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§ 7.1 Finite Field Algebra

— Nonbinary codes: message and codeword symbols are represented in a finite field of
size ¢, and g>2.

— Advantage of presenting a code in a nonbinary image.

A binary codeword sequence in {0,1}
bO bl b2 b3 b4 b5 b6 b? b8 b9 b10 bll b12 blq b14 b15 b16 bl?

(o

b18 b19 b20

A nonbinary codeword sequence in {0, 1, 2, 3,4, 5, 6, 7}
Col|Cy|C, C3|Cyl C5 Cq

- where the channel error occurs

8 bit errors are treated as 3 symbol errors in a nonbinary image




§ 7.1 Finite Field Algebra

— Finite field (Galois field) F;:a set of g elements that perform * + 7 - X > />
without leaving the set.

— Let p denote a prime, e.g., 2, 3,5, 7, 11, ---, itisrequiredq=porq=p?(fisa
positive integer greater than 1). If g = p’, F, is an extension field of F,.

— Example 7.1: “+ > and “ X ”in F.

F,={0,1}
+ o 1 L all in
o110 1 0 0 0 modulo-2
1 1 0 1 0 1

F-={0,1,2,3,4}

+ 0 1 2 3 4 x 0 1 2 3 4

0 0 1 2 3 4 0 0 0 0 0 0 all in

1 1 2 3 4 0 1 0 1 2 3 4 modulo-5
2 2 3 4 0 1 2 0 2 4 1 3

3 3 4 0 1 2 3 0 3 1 4 2

4 4 0 1 2 3 4 0 4 3 2 1




§ 7.1 Finite Field Algebra

—“-"and “/” can be performed as “ +  and “ X ” with additive inverse and
multiplicative inverse, respectively.
Additive inverse of a a a'+a=0and a'=-a
Multiplicative inverseofa a': a'*a=1and a'=1/a

— -7 operation:
Leth,aeF,.
h-a=h+(-a)=h+a"
Eg,inF;,1-3=1+(-3)=1+2=3;

— [ operation:
Leth,a €F,.
h/a=hXa'
Eg.,inF;,2/3=2X(1/3)=2X2=4.



§ 7.1 Finite Field Algebra

— Nonzero elements of F, can be represented using a primitive element o such that
F~{0,1, 0, 0% -, 0%}

— Primitive element o of F: 0 € F, and unity can be produced by at least
o ol}-[o=1,0ro%t=1, all in modulo-q
g-1

E.g.,in F;, 24=1and 3*=1. Here, 2 and 3 are the primitive elements of F..

— Example 7.2: In F,
If 2 is chosen as the primitive element, then
Fe={0,1,23,4}={0,2° 2% 23 22}={0, 1, 2%, 23,22}
If 3 is chosen as the primitive element, then
F-={0,1,2,3,4}={0,3°333%,32}={0,1, 33332}



§ 7.1 Finite Field Algebra
T —S—S—S—_—_..

— If F, is an extension field of F, such as g = p?, elements of F, can also be represented
by 6-dimensional vectors in F,.

— Primitive polynomlal p(x) of F, (@ = p?): an irreducible polynomial of degree 6 that
divides x* " —1 but not other polynomlals x?- 1 with @ <p?-1
E.g., in Fg, the primitive polynomial p(x) = x3+ x + 1 divides x’- 1, but not x6-1, x°-1,

x4-1, x3-1.

— If variable ¢ Is a root of p(x) such that p() = 0, elements of F, can be represented in
the form of
Wy 0%t + W, ,0%2 + ...+ wot + wyo?
where W, Wy, ... \Wg,, Wy e Fp, Or alteratively in
(Wp.1, Wop, == Wq, Wp)



§ 7.1 Finite Field Algebra

— Example 7.3: If p(x) = x3+ x + 1 is the primitive polynomial of Fg, and symbol ¢
satisfies 03+ 6 + 1 = 0, then

Fg W,02 + W, + Wyo° W, W, W,
0 0 0 0 O
1 1 0 0 1
o 0 0 1 0
0? 02 1 0 0
a3 o+1 0 1 1
o* 0>+ 0 1 1 0
oo #’+o+1 1 11
o° 02+ 1 1 0 1




§ 7.1 Finite Field Algebra

— Representing Fo= {0,1,0, ---, 092}, < X 7« /7«4 7<_”gperations become

“ g X gl = gl D% (@-1)
E.g., inFg 0* X ¢®=c**9%7= g2

“/» gifgl=gli-D%@-1)

E.g.,inFg, 0%/ 6°>=cl#-9%7= g5

“+ 7 if o' = Wy 00+ Wy 002+ -+ Wd°
(&“-7") dd=w'y 00t + W' ,002+ -+ W' 3°
o'+ 0 = (Wyg + W )00+ (W + W) 072 + ==t (W + W')d0
Eg.,inFgo*+0°=0>+5+5°+5+1=1



§ 7.2 Reed-Solomon Codes

— An RS codel®! defined over F, 1s characterized by its codeword length n =q - 1,
dimension k < n and the minimum Hamming distance d. It is often denoted as an
(n, k) (or (n, k, d) ) RS code.

— It Is @ maximum distance separable (MDS) code such that
d=n-k+1

— It is a linear block code and also cyclic.

— The widely used RS codes include the (255, 239) and the (255, 223) codes both of
which are defined in Fg.

[1] L. Reed and G. Solomon, “Polynomial codes over certain finite fields,” J. Soc. Indust. Appl. Math, vol. 8, pp. 300-304, 1960.



§ 7.2 Reed-Solomon Codes

— Notations

F, [X], a univariate polynomial ring over F, i.e., f(X) =§, X and f, eF,.

F, [X, y], a bivariate polynomial ring over F, i.e., F(x,y) :_ZNfiniyj and fi €F,.
I, je
Fq., » - dimensional vector over F.
— Encoding of an (n, k) RS code.
Message vector U = (u,,u;,U,,--,U, ;) € |:qk
Message polynomial

u(x) =ty +u,x +u,x" +-+u,_ x"" e F [x]
Codeword

€ = (U, u(e),u(c?), -, u(c™) e Fy

1,o,0%--,0"" are the g - 1 nonzero elements of F,- They are often called code
locators. Note that the above evaluation order can be arbitrary.



§ 7.2 Reed-Solomon Codes

— Encoding of an (n, k) RS code in a linear block code fashion
c=U0-G
(00)0 (O_l)O Ve (Gn—l)O
(00)1 (61)1 (Gn—l)l
= (Ug, Uy, U )| : : .

(GO)k—l (O_l)k—l (Gn—l)k—l

— Example 7.4: For a (7, 3) RS code that is defined in F; , if the
message is U = (U,,U;,u,) =(0,0,5°) ,
the message polynomial will be u(x) =ox+0c°x*, and
the codeword can be generated by
« T=@u@),u(o),u(c?),u(c’),u(c"),u(c’),u(c®)) =(c’,0%,0,1,0*,1,0°)
1 1 1 1 1 1 1]
*C=u-G =(0,0',0'6)- 1 o' o° o o o o° =(c°,0%,0,1,0%1,0°)

2 4 6 1 3 _5
1l o©f o0 o o o o




§ 7.2 Reed-Solomon Codes

— MDS property of RScodesd=n-k+1
— Singleton bound for an (n, k) linear block code, d<n-k+1
— u(x) has at most k - 1 roots. Hence, C has at most k - 1 zeros and
d,. =(,0)>n-k+1

— Parity-check matrix of an (n, k) RS code

(O_O)l (O_l)l (Gn_l)l

(60)2 (0_1)2 (Jn—l)Z

H=

c-H =z=0-G-H =0 < an n - k all zero vector



§ 7.2 Reed-Solomon Codes

— Insight of G-H'

(GO)O (O_l)O (Gn—l)O _(0_0)1 (0_0)2 (GO)nfk
(00)1 (Gl)l (Gn—l)l | (O_l)l (0_1)2 (O_l)n—k
(GO)kfl (Gl)kfl ... (Un—l)kfl (Gn—l)l (Gn—l)Z .. (Gn—l)n—k

—Leti=0,1---k-1,j=0,1, --,n-1,v=1,2, -, n-Kk
Entries of G can be denotedas [G ];; = (&)
Entries of HT can be denoted as [HT ];,, = (& )"
Entries of G HT is -
[G'HT]i,v—l :ZO(Gj)i ’(O-j)v
=

n_

— Z(O_j)iw — 0

n-1 )
Remark 1: v = 0 is illegitimate since D_(c”')’ #0
j=0



§ 7.2 Reed-Solomon Codes

— Perceiving HT as in _

(01)0 (02)0 .. (O_n—k)O
(01)1 (0_2)1 (Gn—k )1
(Jl)nfl (O_Z)nfl o (O_n—k)n—l

— Perceiving codeword € = (c,,c;,:--,C, ;) asin
c(X) =C, +CX+---+C X"

— €-H" =0 implies
c(c')=c(c?)=--=c(c")=0
1 2

o', o?,---,c"* are roots of RS codeword polynomial c(x).



§ 7.2 Reed-Solomon Codes

— An alternative encoding
— Message polynomial u(x) =u, +UxX+---+U,_,X
— Codeword polynomial ¢(X)=C, +CX+---+C X"
— ¢(x) =u(x)-g(x) and deg(g(x)) =n -k
—Since o*,0%,---,0" " are roots of c¢(x)
g(x) = (x=0")(x~°)-+(x=c"")
T The generator polynomial of an (n, k) RS code

— Systematic encoding
c(x) = x"*u(x) + (x" *u(x)) mod g(x)

k-1

— Example 7.5: For a (7, 3) RS code, its generator polynomial is
g(x) = (x—c)(x=0?)x-=)(x-c) =x*+** + x* +ox+0o°
Given message vector T = (U,,u,,u,)=(c*,1,0°) ,
the codeword can be generated by ¢(x) =u(x)-g(x)=(@,0°,0*,06°,0,0° 0°)
For systematic encoding, (x"_ku(x))mod g(x) = (x4 'u(x))mod g)=x"+o'x+0"

and the codewordis €=(c",0",0,1,0%1,0°)



S 7.3 Syndrome Based Decoding

— The channel: r(x) =c(x)+e(x)
c(X)=c, +CcX+---+C X" —codeword polynomial
e(X) =g, +eXx+---+e X" —error polynomial
r(x) =r+6x+--+r_x""  _ received word polynomial

—Letn-k=2t, o',0°,--,0" are roots of ¢(x)

— 2t syndromes can be determined as
S, =r(0),S,= r(c), -, Sy = r(c”)

If S;=35,="-=S, =0, r(x) is a valid codeword. Otherwise, €(x) # 0, error-correction
IS needed.



S 7.3 Syndrome Based Decoding

— If e(X) # 0, we assume there are o errors with €, #0,e; #0,---,e; #0,
—lLetv=1, 2, ---2t

n-1 n—1 n-1 w
_ v v _ v _ je v
S, —ZCJ-O' +Zej0' —Zeja —Zejr (™)
j=0 j=0 j=0 =1
— For simplicity, let X_=c', we can list the 2t syndromes by
ju— 1 l e o e 1
S =, Xy +e Xy+---+e; X,
= 2 2 e oo 2
S, =€, X +€, X, +--+¢ X
2t | 2t 2t
SZt:th1 +ej2X2 +---+eijw

— In the above non-linear equation group, there are 2w unknowns X;, X,,---, X,

€,.€,.- € . It will be solvable if 2 <2t. The number of correctable errors is
n—k
W< —-
2

—Since X, .e; €F,\{0}, an exhaustive search solution will have a complexity of O(n**).



S 7.3 Syndrome Based Decoding

— In order to decode an RS code with a polynomial-time complexity, the decoding is
decomposed into determining the error locations and error magnitudes, i.e.,
Xy X0 X, and €;,€; ,-++,€; , respectively.

— Error locator polynomial
AX) =] J(1-X,x)
=1

=A X +A, X AXFA,
(- (Ao :1)
X'=o Xt =07, X =0 " are roots of the polynomial such that
AX) =AX;N) =-=A(X,))=0.

— Determine A(x) by finding out A, A, 4,--+, and A, and its roots tell the error
locations.



S 7.3 Syndrome Based Decoding

— How to determine A, A, ;,---, and A, ?
Since A(X ) =A_X"+A, X+ -+ AX+A,=0
>le XYA(X ) =0, forv=1,2, --; 2t
=1 ﬂ

_ V—w V—o+1 v-1 \
=€ AKX T+ A X e A KT A X

V—o V—o+1 v-1 v
+e, ALK, e A XK T e A X T e AKX,

V—o V—o+l v-1 Y,
+eijwa +eijw_1Xw +---+eij1Xw +eij0Xw

=AS, +A_ S, . +-+AS,  +AS,

V—+1

AS, ,+A, S, .+ +AS,  +AS, =0

V—w+1

— Error locator polynomial can be determined using the syndromes.



S 7.3 Syndrome Based Decoding

N
—Listall AS, ,+A, S, .+ +AS,;+A,S, =0

V—w+1

v=1 AS, +AS, =
V=2 A,S, +AS, +A,S, =
v=3: NS, +ALS, +A182 +A,S; =
V=ow AS,+A, S + +A18 +A,S, n
SV = _ZArSV—T
v=w+1: AS +A, S, +--+AS +AS,,, =0 =
V=t 2 AyS; + A, Sy ++AS, +1AS,., =0
: . Remark 2:
V=2t AS,  +A, Syt AS, +AS, =0 | _ Sy Is not one of the
- —————— n - k syndromes.
Sl 82 Sa} Aa) Sw+l
SZ 83 Sa)+1 Aa)—l . Sw+2
_SZt—a) SZt—a)+l S2t—l L Al _ L SZt _




S 7.3 Syndrome Based Decoding

— Solving the linear system in finding A(x) has a complexity of O(@). It can be
facilitated by the Berlekamp-Massey algorithm[2 whose complexity is O(@®) .

— The Berlekamp-Massey algorithm can be implemented using the Linear Feedback
Shift Register. Its pseudo program is the follows.

The Berlekamp-Massey Algorithm

Input: Syndromes S;,S;,---, Sy ;
Output: A(x) ;
Initialization: r=0,(=0,z=-LA(X)=1T(X)=X;

1: Determine A= Z:ZOAiS,,M :

2 If A=0

3 TX)=xT(x) ;

4: r=r+1

5: If r<2t

6: Goto 1,

7 Else

8: Terminate the algorithm;
9: Else

10: Update A"(X) = A(X) —AT(x);
11: If ¢>r—z

12: A(X)=A"(X) s

13: Else

14: C=r—z; z=r—0; T =AX/A ; (=07 A(X)=A"(X);
15: TX)=xT(x) ;

16: r=r+l ;

17: If r<2t

18: Goto 1,

19: Else

20: Terminate the algorithm;

[2]J. L. Massey, “Shift register synthesis and BCH decoding,” IEEE Trans. Inf. Theory, vol. 15(1), pp. 122-127, 1969.



S 7.3 Syndrome Based Decoding
B T EEmEm—S—S—SS

— Example 7.6: Given the (7, 3) RS codeword generated in Example 7.5, after the

channel, the received word is
F=(c’,0"|0),0°% 0% 07 c%).

With the received word, we can calculate syndromes as
S,=r(o)=05",5,=r(c")=5°,5,=r(c)=05°,S, =r(c*) =c".

Running the above Berlekamp-Massey algorithm,we obtain

r Y z A(X) T(X) A
Of 0 |-1 1 X o’
11110 1-x X o
21 110 1-o°x X o
3| 2|1 1-o®x —oX? o’X—o°X° o’
4 1-o’x=X* o’x*—o°x’

Therefore, the error locator polynomial is A(x) =1-o°x—x2 InF;, o’and o“are its
roots. Therefore, I, and 5 are corrupted.



S 7.3 Syndrome Based Decoding
B TSRS

— Determine the error magnitudes €;.€; ,---,€; , so that the erroneous symbols can be

corrected by
C, =0 —€,,C, =, =€, -, ¢ =0 —¢

— The syndromes S _Ze X;,v=1,2, -2t Knowing X, =o*, X, =c%,--, X =o'

from the error location polynomlal A(X), the above syndrome definition |mpI|es

XPoxEo o xEe ] [,
X12 Xz2 Xaz) ejz _ Sz
_X12t X22t . Xj)t__ejw_ _Szt_

— Error magnitudes can be determined from the above set of linear equations.



S 7.3 Syndrome Based Decoding

— The linear equation set can be efficiently solved using Forney's algorithm.

— Syndrome polynomial )
S(X) = Sl + SZX 4ot SZtXZt—l — stxv_l

— Error evaluation polynomial (The key equation)
Q(x) = S(x)- A(x) mod x*

— Formal derivative of A(X)=A_X"+A_ X"+ -+ AX+A,
A'X)=oA X +(@-D)A, X7+ -+ A,

IS 2%
A, +A, +-+A, AN, +A,  ++A,

9] -1

— Error magnitude €; can be determined by |&; =— ( )




S 7.3 Syndrome Based Decoding

— Example 7.7: Continue from Example 7.6,
The syndrome polynomial is S(x) =S, +S,x+S,x* +S,X° = 6° + 6°x+ 6°x* + o°X°.
The error locator polynomial is A(X) =1-c°x—X*
The error evaluation polynomial is €(x) = S(x)- A(x) mod x* = o*x + &°,
Formal derivative of A(x) is A'(X) =0
Error magnitudes are

o)
PNCH
o),

0
Asaresult C,=,-6=0 Cc=rL-6=0



S 7.3 Syndrome Based Decoding

— BM decoding performances over AWGN channel with BPSK.

1.E+00

1.E-01

1.E-02

FER

1.E-03

1.E-04

1.E-05

SNR (dB)

=~ o
-, \ > ~ -
A
\ ~
~
~
~
~
~
~
N
N <« Uncoded
~
hY
N
AN
~
~
~
7
RS(63,47) /
RS(255,239) \«—RS(15, 9)
0 1 2 5 6 7 8 9 10




S 7.4 Interpolation Based Decoding

— Error-correction capability

Bounded minimum distance List decoding: Guruswami-
decoding: BM algorithm Sudan (GS) algorithm [3]
| d |

lI! III 1 1
\ 1
\ U
\ G
AY 4
\ 4
~ 7’
~

rBM—{d ‘ r_‘ t6s =n— |Vnlk — D| ~ 1 = tyu

[3] V. Guruswami and M. Sudan, “Improved decoding of Reed-Solomon and algebraic-geometric codes,” IEEE Trans. Inform.
Theory, vol. 45, no. 6, pp. 1757-1767, Sept. 1999.



S 7.4 Interpolation Based Decoding

B
— Fraction of number of correctable errors

TBM=1_R Tﬁzl_\/ﬁ
n 2 n

0.8

GS
0.6
0.4

0.2 BM




S 7.4 Interpolation Based Decoding

— GS algorithm
Code locators: x = {xq, X1, ... ... , Xn-1}
Received word: 7 = {ry, 1y, ... ... , Tn—1}
Interpolation points: (xg,1y), (x1,77), =+ , (X1, Tn—-1)

— Interpolation: Generate the minimum bivariate polynomial Q (x, y) that interpolates

the n points with a multiplicity of m.

— Factorization: Find the y-roots of Q(x, y) such that a list of polynomials can be

obtained as
L= {f(x): Q(x,f(x)) = 0anddeg f(x) < k}.

All the polynomials in L have the possibility of being the transmitted message u(x).

— Interpolation dominates the GS decoding complexity.



S 7.4 Interpolation Based Decoding

B TTTTTTTTTTTTTTTTEEmESSSS
— What is “multiplicity”?

— Given a polynomial Q(x,y) = X, , Qapx®y?, it can also be written with respect to point
(x7,75) as
B
0 y) = Zup O = )" (v = 1),
where Q( i) ¢ F,.If Q(x’ ") 2 0 for a + B < m, then Q(x, y) interpolates (x;, ;) with a

multiplicity of m.

— Example 7.8: Given a polynomial Q(x,y) = 6(x — 0)(y —6°)? + 63(x — 0)?*(y —

5
a>)?, since Qg;);a ) = 0fora + B < 3, it interpolates (o, o°) with a multiplicity of 3.



S 7.4 Interpolation Based Decoding

BT
— Given Q(x,y) = Xq , Qupx®y?, the (a, B)-Hasse derivative evaluation at point (x;,7;) is

“.B(Q(xl T})) (x] r]) Za>ab>ﬁ Qab(a)( ) T aT]'b 'B.

— Derivation: Given Q(x,y) = Za’b Qabx y? | it can also be written as

Q) = Ta s 050 (x — %) (v — 1),

Since
x® = (x — Xt x]) = Za>a(a)(x - x])a e

B
yb=(y—rj+7‘j) =Zb2,8([;)(y_rj) 7}'b g

we substitute them into Q (x, y) and get
0, Y) = Zap ab aza(2) (¥ = %) %7~ Tpap (5) = 1) """
= Y Zazapes Qv () (§) 5~ P (e =) "y =1)"".
Therefore, Q( i) - = Yasabsp Qab(“)( ) a-apl” fa DaB(Q(x] ]))



S 7.4 Interpolation Based Decoding

BT
— Interpolation Theorem: If m|{j:7; = ¢;}| > degy 1 Q, then Q(x, u(x)) = 0.
— Proof:
@ If Q(x,y) interpolates (x;, ¢;) with a multiplicity of m, then

Q00y) = Sanpem Qg (x = 3)" (v — )’
@ For the message u(x), u(x;) = ¢;. Replace ¢; by u(x;),

Xi,C a .B
Qx,y) = Za+ﬁ>mQ( 1 ])(x — %)) (3’ B “(xj)) '
(3 Replace y by u(x),

Xi,C a ﬁ

QG5 U(®)) = Saregam Ood P (x = 1) () - u(x)))
Xi,C a B

— Za+ﬁ>m Q( ) ])(x _ xj) ((X - xj)CD(x) )

= Sepam 0ot M (x = ) P ob ()

|:> When u(xj) = ¢j, (x — xj) |Q(x,u(x)).



S 7.4 Interpolation Based Decoding

@ Since Q(x, y) interpolates (xg,7g), (x1,71), vur oo, (X1, T—1) With a multiplicity
of m, then (x — x;)" |Q(x, u(x)) holds if r; = ¢; (or ; = 0).

— ]_[ (x = x)"10(x u()

jirj=
® In what condition will Q(x, u(x)) = 0?

The total number of roots of Q(x, u(x)): m|{j:1; = ¢}
Degree of Q(x, u(x)): deg,Q + (k — 1) deg, Q = deg; 1 Q

® Therefore, ifm|{j: = cj}| > deg x—1 Q, then Q(x,u(x)) = 0.
— The GS algorithm can correct n — |{j: r; = ¢;}| errors.

— The interpolation problem is how to find the smallest Q (x, y).



S 7.4 Interpolation Based Decoding

B TTTTTTTTTTTTTTTTEEmESSSS
— Monomial ordering

— The (1. k — 1)-weighted degree of monomial x%y?:
degq 1 x*y? =a+ (k—1)b

— The (1, k — 1)-lexicographic order (ord): ord(x*1y?1) < ord(x?2y?2) if deg, j_, x*1yP
< degy x_1 x%2yP2 or degy j_1 x*1yP1 = degy _1 x*2yP2 and b, < b,.

— Example 7.9: In order to decode a (7, 3) RS code, (1, 2)-weighted degree and (1, 2)-
lexicographic order of monomial x%y? are used.

00 12 3 456 7 8 | [p%o 1234556 78
00 1 2 3 4 5 6 7 8 00 1 2 4 6 9 12 16 20 --
112 3 4 5 6 7 8 9 10 - 113 5 7 10 13 17 21 -
214 5 6 7 8 9 10 11 12 - 2|8 11 14 18 22 -

36 7 8 9 10 11 12 13 14 - 3 (15 19 23 -

(1, 2)-weighted degree (1, 2)-lexicographic order



S 7.4 Interpolation Based Decoding

B TTTTTTTTTTTTTTTTEEmESSSS
— Polynomial ordering

— Any nonzero bivariate polynomial Q(x, y) can be written as
Q(x,y) = QoMp + Q1 My + -+ + QrMr,
where Qg, Q1, ... ... ,Qr €F and Q7 # 0, My < My < -+ < M are monomials.

— The (1, k — 1)-weighted degree of Q(x,y) is
degy k-1 Q(x,y) = degy k1 Mr.

— Leading order (lod) of Q(x,y) is
lod(Q(x, y)) = ord(M;) =T.

— Example 7.10: Given a polynomial Q(x,y) = 1 + x? + x?y + y?, applying the (1, 2)-
lexicographic order, it has leading monomial M; = y?2. Therefore, degl,z(Q(x, y)) =
deg,,y? = 4 andlod(Q(x,y)) = ord(y?) = 8.

— Given two polynomials Q; (x,y) and Q,(x,y), Q; < Q, iflod(Q;) < lod(Q,).



S 7.4 Interpolation Based Decoding

B TTTTTTTTTTTTTTTTEEmESSSS

— Decoding parameters: error-correction capability t,,, and maximum output list size [,,,.
— Let

S¢(K) = max{a: ord(x%y?) < K}

Sy(K) = max{b: ord(x%y?) < K}
— The number of iterations in the interpolation process is

+1
¢ = n(mz )

— Error-correction capability is

Tm=n—1—leT(C)|.

— Maximum output list size is

lm = Sy, (C).
— Example 7.11: To decode the (63, 21) RS code defined over F,, we obtain
m 1 2 3 5 16
T 21 24 25 26 27 The BM algorithm can correct

n—k
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— Koetter’s interpolation

— Hasse deriv. eval.: D, g (Q(xj, r,)) = Qi’j{’”) = Yasap=p Qan(g) (Z) xja—“n.b‘ﬂ
— Two properties of Hasse derivative evaluation
@ Linear functional: Let Q1, Q; € F_[x,y], d;,d, € F,, then
D(d,Qq + d;Q3) = d,;D(Q1) + d,D(Q5).
(@ Bilinear Hasse derivative: Let Q;,Q, € F, [x,y], then
[Qli QZ]D = QlD(QZ) _ QZD(Ql)
With property (1, we have D([Q4, Qz]p) = D(Q1)D(Q2) — D(Q2)D(Q,) = 0.
—Iflod(Q,) > 10d(Q-,), [Q4, Q-1p has leading order lod(Q,). Therefore, by performing

the bilinear Hasse derivative over two polynomials both of which have nonzero

evaluations, a polynomial can be reconstructed, which has a zero evaluation.
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— Koetter’s interpolation

— An iterative polynomial construction algorithm

— Find the minimum (1, k — 1)-weighted degree polynomial Q (x, y) that satisfies
0(x,y) = min Q(x,y) EF [x,¥]|Dgp (Q(xj,rj)) =0forj=01,..,n—1 |
lod(Q) anda+ B <m
— Iteratively modify a set of polynomials through all n points with every possible (a, )
pair. With a multiplicity of m, there are (m2+1) pairs of (a, B), i.e., (0,0),(0,1), ...,
(0,m —1),(1,0), ...,(1,m — 2), ..., (m — 1,0).

— For an (n, k) RS code, there are C = n(""z+ 1) interpolation constraints. This means that

we need C iterations to construct the interpolation polynomial Q(x, y).
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— Koetter’s interpolation

— At the beginning, a group of polynomials are initialized as

G={Qo(x,¥),0:(x,¥), ... Q0 (x, N} ={L1,y,¥% ..., ym}.
— For each point (xj,rj) and each («, B) pair, calculate Hasse derivative for each Q;, I.e.,
A; =Dqp (Qi(xj%)) -
— Those polynomials with A; = 0 do not need to be updated.
— Polynomial updating
Let i* = argmin;{Q;(x, y)|4; # 0} and Q*(x,y) = Q;+(x, y).

For those polynomials with A;» # 0 but i’ # i*, update them (using Property @) of
Hasse derivative) without the leading order increasing as

Qi’(x; 3’) — [Qi’(xr y)r Q*(xr Y)]D — Ai*Qi’(xJ y) - Ai'Q*(x' y)
For Q;«(x, y) itself, it is updated with the leading order increasing as

Qi+ (x,¥) = [xQ*(x, ), Q*(x, M)p = A+ (x — x;)Q*(x, ¥).
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— Pseudo program of Koetter’s interpolation

Koetter’s interpolation

1: Initialization: G = {Qo(x, y), Q1(x,y), ...,le(x, y)} ={1,y,y% ..,y'm}

2. Forj=0ton-1do

3: For (a,f) = (0,0) to (m — 1,0) do

4. Fori=0tol, do

S A; = Dag (Qilx:7))

6: I = {i|A; # 0}

7: IfI = @ do

8: [* = argmin;{Q;(x,y)|A; # 0}

9: Q*(x,y) = Qi+ (x,y)

10: Fori’ e I do

11: Ifi’ #i* do

12: Qi'.()f’,y_) N A Qu(xy) = Ay Q"(x,y) Use property 2 of Hasse derivative
13: Elseif i = i do to update polynomials
14: Qi+ (x,y) = Ay (x — x%)Q*(x,y) P POty '

15: OUtpUt: Q(X, y) = min{Qo(x, y): Ql(xi y): ey le (X, y)}
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— Example 7.12: Given the received word generated in Example 7.6, i.e.,
7= (0°0%030%0% 0% 0>
The interpolation points are (¢°,a°), (61,0%), (62,02), (63,0°), (%, 0%), (6°,02),
(a®, a°).
Letm=1,then C = 7 and [,, = 1. Initialize G = {1, y}. Running Koetter’s
Interpolation, we obtain

J | (@B) | Ao Ay [lod(Qo) lod(Qq) i G

0| @0 [o® o5 | o0 3 |o (1+x05+y)

11,0 |o® 1 1 3 0 {o*+ 0%x + 03x2%, 063 + x + 03y}

21 (0,0 [c® o 2 3 0 {6°+ox + x%2 + %x3,0% + 0%x + 0c*x% + 0%y}

310 o o3 4 3 1 {02 + 0% + 0%x% + 6°x3 + 03y,0% + 0%x + 0%x% + x3 + (0 + 0°x)y}

41 (0,0 |o* ot 4 5 0 {63+ 0%x + o%2x* + (6* + )y, 0°x + 0x® + (6* + 0%x)y}

5| (,0) |[o* o* 6 5 1 {1+ 0%x+03x3 +0%* + 0%y, x + 02x? + 03x3 + 65x* + (6® + 02x + 0%x?)y}
ool o] o v o] hmmimAniTasy

Since lod(Qo (x,y)) = 9,10d(Q4(x,y)) = 7, the interpolation polynomial Q(x,y) =
Q.(x,y) =x+0d%x? + 63x3 + 6°x* + (6® + 02%x + d%x?)y.
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— Factorization: Recursive coefficients search algorithm

—Let f(x) = fo + fix + fox% + -+ fr_1x* 1 denote a y-root of Q(x,y). Factorization
can be realized through recursively deducing f,, f1, f2, ---, fx—1 One by one.

— For any bivariate polynomial, if h is the highest degree such that x*|Q(x, y), we define

, Q(x,y
Q'(x,y) = ot
— Denote Q,(x,y) = Q'(x,y), we define the recursively updated polynomial Q.(x, y)

(s=1)as

Qs(x; y) = Q;—l(xl xy + fS—l)l
where f,_ is the roots of Q,_,(0,y) = 0.
— Pseudo program of factorization

Factorization

1: Initialization: Qy(x,y) = Q'(x,y),s =0

2:  Findroots f; of Q5(0,y) =0

3:  Foreach f, perform Qg1 (x,y) = Qs(x, xy + f5)

4: s=s+1

5. Ifs<k,gotoStep 2. If s = k and Q,(x,0) # 0, stop this deductionroot. If s = k
and Q¢ (x,0) = 0, trace the deduction root to find f;_4, ..., f1, fo.
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— Example 7.13: Given the interpolation polynomial Q(x, y) obtained in Example 7.12,
initialize Qy(x,y) = Q'(x,y) = (x + 02x%2 + 63x3 + 6°x*) + (6° + 0%x + 0%x?)y
and s = 0. Then, Q,(0,y) = o®y and f, = 0 is the root of Q,(0,y) = 0.

Update Q;(x,y) = Qp(x,xy + fo) = (1 + 0%x + 63x2 + 6°x3) + (6 + 0%x +
g®x?)yands=s+1=1.

Ass < k, go to Step 2.
Then, Q;(0,y) =1+ ¢®y and f; = o is the root of Q;(0,y) = 0.

Update Q,(x,y) = Q1 (x,xy + f1) = (6° + ox + 6°x2) + (¢® + 6%x + 0%x?)y and
s=s+1=2

As s <k, go to Step 2.

Then, Q,(0,y) = 6° + a®y and f, = ¢© is the root of Q,(0,y) = 0.
Update Q3(x,y) = Q5(x,xy + f») = (¢® + 6%x + 0%x?)yands=s+ 1 =3,
As s =k and Q;(x,0) = 0, trace this deduction root to find the coefficients f, = 0,

fi = o, f, = 0. Therefore, the factorization output is f(x) = ox + ¢®x?2. According to
Example 7.4 f(x) matches the transmitted message polynomial u(x).
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— Performance of the (63, 21) RS code over the AWGN channel using BPSK

1.E+00 {

g
1.E-01 §

1.E-02

i 1E-03 —BM
-GS (m=1)
1E-04 || = GS(Mm=2)
-GS (M =23)
1.E-05 || —<GS (m=5)
——GS (m = 16)
1.E-06
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