Chapter 6 Turbo Codes

* 6.1 Introduction of Turbo Codes

* 6.2 Encoding of Turbo Codes

* 6.3 Decoding of Turbo Codes (Turbo Decoding)
* 6.4 Performance Analysis

§ 6.1 Introduction of Turbo Codes

- Invented by C. Berrou, A. Glavieux and P. Thitimajshima in 1993 [1].

- Integrate a couple of conv. codes in a parallel encoding structure. The two conv.
codes are called the constituent codes of a turbo code.

- Exploit the interplay between the decoders of the two constituent codes in a soft
information exchange decoding mechanism.

- Such a decoding mechanism is called turbo decoding, turbo decoding is NOT
limited to decode turbo codes, but to any (serially or parallelly) concatenated code.

- Shannon capacity can be approached with the existence of error floor.

[1] C. Berrou, A. Glavieux and P. Thitimajshima, “Near Shannon limit error-correcting coding and
decoding: turbo codes, ” Proc. ICC’ 93, pp. 1064-1047, Geneva, May 1993.

§ 6.1 Introduction of Turbo Codes

Why do we need code concatenation?
In BCJR decoding of a conv. code,

a priori prob.
— IN: O _Pa(ut'j'Pch(ctl’)'Pch(ctz’)
-——-1IN:1 T

channel observations

With a single conv. code, we do not have any knowledge of information bit v, and the a
priori prob. P,(u,s = 0) = P,(u,r = 1) = 0.5. With a couple of conv. codes that share the
same information bits (but in different permutations), one decoder can gain the a priori prob.
of information bits u,- from the output of the other decoder, and vice versa. As a result,
BCJR decoding of each constituent code can be improved.

§ 6.1 Introduction of Turbo Codes

A posteriori prob.: knowledge
about the information/coded
bits after the decoding. It is
used for estimation.

P, SISO Decod. | PB,, Pe<
E.g., >
BCJR Decod.

A priori prob.: knowledge about
the information/coded bits before Extrinsic prob.: P, = Ilz—p, the extra
the decoding. It is also called the .
intrinsic prob.

knowledge (excluding the a priori prob.)
delivered by the SISO decoder.

§ 6.2 Encoding of Turbo Codes

Constituent codes: Recursive Systematic Conv. (RSC) codes. Normally, the two
constituent codes are the same.

Interleaver (IT): Generate a different information sequence (a permuted sequence) as
the input to the RSC encoder (2). Normally, it is a random interleaver.

Puncture: Control the code rate.

Ug!
Uyt RSC pgrl) |________":
Enc. (1) i i
I . i Puncture ;
PR
A ;

§ 6.2 Encoding of Turbo Codes

(1) U,tl
Uy RSC p 1 |
Enc. (1) | :
Puncture
- | unctu e:
2) 1 |
RsC | P | |
|
|

!
Enc. (2) :

- Given the binary message sequence as . = [uq, Uy, - U], output of the turbo

encoder should be

1 2) 1 2
¢ =[upt” pi? w05 P - up p P wep Y P

- Rate of the turbo code is 1/3. To increase the rate to 1/2, we can use puncturing
whose pattern can be represented by
1 0
[0 1
puncture p) whent’ isodd — % puncture P,) when t' is even.

- After puncturing, output of the turbo encoder should be

¢ = [u Pil) Uz péz) T Ug Pkl) (Uk Pl(c))]

when k is odd—¢ Y when k is even.

(1

§ 6.2 Encoding of Turbo Codes

Example 6.1 Given the turbo encoder shown below with constituent code of the (1, 1/5),
conv. code. The puncturing pattern is [(1) (1)] The interleaving patternis (8, 3, 7, 6, 9, 1,
10, 5, 2, 4). Determine the turbo codeword of message vectoru =[1001011000].

utr

1
o

I Puncture

2
o

£
\

§ 6.2 Encoding of Turbo Codes

The original message vector
7=[1001011000]
Output of the 1st constituent code is:

pM =[1011100000]

After interleaving, the permuted message
vector becomes

u'=[0011010001]

Output of the 2nd constituent code is:
pP =[0011101011]

Before puncturing, the turbo codeword is
¢ =[110000011111011 100101 000 001 001]

After puncturing, the turbo codeword is

Trellis of the (1. 1/5), conv. code

¢=111000111011010000001]

§ 6.3 Decoding of Turbo Codes

- Parameterization

- Turbo codeword ¢ = [u; ptV

- Assume the turbo codeword is transmitted using BPSK.

- Received symbol vector

0 @ @) 1) (2)

y=1I v noy

- Interleaved message vector

u' =1Iw) = [uy, uy, -

- Interleaved (information) symbol vector

0)’ 0)’ 0)’ 0
[y, y8 e,y = n(y®

2
pP, uy, pP p®, oy pP p®
0 1 2
Vo Yy ---,y,ﬁ,)y,ﬁ)y,ﬁ .
, U]
0 0

]

§ 6.3 Decoding of Turbo Codes

Turbo decoding structure

0 1 0 1 1
1y,)---y,ﬁ)y,ﬁ) Pch(ut'),Pch(pt(:))

P (uyr)
y BCJR (1)
P (uyr)
I1 I1 nmt
K Palu}) P.(uy) \
BCJR (2
! 4 () H_l

yl(O) yl(Z)’ }’;EO) }’152) Pch(u&), Pch(pg,z)) Pp(u&) Pp(ut')

- In BCJR (1), trellis transition probability is determined by
Toog = Pa(ue)Pen () Pen(Pyr”):

In BCJR (2), trellis transition probability is determined by

/ ! 2
Faoqr = Pau)Pen(Ui)Pen (0).

§ 6.3 Decoding of Turbo Codes

Turbo decoding structure

0) (1 0),,d /
~ yl()yl()"'YIE)YIE) Pen(uyr), Pch(pg’) Pe (uyr)

y) BCJR (1)
I1 I1 -1

K Pul) P.(u) \
BCIR (2) -

1] [) 2 ,
3’1(0) yl(z)’... yIEO) 3’152) Pch(ut,),Pch(pE,)/) P, (u,r) Py(uyr)

- At the beginning of iterations, knowledge of information bits u,, is not available,
and P, (u,r) are initialized as
P,(uyr =0) =P (upyr =1) =1/2.
- Once BCJR (1) delivers P, (u,r), knowledge of interleaved information bits u,/
will be gained by mapping
H(Pe(ut’)) - Pa(ué’)’ 5
and BCJR (2) starts its decoding with P, (u,/), Pen(u,r) and Py (pi, .

§ 6.3 Decoding of Turbo Codes

0) (1 0),,d /
~ yl()yl()"'YIE)YIE) Pen(uyr), Pch(pg’) Pe (uyr)

y . u —|BCIR (1)
I1 I1 M1

K Pa(ty) P.(up) \
| | . BCJR (2) i
3’1(0) 3’1(2)"" 3’;5,0) 3’;52) Pch(ug,),Pch(pE,) Pp(ug,) Py(uyr)

- Once BCIJR (2) delivers P, (u,.), knowledge of information bits u, will be gained by

mapping r[‘l(Pe(uéf)) - Pa(ut')’

and BCJR (1) performs another round of decoding with P, (u,’), P, (u,r) and Pch(pg,l)).
- After a sufficient number of iterations, decisions will be made based on the a posteriori
prob. P,(u,r) that are the deinterleaved version of output of BCJR (2), P, (u,/).

- If parity bits pg,l) (or p,f?)) have been punctured, the channel observations become

Pen (p3) =0) = Py (p7° = 1) = 112, (or Pey (p7 = 0) = Pey (p7 = 1) = 1/2).
And all the channel observations remain unchanged during the whole iterative process.

§ 6.3 Decoding of Turbo Codes

|
Advantage of systematic constituent codes

Using RSC
RSC 1)
Enc. (1) Ue! Pyr

Encoding: Uyr —
RSC r o (2)
Enc. (2) Uer Pyr

Transmission

(coding rate is 1/3): U Pil)Piz) Uz Pgl)sz) us Pél)sz) ------ Uygs P,Erl)PEIZ) ------

Decoding of the constituent codes:

Pon(uyr), Pch(pg,l)) are used in the 1st decoder, which is rate 1/2.

Pen(u}r), Pen (pg,z)) are used in the 2nd decoder, which is rate 1/2.

§ 6.3 Decoding of Turbo Codes

Using non-systematic constituent codes

NRSC | NCHIRNCY
Encoding: Enc. (1) 2t'~1 "2t’
ut’—
NRSC - e @
Enc. (2) 2t'-1 "2t
Transmission 1 (1) (2) c® DD 2 (2 (1) 1) .(2) (2)
. . 1
(coding rate is 1/4): cl(C, € C3 7 Cq €370 ¢ Copi_q Copt Copt_q Coyl wee v

Decoding of the constituent codes :

P (c;?_l) P. (c(l)) are used in the 1st decoder, which is rate 1/2.

Pglc ((2)),Pch (cg?) are used in the 2nd decoder, which is rate 1/2.

§ 6.3 Decoding of Turbo Codes
T —S—S—S—_—_..

Using non-systematic constituent codes Enc. (1) — @ D

ut’ —

Enc. (2) — Céi)— L cg?

In realizing a rate 1/3 coded transmission, we may puncture one

coded bit in each time instant. E.g.,(i) puncture c(? as
(1) D@ @D D (2) D D@
2 1 3 4 Zt’—l 2t/ Zt —1

or (i) puncture c() , When ¢t'is odd, and czi,_l when t’ is even, as

D (1) c? O @ @) v @ (2) (1) (2) (2)
il Cy e, eg e, Coel_q Copt Copt (€, 1 Copt) e
Decoding of the constituent codes:
In case (i)
(1) (1)
Pen(¢,7_4), Pen(c,, 1) are used in the 1st decoder, which is rate 1/2.
P (Cé?— 1) are used in the 2nd decoder, which is forced to be rate 1.
In case (ii)

The 1st and 2nd decoders are forced to be rate 2/3.

§ 6.3 Decoding of Turbo Codes

Example 6.2 Message vectoru =[100101100 0]

Transmitted codeword ¢ =[110001 1101 10 1000 00 01]

Received symbol y =[1.66, 2.49, -2.35, -1.39, 0.22, 1.27, -0.41, 0.30,

. — -2.00,1.16, 1.70, -1.69, 0.90, -0.38, -3.28, -0.82, 0.12, -1.30, -3.31, 2.28].

(-1,0) | (1,0

After iteration 1:

Pe(uy' = 0)]0.01/0.32/0.99|0.04{0.84/0.69(0.37/0.32(0.92/0.32
Pe(uy = 1)10.99(0.68/0.01 |0.96/0.16|0.31/0.63(0.68|0.08(0.68
P, (u,s = 0)|0,50/0.82/0.50|0.08|0.50/0.67/0.50/0.23/0.50/0.03
P, (u, = 1)|0.500.18/0.50|0.92/0.50(0.33/0.50(0.77/0.50/0.97
P,(u,» = 0)[0.00|p.27|L.00]|[0.49|L.00/.31|p.28/D.02|L.00/p.07
P, (u,r = 1)[L.00|0.730.00]/0.51).00/0.69}0.72/0.98(.00/D.93

Note: Only the real part of the received symbols are preserved here.

§ 6.3 Decoding of Turbo Codes

[]
After iteration 2:

Pe(uy = 0)10.000.930.99| 0.010.91/0.070.370.930.930.93
P.(u,r =1)1.000.070.01] 0.990.090.930.630.070.070.07
P,(u, = 0)]0.500.990.50| 0.040.500.140.500.340.500.01
P,(u;» = 1)|0.500.01/0.50| 0.960.500.860.500.660.500.99
P, (u,s = 0) [0.00[0.92[1.00][0.11[1.000.01/0.28)0.32[1.00/0.68
P, (u,s = 1)[1.00(0.08/0.00] 0.840.000.990.72[0.680.00/0.32

After iteration 3:

Pe(uyr = 0)]0.00[0.97/0.99] 0.01/0.94,0.040.370.96/0.930.96
Pe(uy = 1){1.000.030.01| 0.990.06(0.96/0.63/0.04{0.07/0.04
Pe(u;r = 0)]0.500.990.50/ 0.03/0.500.090.50,0.370.50,0.01
P, (u;, = 1)|0.50/0.01/0.50| 0.97/0.50/0.91/0.50,0.63/0.50,0.99
P, (u, = 0)0.00[0.961.00[0.1G/Z.00[0.000.28[0.49|L.000.82
P, (u,s = 1)]1.00[0.040.001/0.90/0.00[.00/0.72[0.51J0.00/0.1§

§ 6.3 Decoding of Turbo Codes

After iteration 4;

P (u, = 0)]0.000.970.99| 0.010.940.040.37,0.97,0.930.97
P (uy = 1)[1.000.030.01{ 0.990.060.960.630.030.07,0.03
P, (u; = 0)]0.500.990.50[0.030.500.090.500.370.500.01
P, (u; = 1)|0.500.010.50| 0.970.500.910.500.630.50/0.99
P, (u,r = 0)[0.000.97.00] [0.T0[L.00[0.000.280.51 1.00[0.82
P, (u,, = 1)|1.00/0.030.00f 0.900.00(1.000.720.490.0¢/0.18

Observations:

(i) The iterative decoding corrects 3 errors;
.. P 1=0
(if) Let L,(uyr) = In p(t=0)

Pp(upr=1)
more confident;
(iif) The decisions made on the message bits become more confident as the iteration
progresses.

I [L, (ugr)| is greater, the decision made on u,s will be

§ 6.3 Decoding of Turbo Codes

B TTTTTTTTTTTTTTTTEEmESSSS
Log-MAP BCJR
Define function
max*(x,y) £ In(e* + e¥) = max(x,y) + ln(l + e"x_”)
whose multivariate version can be defined recursively as
max*(x,y,z) £ In(e* + e¥ + e?) = max"(max*(x,y), z)
Similarly, let X be a finite set so that

max*(X) & lnz e*

xeX

Define BCJR metrics in log domain

A:, (Q) = lnAt, (Q) — ln z e[A:’—l('QO)-I_FBO_’Q]
(QOJQ)

= max*({4;/_;(Q) + T 0 | V(Q, D)})

§ 6.3 Decoding of Turbo Codes

Similarly, B, , (@) =InBy (@) =In Y g gy o|Birz (94T o]

= max*({B:rH(Q”) + F;z’—m” | V(& Q”)D

L(ut,) = (gl_)a‘é(l)o (At’ (.Q) + FQ_>QI + Btl+1 (.Q))

— (.gl)a{)l(lgl (A:;l (.Q) + FS_)Q/ + B:’+1 (.Q.,))

The max-log-MAP algorithm is to replace max™(:) by max(-).

Remark: Turbo decoding efficiency can be improved by the so-called log-MAP
algorithm [1] or the max-log-MAP algorithm [2]. Both of the algorithms deal with
log-likelihood ratios rather than probabilities. The max-log-MAP algorithm has a
computational complexity of not more than three times of Viterbi algorithm, but
suffers a slight performance loss compared to BCJR and log-MAP algorithms.

[1] C. Berrou and A. Glavieux, "Near optimum error correcting coding and decoding: turbo-codes,"” in IEEE Transactions on
Communications, vol. 44, no. 10, pp. 1261-1271, Oct. 1996.

[2] J. Hagenauer, E. Offer und L. Papke, “Iterative Decoding of Binary Block and Convolutional Codes,” IEEE Transactions
on Information Theory, 42, 1996.

§ 6.4 Performance Analysis

BER performance of rate half turbo code with constituent code of (1, 1/5) RSC over
AWGN channel using BPSK.

1.E+00

malagy

1.E-01 &K

1.E-02

1.E-03

BER

1.E-04

1.E-05

1.E-06

1.E-07

E,/N, (dB)

§ 6.4 Performance Analysis

The BER performance of the classical turbo code with length 1024 and rate 1/3 [1].

0

10 T
—— 2-nd iteration
—»— 4-th iteration
—&— 8-thiteration ||
» —— 16-th iteration
10 —&— 32-nd iteration |
107}
C
w
m
10°F
107k
10’5 I M 1 [¢
-0.5 0 0.5 1 1.5 2

SNR [dB]
[1] Tasev, Zarko & Popovski, Petar & Maggio, Gian & Kocarev, Ljupco. “Bifurcations and Chaos in Turbo Decoding
Algorithms,” 2004.

§ 6.4 Performance Analysis

|
Q: Why there is an error floor?

- The bit error rate (BER) (denoted as P;) of a conv. code (and turbo code) is

determined by
2% w; 2d; R -E
Py SZ ?lQ J lN :
=1 0

» Let u; denote a message vector and ¢; denote its corresponding codeword,
w; = weight(u;) and d; = weight(c;).

> k = length(%@;) and there are 2* codewords in the codebook.
» R is the rate of the code.

> z—” — signal-to-noise ratio (SNR).
0

v2
Q function as Q(x) & \/%_nfxoo e zdv.

§ 6.4 Performance Analysis

- Since d; = dfreer diree + 1, -+, */gr, by grouping terms with the same d;, the
above inequality can be written as:

“Ir W, 2d-R - E,
Pp = 2 % ¢ N
d=dfree 0

_zk/R WdeQ Zd'R'Eb
d=dfree k NO

» wy — weight of message vectors that correspond to codeword of weight d.

» Nz — Number of codewords of weight d.

» W, — Total weight of message vectors that correspond to codeword of
weight d.

§ 6.4 Performance Analysis

- When the SNR (%) increases, the asymptotic behavior of P, is dominated by the
0
first term in the summation as

Pb ~ Ndfreewdfree Q \/deree ‘R - Eb
k N,

- Inthelog P, vs. log% graph, d.ce determines the slope of the BER vs. SNR (dB)
0
curve.

Remark: The error floor at high SNR is due to a small d¢..e, Or alternatively the
presence of low weight codewords.

§ 6.4 Performance Analysis
T —S—S—S—_—_..

Motivation of having an interleaver between the two encoders: Try to avoid the
low weight conv. codewords and subsequently the low weight turbo codeword being
produced.

Example 6.3 Following the encoder structure of Example 6.1, if the message
vector u = [0 0 0 0 1], the output of the RSC (1) will be

¢, = [00 00 00 00 11].

Without interleaving, the output of RSC (2) will be the same as RSC (1) as
¢, = ¢;. And the turbo codeword is

¢ = [000 000 000 000 111].
With interleaving, " = [1 0 0 0 0], the output of RSC (2) will now be

¢, = [11 0001 00 01].
And the turbo codeword becomes

¢ =[001 000001000 111].

