
Chapter 6 Turbo Codes

• 6.1 Introduction of Turbo Codes

• 6.2 Encoding of Turbo Codes

• 6.3 Decoding of Turbo Codes (Turbo Decoding)

• 6.4 Performance Analysis

§6.1 Introduction of Turbo Codes

- Invented by C. Berrou, A. Glavieux and P. Thitimajshima in 1993 [1].

- Integrate a couple of conv. codes in a parallel encoding structure. The two conv.

codes are called the constituent codes of a turbo code.

- Exploit the interplay between the decoders of the two constituent codes in a soft

information exchange decoding mechanism.

- Such a decoding mechanism is called turbo decoding, turbo decoding is NOT

limited to decode turbo codes, but to any (serially or parallelly) concatenated code.

- Shannon capacity can be approached with the existence of error floor.

[1] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit error-correcting coding and

decoding: turbo codes, ” Proc. ICC’ 93, pp. 1064-1047, Geneva, May 1993.

§6.1 Introduction of Turbo Codes

Why do we need code concatenation?

In BCJR decoding of a conv. code,

00

01

10

11

00

01

10

11

00

11

11
00

10
01

01
10

IN: 0

IN: 1

With a single conv. code, we do not have any knowledge of information bit 𝑢𝑡′ and the a

priori prob. 𝑃𝑎 𝑢𝑡′ = 0 = 𝑃𝑎 𝑢𝑡′ = 1 = 0.5. With a couple of conv. codes that share the

same information bits (but in different permutations), one decoder can gain the a priori prob.

of information bits 𝑢𝑡′ from the output of the other decoder, and vice versa. As a result,

BCJR decoding of each constituent code can be improved.

𝑢𝑡′/𝑐𝑡′
1 𝑐𝑡′

2

ΓΩ→Ω′ = 𝑃𝑎(𝑢𝑡′) ∙ 𝑃ch(𝑐𝑡′
1) ∙ 𝑃ch(𝑐𝑡′

2)

Ω′Ω

channel observations

a priori prob.

§6.1 Introduction of Turbo Codes

SISO Decod.

E.g.,

BCJR Decod.

𝑃𝑝, 𝑃𝑒

Extrinsic prob.: 𝑃𝑒 =
𝑃𝑝

𝑃𝑎
, the extra

knowledge (excluding the a priori prob.)

delivered by the SISO decoder.

A posteriori prob.: knowledge

about the information/coded

bits after the decoding. It is

used for estimation.

𝑃𝑎

A priori prob.: knowledge about

the information/coded bits before

the decoding. It is also called the

intrinsic prob.

§6.2 Encoding of Turbo Codes

Constituent codes: Recursive Systematic Conv. (RSC) codes. Normally, the two

constituent codes are the same.

Interleaver (Π): Generate a different information sequence (a permuted sequence) as

the input to the RSC encoder (2). Normally, it is a random interleaver.

Puncture: Control the code rate.

Π

RSC

Enc. (1)

RSC

Enc. (2)

Puncture

𝑢𝑡′

𝑢𝑡′

𝑝
𝑡′
(1)

𝑝
𝑡′
(2)

§6.2 Encoding of Turbo Codes

Π

RSC

Enc. (1)

RSC

Enc. (2)

Puncture

𝑢𝑡′
𝑢𝑡′

𝑝
𝑡′
(1)

𝑝
𝑡′
(2)

- Given the binary message sequence as ത𝑢 = [𝑢1, 𝑢2, ⋯ 𝑢𝑘], output of the turbo

encoder should be

ҧ𝑐 = [𝑢1 𝑝1
1
𝑝1

2
𝑢2 𝑝2

1
𝑝2

2
⋯ 𝑢𝑡′ 𝑝𝑡′

1
𝑝
𝑡′
2
⋯ 𝑢𝑘 𝑝𝑘

1
𝑝𝑘
(2)
].

- Rate of the turbo code is 1/3. To increase the rate to 1/2, we can use puncturing

whose pattern can be represented by
1 0
0 1

puncture 𝑝
𝑡′
(2)

when 𝑡′ is odd puncture 𝑝
𝑡′
(1)

when 𝑡′ is even.

- After puncturing, output of the turbo encoder should be

ҧ𝑐 = [𝑢1 𝑝1
1

𝑢2 𝑝2
2
⋯ 𝑢𝑘 𝑝𝑘

1
(𝑢𝑘 𝑝𝑘

(2)
)]

when 𝑘 is odd when 𝑘 is even.

§6.2 Encoding of Turbo Codes

Example 6.1 Given the turbo encoder shown below with constituent code of the (1, 1/5)8

conv. code. The puncturing pattern is
1 0
0 1

. The interleaving pattern is (8, 3, 7, 6, 9, 1,

10, 5, 2, 4). Determine the turbo codeword of message vector ത𝑢 = [1 0 0 1 0 1 1 0 0 0].

Π

𝑝
𝑡′
(1)

𝑝
𝑡′
(2)

𝑢𝑡′

Puncture

§6.2 Encoding of Turbo Codes

Input / Parity

00

01

10

11

00

01

10

11

0/0

1/1

1/0

0/1

0/0
1/1

1/0
0/1

Trellis of the (1, 1/5)8 conv. code

Output of the 1st constituent code is:

ҧ𝑝(1) = [1 0 1 1 1 0 0 0 0 0]

After interleaving, the permuted message

vector becomes

ത𝑢′ = [0 0 1 1 0 1 0 0 0 1]

Output of the 2nd constituent code is:

ҧ𝑝(2) = [0 0 1 1 1 0 1 0 1 1]

Before puncturing, the turbo codeword is

ҧ𝑐 = [110 000 011 111 011 100 101 000 001 001]

After puncturing, the turbo codeword is

ҧ𝑐 = [11 00 01 11 01 10 10 00 00 01]

The original message vector

ത𝑢 = [1 0 0 1 0 1 1 0 0 0]

§6.3 Decoding of Turbo Codes

- Turbo codeword ҧ𝑐 = [𝑢1 𝑝1
1
𝑝1

2
, 𝑢2 𝑝2

1
𝑝2

2
, ⋯ , 𝑢𝑘 𝑝𝑘

1
𝑝𝑘
(2)
].

- Assume the turbo codeword is transmitted using BPSK.

- Received symbol vector

ത𝑦 = [𝑦1
0
𝑦1

1
𝑦1

2
, 𝑦2

0
𝑦2

1
𝑦2

2
, ⋯ , 𝑦𝑘

0
𝑦𝑘

1
𝑦𝑘
(2)
].

- Interleaved message vector

ത𝑢′ = Π ത𝑢 = [𝑢1
′ , 𝑢2

′ , ⋯ , 𝑢𝑘
′].

- Interleaved (information) symbol vector

𝑦1
0 ′
, 𝑦2

0 ′
, ⋯ , 𝑦𝑘

0 ′
= Π([𝑦1

0
, 𝑦2

0
, ⋯ , 𝑦𝑘

(0)
]).

- Parameterization

§6.3 Decoding of Turbo Codes

- In BCJR (1), trellis transition probability is determined by

In BCJR (2), trellis transition probability is determined by

ΓΩ→Ω′ = 𝑃𝑎(𝑢𝑡′)𝑃ch(𝑢𝑡′)𝑃ch(𝑝𝑡′
(1)
).

ΓΩ→Ω′ = 𝑃𝑎(𝑢𝑡′
′)𝑃ch(𝑢𝑡′

′)𝑃ch(𝑝𝑡′
(2)
).

𝑦1
(0)
𝑦1
(1)

⋯𝑦𝑘
(0)
𝑦𝑘
(1)

𝑃ch 𝑢𝑡′ , 𝑃ch(𝑝𝑡′
(1)
)

Π Π Π−1

BCJR (1)

BCJR (2)
Π−1

ത𝑦
𝑃𝑒(𝑢𝑡′)

𝑃𝑎(𝑢𝑡′)

𝑃𝑎(𝑢𝑡′
′) 𝑃𝑒(𝑢𝑡′

′)

𝑃𝑝(𝑢𝑡′
′) 𝑃𝑝(𝑢𝑡′)𝑃ch(𝑢𝑡′

′), 𝑃ch(𝑝𝑡′
(2)
)𝑦1

0 ′
𝑦1
(2)
, ⋯ 𝑦𝑘

0 ′
𝑦𝑘
(2)

Turbo decoding structure

§6.3 Decoding of Turbo Codes

Turbo decoding structure

- At the beginning of iterations, knowledge of information bits 𝑢𝑡′ is not available,

and 𝑃𝑎(𝑢𝑡′) are initialized as

- Once BCJR (1) delivers 𝑃𝑒(𝑢𝑡′), knowledge of interleaved information bits 𝑢𝑡′
′

will be gained by mapping

and BCJR (2) starts its decoding with 𝑃𝑎(𝑢𝑡′
′), 𝑃ch(𝑢𝑡′

′) and 𝑃ch(𝑝𝑡′
(2)
).

𝑃𝑎 𝑢𝑡′ = 0 = 𝑃𝑎 𝑢𝑡′ = 1 = 1/2.

Π(𝑃𝑒(𝑢𝑡′)) → 𝑃𝑎(𝑢𝑡′
′),

𝑦1
(0)
𝑦1
(1)

⋯𝑦𝑘
(0)
𝑦𝑘
(1)

𝑃ch 𝑢𝑡′ , 𝑃ch(𝑝𝑡′
(1)
)

Π Π Π−1

BCJR (1)

BCJR (2)
Π−1

ത𝑦
𝑃𝑒(𝑢𝑡′)

𝑃𝑎(𝑢𝑡′)

𝑃𝑎(𝑢𝑡′
′) 𝑃𝑒(𝑢𝑡′

′)

𝑃𝑝(𝑢𝑡′
′) 𝑃𝑝(𝑢𝑡′)𝑃ch(𝑢𝑡′

′), 𝑃ch(𝑝𝑡′
(2)
)𝑦1

0 ′
𝑦1
(2)
, ⋯ 𝑦𝑘

0 ′
𝑦𝑘
(2)

§6.3 Decoding of Turbo Codes

𝑦1
(0)
𝑦1
(1)

⋯𝑦𝑘
(0)
𝑦𝑘
(1)

𝑃ch 𝑢𝑡′ , 𝑃ch(𝑝𝑡′
(1)
)

Π Π Π−1

BCJR (1)

BCJR (2)
Π−1

ത𝑦
𝑃𝑒(𝑢𝑡′)

𝑃𝑎(𝑢𝑡′)

𝑃𝑎(𝑢𝑡′
′) 𝑃𝑒(𝑢𝑡′

′)

𝑃𝑝(𝑢𝑡′
′) 𝑃𝑝(𝑢𝑡′)𝑃ch(𝑢𝑡′

′), 𝑃ch(𝑝𝑡′
(2)
)𝑦1

0 ′
𝑦1
(2)
, ⋯ 𝑦𝑘

0 ′
𝑦𝑘
(2)

- Once BCJR (2) delivers 𝑃𝑒(𝑢𝑡′
′), knowledge of information bits 𝑢𝑡′ will be gained by

mapping

and BCJR (1) performs another round of decoding with 𝑃𝑎(𝑢𝑡′), 𝑃ch(𝑢𝑡′) and 𝑃ch(𝑝𝑡′
(1)
).

Π−1(𝑃𝑒(𝑢𝑡′
′)) → 𝑃𝑎(𝑢𝑡′),

- After a sufficient number of iterations, decisions will be made based on the a posteriori

prob. 𝑃𝑝(𝑢𝑡′) that are the deinterleaved version of output of BCJR (2), 𝑃𝑝(𝑢𝑡′
′).

- If parity bits 𝑝
𝑡′
(1)

(or 𝑝
𝑡′
(2)

) have been punctured, the channel observations become

𝑃ch 𝑝
𝑡′
1
= 0 = 𝑃ch 𝑝

𝑡′
1
= 1 = 1/2, (or 𝑃ch 𝑝

𝑡′
2
= 0 = 𝑃ch 𝑝

𝑡′
2
= 1 = 1/2).

And all the channel observations remain unchanged during the whole iterative process.

§6.3 Decoding of Turbo Codes

Advantage of systematic constituent codes

Using RSC

Encoding:

𝑃ch 𝑢𝑡′ , 𝑃ch(𝑝𝑡′
(1)
) are used in the 1st decoder, which is rate 1/2.

𝑃ch 𝑢𝑡′
′ , 𝑃ch(𝑝𝑡′

(2)
) are used in the 2nd decoder, which is rate 1/2.

𝑢𝑡′ 𝑝𝑡′
(1)

𝑢𝑡′

𝑢𝑡′
′ 𝑝

𝑡′
(2)

Transmission

(coding rate is 1/3): 𝑢1 𝑝1
(1)
𝑝1
(2)

𝑢2 𝑝2
(1)
𝑝2
(2)

𝑢3 𝑝3
(1)
𝑝3
(2)

…… 𝑢𝑡′ 𝑝𝑡′
1
𝑝
𝑡′
2
……

Decoding of the constituent codes:

RSC

Enc. (1)

RSC

Enc. (2)

§6.3 Decoding of Turbo Codes

Using non-systematic constituent codes

Encoding:

𝑃ch 𝑐
2𝑡′−1
1

, 𝑃ch(𝑐2𝑡′
1
) are used in the 1st decoder, which is rate 1/2.

𝑃ch 𝑐
2𝑡′−1

(2)
, 𝑃ch(𝑐2𝑡′

(2)
) are used in the 2nd decoder, which is rate 1/2.

Transmission

(coding rate is 1/4): 𝑐1
(1)

𝑐2
(1)

𝑐1
(2)

𝑐2
(2)

𝑐3
(1)

𝑐4
(1)

𝑐3
(2)

𝑐4
(2)

…… 𝑐
2𝑡′−1
1

𝑐
2𝑡′
1
𝑐
2𝑡′−1

(2)
𝑐
2𝑡′
(2)

……

Decoding of the constituent codes :

𝑐
2𝑡′−1

(1)
𝑐
2𝑡′
(1)

𝑢𝑡′

𝑐
2𝑡′−1

(2)
𝑐
2𝑡′
(2)

NRSC

Enc. (1)

NRSC

Enc. (2)

§6.3 Decoding of Turbo Codes

Decoding of the constituent codes:

In case (i)

𝑃ch 𝑐
2𝑡′−1
1

, 𝑃ch(𝑐2𝑡′
1
) are used in the 1st decoder, which is rate 1/2.

𝑃ch 𝑐
2𝑡′−1

(2)
are used in the 2nd decoder, which is forced to be rate 1.

In case (ii)

The 1st and 2nd decoders are forced to be rate 2/3.

In realizing a rate 1/3 coded transmission, we may puncture one

coded bit in each time instant. E.g.,(i) puncture 𝑐
2𝑡′
(2)

as

or (ii) puncture 𝑐
2𝑡′−1

(2)
when 𝑡′is odd, and 𝑐

2𝑡′−1

(1)
when 𝑡′ is even, as

Using non-systematic constituent codes
𝑐
2𝑡′−1

(1)
𝑐
2𝑡′
(1)

𝑢𝑡′

𝑐
2𝑡′−1

(2)
𝑐
2𝑡′
(2)

Enc. (1)

Enc. (2)

𝑐1
(1)

𝑐2
(1)

𝑐2
(2)

𝑐4
(1)

𝑐3
(2)

𝑐4
(2)

…… 𝑐
2𝑡′−1
1

𝑐
2𝑡′
1
𝑐
2𝑡′
2
(𝑐
2𝑡′
1
𝑐
2𝑡′−1

(2)
𝑐
2𝑡′
(2)
)……

𝑐1
(1)

𝑐2
(1)

𝑐1
(2)

𝑐3
(1)

𝑐4
(1)

𝑐3
(2)

…… 𝑐
2𝑡′−1
1

𝑐
2𝑡′
1
𝑐
2𝑡′−1

(2)
……

§6.3 Decoding of Turbo Codes

Example 6.2 Message vector ത𝑢 = [1 0 0 1 0 1 1 0 0 0]

Transmitted codeword ҧ𝑐 = [11 00 01 11 01 10 10 00 00 01]

Received symbol ത𝑦 = [1.66, 2.49, -2.35, -1.39, 0.22, 1.27, -0.41, 0.30,

-2.00, 1.16, 1.70, -1.69, 0.90, -0.38, -3.28, -0.82, 0.12, -1.30, -3.31, 2.28].

After iteration 1:

𝑃𝑒(𝑢𝑡′ = 0)
𝑃𝑒(𝑢𝑡′ = 1)
𝑃𝑒(𝑢𝑡′

′ = 0)

𝑃𝑒(𝑢𝑡′
′ = 1)

𝑃𝑝(𝑢𝑡′ = 0)

𝑃𝑝(𝑢𝑡′ = 1)

0.01

0.99

0.50

0.50

0.00

1.00

0.32

0.68

0.82

0.18

0.27

0.73

0.99

0.01

0.50

0.50

1.00

0.00

0.04

0.96

0.08

0.92

0.49

0.51

0.84

0.16

0.50

0.50

1.00

0.00

0.69

0.31

0.67

0.33

0.31

0.69

0.37

0.63

0.50

0.50

0.28

0.72

0.32

0.68

0.23

0.77

0.02

0.98

0.92

0.08

0.50

0.50

1.00

0.00

0.32

0.68

0.03

0.97

0.07

0.93

Note: Only the real part of the received symbols are preserved here.

0 1

−1,0 1,0

§6.3 Decoding of Turbo Codes

𝑃𝑒(𝑢𝑡′ = 0)
𝑃𝑒(𝑢𝑡′ = 1)
𝑃𝑒(𝑢𝑡′

′ = 0)

𝑃𝑒(𝑢𝑡′
′ = 1)

𝑃𝑝(𝑢𝑡′ = 0)

𝑃𝑝(𝑢𝑡′ = 1)

0.00

1.00

0.50

0.50

0.00

1.00

0.93

0.07

0.99

0.01

0.92

0.08

0.99

0.01

0.50

0.50

1.00

0.00

0.01

0.99

0.04

0.96

0.11

0.89

0.91

0.09

0.50

0.50

1.00

0.00

0.07

0.93

0.14

0.86

0.01

0.99

0.37

0.63

0.50

0.50

0.28

0.72

0.93

0.07

0.34

0.66

0.32

0.68

0.93

0.07

0.50

0.50

1.00

0.00

0.93

0.07

0.01

0.99

0.68

0.32

𝑃𝑒(𝑢𝑡′ = 0)
𝑃𝑒(𝑢𝑡′ = 1)
𝑃𝑒(𝑢𝑡′

′ = 0)

𝑃𝑒(𝑢𝑡′
′ = 1)

𝑃𝑝(𝑢𝑡′ = 0)

𝑃𝑝(𝑢𝑡′ = 1)

0.00

1.00

0.50

0.50

0.00

1.00

0.97

0.03

0.99

0.01

0.96

0.04

0.99

0.01

0.50

0.50

1.00

0.00

0.01

0.99

0.03

0.97

0.10

0.90

0.94

0.06

0.50

0.50

1.00

0.00

0.04

0.96

0.09

0.91

0.00

1.00

0.37

0.63

0.50

0.50

0.28

0.72

0.96

0.04

0.37

0.63

0.49

0.51

0.93

0.07

0.50

0.50

1.00

0.00

0.96

0.04

0.01

0.99

0.82

0.18

After iteration 2:

After iteration 3:

§6.3 Decoding of Turbo Codes

𝑃𝑒(𝑢𝑡′ = 0)
𝑃𝑒(𝑢𝑡′ = 1)
𝑃𝑒(𝑢𝑡′

′ = 0)

𝑃𝑒(𝑢𝑡′
′ = 1)

𝑃𝑝(𝑢𝑡′ = 0)

𝑃𝑝(𝑢𝑡′ = 1)

0.00

1.00

0.50

0.50

0.00

1.00

0.97

0.03

0.99

0.01

0.97

0.03

0.99

0.01

0.50

0.50

1.00

0.00

0.01

0.99

0.03

0.97

0.10

0.90

0.94

0.06

0.50

0.50

1.00

0.00

0.04

0.96

0.09

0.91

0.00

1.00

0.37

0.63

0.50

0.50

0.28

0.72

0.97

0.03

0.37

0.63

0.51

0.49

0.93

0.07

0.50

0.50

1.00

0.00

0.97

0.03

0.01

0.99

0.82

0.18

After iteration 4:

Observations:

(i) The iterative decoding corrects 3 errors;

(ii) Let 𝐿𝑝 𝑢𝑡′ = ln
𝑃𝑝(𝑢𝑡′=0)

𝑃𝑝(𝑢𝑡′=1)
. If |𝐿𝑝 𝑢𝑡′ | is greater, the decision made on 𝑢𝑡′ will be

more confident;

(iii) The decisions made on the message bits become more confident as the iteration

progresses.

§6.3 Decoding of Turbo Codes

Define function

max∗ 𝑥, 𝑦 ≜ ln 𝑒𝑥 + 𝑒𝑦 = max 𝑥, 𝑦 + ln 1 + 𝑒− 𝑥−𝑦

whose multivariate version can be defined recursively as

max∗ 𝑥, 𝑦, 𝑧 ≜ ln 𝑒𝑥 + 𝑒𝑦 + 𝑒𝑧 = max∗ max∗ 𝑥, 𝑦 , 𝑧
Similarly, let 𝑋 be a finite set so that

max∗ 𝑋 ≜ ln

𝑥∈𝑋

𝑒𝑥

Define BCJR metrics in log domain

ΓΩ→Ω′
∗ = ln ΓΩ→Ω′

𝐴𝑡′
∗ Ω = ln𝐴𝑡′ Ω = ln

Ω0,Ω

𝑒
𝐴
𝑡′−1
∗ Ω0 +ΓΩ0→Ω

∗

Log-MAP BCJR

= max∗ 𝐴𝑡′−1
∗ Ω0 + ΓΩ0→Ω

∗ | ∀ Ω0, Ω

§6.3 Decoding of Turbo Codes

Remark: Turbo decoding efficiency can be improved by the so-called log-MAP

algorithm [1] or the max-log-MAP algorithm [2]. Both of the algorithms deal with

log-likelihood ratios rather than probabilities. The max-log-MAP algorithm has a

computational complexity of not more than three times of Viterbi algorithm, but

suffers a slight performance loss compared to BCJR and log-MAP algorithms.
[1] C. Berrou and A. Glavieux, "Near optimum error correcting coding and decoding: turbo-codes," in IEEE Transactions on

Communications, vol. 44, no. 10, pp. 1261-1271, Oct. 1996.

[2] J. Hagenauer, E. Offer und L. Papke, “Iterative Decoding of Binary Block and Convolutional Codes,” IEEE Transactions

on Information Theory, 42, 1996.

Similarly, 𝐵𝑡′+1
∗ Ω′ = ln𝐵𝑡′+1 Ω′ = lnσ Ω′,Ω′′ 𝑒

𝐵
𝑡′+2
∗ Ω′′ +Γ

Ω′→Ω′′
∗

= max∗ 𝐵𝑡′+2
∗ Ω′′ + ΓΩ′→Ω′′

∗ | ∀ Ω′, Ω′′

𝐿 𝑢𝑡′ = max∗
Ω→Ω′

0

𝐴𝑡′
∗ Ω + ΓΩ→Ω′

∗ + 𝐵𝑡′+1
∗ Ω′

− max∗
Ω→Ω′

1

𝐴𝑡′
∗ Ω + ΓΩ→Ω′

∗ + 𝐵𝑡′+1
∗ Ω′

The max-log-MAP algorithm is to replace max∗(∙) by max(∙).

§6.4 Performance Analysis

BER performance of rate half turbo code with constituent code of (1, 1/5) RSC over

AWGN channel using BPSK.

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 1 2 3 4 5 6 7 8 9 10

B
E

R

Eb/N0 (dB)

1 iteration

2 iteration

3 iteration

4 iteration

5 iteration

10 iteration

20 iteration

SNR threshold

(1, 1/5) RSC

§6.4 Performance Analysis

[1] Tasev, Zarko & Popovski, Petar & Maggio, Gian & Kocarev, Ljupco. “Bifurcations and Chaos in Turbo Decoding

Algorithms,” 2004.

The BER performance of the classical turbo code with length 1024 and rate 1/3 [1].

§6.4 Performance Analysis

Q: Why there is an error floor?

- The bit error rate (BER) (denoted as 𝑃𝑏) of a conv. code (and turbo code) is

determined by

𝑃𝑏 ≤
𝑖=1

2𝑘 𝑤𝑖

𝑘
𝑄

2𝑑𝑖 ∙ 𝑅 ∙ 𝐸𝑏
𝑁0

.

➢ Let ത𝑢𝑖 denote a message vector and ҧ𝑐𝑖 denote its corresponding codeword,

𝑤𝑖 = weight(ത𝑢𝑖) and 𝑑𝑖 = weight ҧ𝑐𝑖 .

➢ 𝑘 = length(ത𝑢𝑖) and there are 2𝑘 codewords in the codebook.

➢ 𝑅 is the rate of the code.

➢
𝐸𝑏

𝑁0
— signal-to-noise ratio (SNR).

Q function as 𝑄(𝑥) ≜
1

2𝜋
𝑥
∞
𝑒−

𝜈2

2 𝑑𝜈 .

§6.4 Performance Analysis

- Since 𝑑𝑖 = 𝑑free, 𝑑free + 1, ⋯ , Τ𝑘 𝑅, by grouping terms with the same 𝑑𝑖, the

above inequality can be written as:

➢ ෝ𝑤𝑑 — weight of message vectors that correspond to codeword of weight 𝑑.

𝑃𝑏 ≤
𝑑=𝑑free

ൗ𝑘 𝑅 𝑊𝑑

𝑘
𝑄

2𝑑 ∙ 𝑅 ∙ 𝐸𝑏
𝑁0

=
𝑑=𝑑free

ൗ𝑘 𝑅 ෝ𝑤𝑑𝑁𝑑
𝑘

𝑄
2𝑑 ∙ 𝑅 ∙ 𝐸𝑏

𝑁0
.

➢ 𝑁𝑑 — Number of codewords of weight 𝑑.

➢ 𝑊𝑑 — Total weight of message vectors that correspond to codeword of

weight 𝑑.

§6.4 Performance Analysis

- When the SNR (
𝐸𝑏

𝑁0
) increases, the asymptotic behavior of 𝑃𝑏 is dominated by the

first term in the summation as

𝑃𝑏 ≅
𝑁𝑑free ෝ𝑤𝑑free

𝑘
𝑄

2𝑑free ∙ 𝑅 ∙ 𝐸𝑏
𝑁0

.

- In the log𝑃𝑏 vs. log
𝐸𝑏

𝑁0
graph, 𝑑free determines the slope of the BER vs. SNR (dB)

curve.

Remark: The error floor at high SNR is due to a small 𝑑free, or alternatively the

presence of low weight codewords.

§6.4 Performance Analysis

Motivation of having an interleaver between the two encoders: Try to avoid the

low weight conv. codewords and subsequently the low weight turbo codeword being

produced.

Example 6.3 Following the encoder structure of Example 6.1, if the message

vector ത𝑢 = [0 0 0 0 1], the output of the RSC (1) will be

ҧ𝑐1 = [00 00 00 00 11].

Without interleaving, the output of RSC (2) will be the same as RSC (1) as

ҧ𝑐2 = ҧ𝑐1. And the turbo codeword is

ҧ𝑐 = [000 000 000 000 111].

With interleaving, ത𝑢′ = [1 0 0 0 0], the output of RSC (2) will now be

ҧ𝑐2 = [11 00 01 00 01].

And the turbo codeword becomes

ҧ𝑐 = [001 000 001 000 111].

