the beginning, a group of polynomials are initialized as

$$
\mathbf{G}=\left\{Q_{0}(x, y), Q_{1}(x, y), \ldots, Q_{l_{m}}(x, y)\right\}=\left\{1, y, y^{2}, \ldots, y^{l_{m}}\right\}
$$

- For each point $\left(x_{j}, r_{j}\right)$ and each (α, β) pair, calculate Hasse derivative for each Q_{i}, i.e.,

$$
\Delta_{i}=D_{\alpha, \beta}\left(Q_{i}\left(x_{j}, r_{j}\right)\right)
$$

- Those polynomials with $\Delta_{i}=0$ do not need to be updated.

- Polynomial updating

Let $i^{*}=\operatorname{argmin}_{i}\left\{Q_{i}(x, y) \mid \Delta_{i} \neq 0\right\}$ and $Q^{*}(x, y)=Q_{i^{*}}(x, y)$.
For those polynomials with $\Delta_{i^{\prime}} \neq 0$ but $i^{\prime} \neq i^{*}$, update them (using Property (2) of
Hasse derivative) without the leading order increasing as

$$
Q_{i^{\prime}}(x, y)=\left[Q_{i^{\prime}}(x, y), Q^{*}(x, y)\right]_{D}=\Delta_{i^{*}} Q_{i^{\prime}}(x, y)-\Delta_{i^{\prime}} Q^{*}(x, y) .
$$

For $Q_{i^{*}}(x, y)$ itself, it is updated with the leading order increasing as

$$
Q_{i^{*}}(x, y)=\left[x Q^{*}(x, y), Q^{*}(x, y)\right]_{D}=\Delta_{i^{*}}\left(x-x_{j}\right) Q^{*}(x, y)
$$

§ 7.4 Interpolation Based Decoding

- Pseudo program of Koetter's interpolation

Koetter's interpolation

1: Initialization: $\mathbf{G}=\left\{Q_{0}(x, y), Q_{1}(x, y), \ldots, Q_{l_{m}}(x, y)\right\}=\left\{1, y, y^{2}, \ldots, y^{l_{m}}\right\}$
2: \quad For $j=0$ to $n-1$ do
3: \quad For $(\alpha, \beta)=(0,0)$ to $(m-1,0)$ do
4: \quad For $i=0$ to l_{m} do
5:
6: $\quad I=\left\{i \mid \Delta_{i} \neq 0\right\}$
7: \quad If $I \neq \emptyset$ do
8:
$i^{*}=\operatorname{argmin}_{i}\left\{Q_{i}(x, y) \mid \Delta_{i} \neq 0\right\}$
$Q^{*}(x, y)=Q_{i^{*}}(x, y)$
For $i^{\prime} \in I$ do
If $i^{\prime} \neq i^{*}$ do
$\left.\begin{array}{r}Q_{i^{\prime}}(x, y)=\Delta_{i^{*}} Q_{i^{\prime}}(x, y)-\Delta_{i^{\prime}} Q^{*}(x, y) \\ \text { Else if } i^{\prime}=i^{*} \mathbf{d o}\end{array}\right\}$ Use property (2) of Hasse derivative

$$
Q_{i^{*}}(x, y)=\Delta_{i^{*}}\left(x-x_{j}\right) Q^{*}(x, y)
$$

15: Output: $Q(x, y)=\min \left\{Q_{0}(x, y), Q_{1}(x, y), \ldots, Q_{l_{m}}(x, y)\right\}$

§ 7.4 Interpolation Based Decoding

- Example 7.12: Given the received word generated in Example 7.6, i.e.,

$$
\bar{r}=\left(\sigma^{5}, \sigma^{4}, \sigma^{3}, \sigma^{0}, \sigma^{4}, \sigma^{2}, \sigma^{5}\right)
$$

The interpolation points are $\left(\sigma^{0}, \sigma^{5}\right),\left(\sigma^{1}, \sigma^{4}\right),\left(\sigma^{2}, \sigma^{3}\right),\left(\sigma^{3}, \sigma^{0}\right),\left(\sigma^{4}, \sigma^{4}\right),\left(\sigma^{5}, \sigma^{2}\right)$, (σ^{6}, σ^{5}).
Let $m=1$, then $C=7$ and $l_{m}=1$. Initialize $\mathbf{G}=\{1, y\}$. Running Koetter's interpolation, we obtain

j	(α, β)	Δ_{0}	Δ_{1}	$\operatorname{lod}\left(Q_{0}\right) \operatorname{lod}\left(Q_{1}\right)$	i^{*}	\mathbf{G}	
0	$(0,0)$	σ^{0}	σ^{5}	0	3	0	$\left\{1+x, \sigma^{5}+y\right\}$
1	$(0,0)$	σ^{3}	1	1	3	0	$\left\{\sigma^{4}+\sigma^{6} x+\sigma^{3} x^{2}, \sigma^{3}+x+\sigma^{3} y\right\}$
2	$(0,0)$	σ^{6}	σ	2	3	0	$\left\{\sigma^{5}+\sigma x+x^{2}+\sigma^{2} x^{3}, \sigma^{3}+\sigma^{2} x+\sigma^{4} x^{2}+\sigma^{2} y\right\}$
3	$(0,0)$	σ	σ^{3}	4	3	1	$\left\{\sigma^{2}+\sigma^{6} x+\sigma^{2} x^{2}+\sigma^{5} x^{3}+\sigma^{3} y, \sigma^{2}+\sigma^{5} x+\sigma^{2} x^{2}+x^{3}+\left(\sigma+\sigma^{5} x\right) y\right\}$
4	$(0,0)$	σ^{4}	σ^{4}	4	5	0	$\left\{\sigma^{3}+\sigma^{2} x+\sigma^{2} x^{4}+\left(\sigma^{4}+x\right) y, \sigma^{5} x+\sigma x^{3}+\left(\sigma^{4}+\sigma^{2} x\right) y\right\}$
5	$(0,0)$	σ^{2}	σ^{4}	6	5	1	$\left\{1+\sigma^{2} x+\sigma^{3} x^{3}+\sigma^{6} x^{4}+\sigma^{5} y, x+\sigma^{2} x^{2}+\sigma^{3} x^{3}+\sigma^{5} x^{4}+\left(\sigma^{6}+\sigma^{2} x+\sigma^{6} x^{2}\right) y\right\}$
6	$(0,0)$	σ^{6}	0	6	7	0	$\left\{\begin{array}{c}5 \\ \sigma^{5}+\sigma^{2} x+\sigma x^{2}+\sigma x^{3}+\sigma x^{4}+\sigma^{5} x^{5}+\left(\sigma^{3}+\sigma^{4} x\right) y, \\ \left.x+\sigma^{2} x^{2}+\sigma^{3} x^{3}+\sigma^{5} x^{4}+\left(\sigma^{6}+\sigma^{2} x+\sigma^{6} x^{2}\right) y\right\}\end{array}\right.$

Since $\operatorname{lod}\left(Q_{0}(x, y)\right)=9, \operatorname{lod}\left(Q_{1}(x, y)\right)=7$, the interpolation polynomial $Q(x, y)=$ $Q_{1}(x, y)=x+\sigma^{2} x^{2}+\sigma^{3} x^{3}+\sigma^{5} x^{4}+\left(\sigma^{6}+\sigma^{2} x+\sigma^{6} x^{2}\right) y$.

§ 7.4 Interpolation Based Decoding

- Factorization: Recursive coefficients search algorithm
- Let $f(x)=f_{0}+f_{1} x+f_{2} x^{2}+\cdots+f_{k-1} x^{k-1}$ denote a y-root of $Q(x, y)$. Factorization can be realized through recursively deducing $f_{0}, f_{1}, f_{2}, \ldots, f_{k-1}$ one by one.
- For any bivariate polynomial, if h is the highest degree such that $x^{h} \mid Q(x, y)$, we define

$$
Q^{\prime}(x, y)=\frac{Q(x, y)}{x^{h}}
$$

- Denote $Q_{0}(x, y)=Q^{\prime}(x, y)$, we define the recursively updated polynomial $Q_{s}(x, y)$ ($s \geq 1$) as

$$
Q_{s}(x, y)=Q_{s-1}^{\prime}\left(x, x y+f_{s-1}\right)
$$

where f_{s-1} is the roots of $Q_{s-1}(0, y)=0$.

- Pseudo program of factorization

Factorization

1: Initialization: $Q_{0}(x, y)=Q^{\prime}(x, y), s=0$
2: Find roots f_{s} of $Q_{s}(0, y)=0$
3: \quad For each f_{s}, perform $Q_{s+1}(x, y)=Q_{s}^{\prime}\left(x, x y+f_{s}\right)$
4: $\quad s=s+1$
5: If $s<k$, go to Step 2. If $s=k$ and $Q_{s}(x, 0) \neq 0$, stop this deduction root. If $s=k$
and $Q_{s}(x, 0)=0$, trace the deduction root to find $f_{s-1}, \ldots, f_{1}, f_{0}$.

§ 7.4 Interpolation Based Decoding

- Example 7.13: Given the interpolation polynomial $Q(x, y)$ obtained in Example 7.12, initialize $Q_{0}(x, y)=Q^{\prime}(x, y)=\left(x+\sigma^{2} x^{2}+\sigma^{3} x^{3}+\sigma^{5} x^{4}\right)+\left(\sigma^{6}+\sigma^{2} x+\sigma^{6} x^{2}\right) y$ and $s=0$. Then, $Q_{0}(0, y)=\sigma^{6} y$ and $f_{0}=0$ is the root of $Q_{0}(0, y)=0$.
Update $Q_{1}(x, y)=Q_{0}^{\prime}\left(x, x y+f_{0}\right)=\left(1+\sigma^{2} x+\sigma^{3} x^{2}+\sigma^{5} x^{3}\right)+\left(\sigma^{6}+\sigma^{2} x+\right.$ $\left.\sigma^{6} x^{2}\right) y$ and $s=s+1=1$.
As $s<k$, go to Step 2.
Then, $Q_{1}(0, y)=1+\sigma^{6} y$ and $f_{1}=\sigma$ is the root of $Q_{1}(0, y)=0$.
Update $Q_{2}(x, y)=Q_{1}^{\prime}\left(x, x y+f_{1}\right)=\left(\sigma^{5}+\sigma x+\sigma^{5} x^{2}\right)+\left(\sigma^{6}+\sigma^{2} x+\sigma^{6} x^{2}\right) y$ and $s=s+1=2$.
As $s<k$, go to Step 2.
Then, $Q_{2}(0, y)=\sigma^{5}+\sigma^{6} y$ and $f_{2}=\sigma^{6}$ is the root of $Q_{2}(0, y)=0$.
Update $Q_{3}(x, y)=Q_{2}^{\prime}\left(x, x y+f_{2}\right)=\left(\sigma^{6}+\sigma^{2} x+\sigma^{6} x^{2}\right) y$ and $s=s+1=3$.
As $s=k$ and $Q_{3}(x, 0)=0$, trace this deduction root to find the coefficients $f_{0}=0$, $f_{1}=\sigma, f_{2}=\sigma^{6}$. Therefore, the factorization output is $f(x)=\sigma x+\sigma^{6} x^{2}$. According to Example $7.4 f(x)$ matches the transmitted message polynomial $u(x)$.

§ 7.4 Interpolation Based Decoding

- Performance of the $(63,21)$ RS code over the AWGN channel using BPSK

