
Chapter 3 Source Coding

• 3.1 An Introduction to Source Coding

• 3.2 Optimal Source Codes

• 3.3 Shannon-Fano Code

• 3.4 Huffman Code

§3.1 An Introduction to Source Coding

• Entropy (e.g., in bits per symbol) implies the average number of bits that are

required to represent a source symbol. This indicates a mapping between the

source symbols and bits.

• Source coding can be seen as a mapping mechanism between source symbols

and e.g., bits.

• For a string of symbols, how can we use less bits to represent them?

Intuition: Use short description to represent the most frequently occurred

symbols; Use necessarily long description to represent the less

frequently occurred symbols.

§3.1 An Introduction to Source Coding

• Expected Length : Let 𝑥 denote a source symbol and 𝐶(𝑥) denote a codeword of

𝑥. If the length of 𝐶(𝑥) is 𝑙(𝑥) (e.g., in bits) and 𝑥 occurs with a probability of

𝑝(𝑥), the expected length 𝐿(𝐶) of source code 𝐶 is:

• It implies the average number of bits that are required to represent a source symbol

in source coding scheme 𝐶.

𝐿 𝐶 = σ𝑥 𝑝(𝑥) ∙ 𝑙(𝑥).

Symbols: 1 2 4 4 3 1 4 4

bits: 00 01 11 11 10 00 11 11

Or can this be a shorter string of bits?

§3.1 An Introduction to Source Coding

Let us look at the following example:

Example 3.1 Let 𝑋 be a random variable with an alphabet of 1, 2, 3, 4 , it has a

distribution of

𝑃 𝑥 = 1 =
1

2
, 𝑃 𝑥 = 2 =

1

4
, 𝑃 𝑥 = 3 =

1

8
, 𝑃 𝑥 = 4 =

1

8

Entropy of 𝑋 is:

𝐻 𝑋 = σ𝑥∈{1,2,3,4}𝑃(𝑥) log2 𝑃 𝑥 −1

= 1.75 bits/sym.

§3.1 An Introduction to Source Coding

On average, we use 2 bits to represent a symbol.

𝐿 𝐶 > 𝐻(𝑋).

Source Coding 2 (𝐶∗):

𝐶∗ 1 = 0, 𝐶∗ 2 = 10, 𝐶∗ 3 = 110, 𝐶∗ 4 = 111

𝐿 𝐶∗ =
1

2
∙ 1 +

1

4
∙ 2 +

1

8
∙ 3 +

1

8
∙ 3 = 1.75 bits

On average, we use 1.75 bits to represent a symbol.

𝐿(𝐶∗) = 𝐻(𝑋).

Observation: 𝐶∗ should be a better source coding scheme than 𝐶.

Source Coding 1 (𝐶):

𝐶 1 = 00, 𝐶 2 = 01, 𝐶 3 = 10, 𝐶 4 = 11

𝐿 𝐶 =
1

2
∙ 2 +

1

4
∙ 2 +

1

8
∙ 2 +

1

8
∙ 2 = 2 bits.

§3.1 An Introduction to Source Coding

Theorem 3.1 Shannon’s Source Coding Theorem Given a memoryless source X whose

symbols are chosen from the alphabet {𝑥1, 𝑥2, … , 𝑥𝑈} with the alphabet symbol probabilities

of 𝑃 𝑥1 = 𝑝1, 𝑃 𝑥2 = 𝑝2, … , 𝑃 𝑥𝑈 = 𝑝𝑈, and σ𝑖=1
𝑈 𝑝𝑖 = 1. If the source is of length n,

when 𝑛 → ∞, it can be encoded with H(X) bits per symbol. The coded sequence will be of

𝑛𝐻(𝑋) bits.

Note: 𝐻 𝑋 = σ𝑖=1
𝑈 𝑝𝑖log2 𝑝𝑖

−1 bits/sym.

Memoryless Source: Given a source symbol sequence 𝑠1, 𝑠2, … , 𝑠𝑛. It is memoryless if

𝑃 𝑠𝑗 = 𝑃 𝑠𝑗 𝑠1, 𝑠2, … , 𝑠𝑗−1 , ∀𝑗 = 1, 2, … , 𝑛.

The source symbols are statistically independent.

§3.1 An Introduction to Source Coding

Important Features of Source Coding:

1. Non-singularity: Unambiguous representation of source symbols.

That says if 𝑥𝑖 ≠ 𝑥𝑗, 𝑐(𝑥𝑖) ≠ 𝑐(𝑥𝑗).

𝑋 𝐶(𝑋)

1 0

2 010

3 01

4 10

Problem: When we try to decode

‘010’, it can be 2 or 14

or 31.

The decoding is NOT unique.

2. Uniquely decodable: A codeword can only be uniquely decoded into a source symbol.

𝑋 𝐶(𝑋)

1 10

2 00

3 11

4 110

Problem: When we try to decode

‘001011000’, we have

3 2 . . .

4 2

We will have to wait and see the end of the bit

string. The decoding is NOT instantaneous.

2 1

3. Instantaneous decoding: The decoding (demapping) happens once a codeword is read.

§3.1 An Introduction to Source Coding

Instantaneous codes: For an instantaneous code, no codeword is a prefix of

any other codeword.

𝑋 𝐶(𝑋)

1 0

2 10

3 110

4 111

Observation: If you try to decode ‘111110101100111’,

you would notice that the puncturing positions are

determined by the instances you have reached a source

codeword. The decoding is instantaneous, and the

decoding output is ‘4 3 2 3 1 4 ’ .

Non-singular codes

Uniquely decodable codes

Instantaneous codes

Source Codes:

§3.2 Optimal Source Codes

How can we find an optimal source code?

An optimal source code :

(1) An instantaneous code (prefix code)

(2) The smallest expected length 𝐿 = σ𝑖 𝑝𝑖𝑙𝑖

Theorem 3.2 Kraft Inequality For an instantaneous code over an alphabet of size 𝐷 (e.g.,

𝐷 = 2 for binary codes), the codeword lengths 𝑙1, 𝑙2, ⋯, 𝑙𝑈 must satisfy

σ𝑖𝐷
−𝑙𝑖 ≤ 1.

Remark: An instantaneous code σ𝑖𝐷
−𝑙𝑖 ≤ 1

Example 3.2 For the source code 𝐶∗ of Example 3.1.

2−1 + 2−2 + 2−3 + 2−3 = 1.

§3.2 Optimal Source Codes

Root
0

0
01

1
1

×
× ×

×Proof:

- Assume D = 2, and the above binary tree illustrates the assignment of binary

source codeword. A complete solid path represents a source codeword.

- Based on property of instantaneous codes, if the first source codeword goes

the ‘0’ path, the next source codeword should not go the ‘0’ path. Such a

source codeword symbol assignment process repeats as the number of data

symbols increases.

§3.2 Optimal Source Codes

- At level lmax of the tree (source codeword length is lmax), there are at most 𝐷𝑙max

codewords. Similarly, at level li of the tree, there are at most 𝐷𝑙𝑖 codewords. A

codeword at level li has 𝐷𝑙max−𝑙𝑖 descendants at level lmax.

෍

𝑖

𝐷𝑙max−𝑙𝑖 ≤ 𝐷𝑙max ෍

𝑖

𝐷−𝑙𝑖 ≤ 1.

Root
0

0
01

1
1

×
× ×

×

- The descendent sets of all codewords should be disjoint. Consider all codewords,

this property implies

§3.2 Optimal Source Codes

Root
0

0
01

1
1

×
× ×

×

- The expected length of this tree is

𝔼 𝑙 = σ𝑖 𝑙𝑖𝑝𝑖

li: length of a source codeword for symbol xi

pi: probability of symbol xi

- Expected length of the tree is the expected length of the source code.

- The tree represents an instantaneous source code.

§3.2 Optimal Source Codes

- Finding the smallest expected length 𝐿 becomes

minimize: 𝐿 = σ𝑖 𝑝𝑖𝑙𝑖
s.t. σ𝑖𝐷

−𝑙𝑖 ≤ 1.

- The constrained minimization problem can be interpreted through the Lagrange

multipliers as:

minimize: 𝐽 = σ𝑖 𝑝𝑖𝑙𝑖 + λ(σ𝑖𝐷
−𝑙𝑖)

- Calculus:
𝜕𝐽

𝜕𝑙𝑖
= 𝑝𝑖 − λ𝐷−𝑙𝑖 log𝑒 𝐷. To enable

𝜕𝐽

𝜕𝑙𝑖
= 0, we need 𝐷−𝑙𝑖 =

𝑝𝑖

λ log𝑒 𝐷
.

- To satisfy the Kraft Inequality, we have λ=
1

log𝑒 𝐷
. Hence, 𝑝𝑖 = 𝐷−𝑙𝑖 .

- To minimized 𝐿, we need 𝑙𝑖
∗ = log𝐷 𝑝𝑖

−1.

- With 𝑙𝑖
∗ = log𝐷 𝑝𝑖

−1, we have

𝐿 = σ𝑖 𝑝𝑖𝑙𝑖
∗ = σ𝑖 𝑝𝑖 log𝐷 𝑝𝑖

−1 = 𝐻𝐷(𝑋) Entropy of the source symbols

§3.2 Optimal Source Codes

Theorem 3.3 (Lower Bound of the Expected Length) The expected length 𝐿 of an

instantaneous D-ary code for a random variable 𝑋 is lower bounded by

𝐿 ≥ 𝐻𝐷(𝑋).

Remark: Since 𝑙𝑖 can only be an integer,

𝐿 = 𝐻𝐷(𝑋), if 𝑙𝑖 = − log𝐷 𝑝𝑖.
𝐿 > 𝐻𝐷(𝑋), if 𝑙𝑖 = ⌈− log𝐷 𝑝𝑖⌉.

Proof:

𝐿 − 𝐻𝐷 𝑋 = σ𝑖 𝑙𝑖 𝑝𝑖 + σ𝑖 𝑝𝑖 log𝐷 𝑝𝑖
= −σ𝑖 𝑝𝑖 log𝐷 𝐷

−𝑙𝑖+ σ𝑖 𝑝𝑖 log𝐷 𝑝𝑖
= σ𝑖 𝑝𝑖 log𝐷

𝑝𝑖

𝐷−𝑙𝑖
.

Let 𝑝𝑖
′ = 𝐷−𝑙𝑖 ,

𝐿 − 𝐻𝐷 𝑋 = σ𝑖 𝑝𝑖 log𝐷
𝑝𝑖

𝑝𝑖
′

= 𝐷(𝑝𝑖||𝑝𝑖
′) ≥ 0.

§3.2 Optimal Source Codes

Corollary 3.4 (Upper Bound of the Expected Length) The expected length 𝐿 of an

instantaneous D-ary code for a random variable 𝑋 is upper bounded by

𝐿 < 𝐻𝐷 𝑋 + 1.

Proof: Since − log𝐷 𝑝𝑖 ≤ 𝑙𝑖 < − log𝐷 𝑝𝑖 + 1.

By multiplying 𝑝𝑖 to the above inequality and performing summation

over 𝑖 as

෍

𝑖

−𝑝𝑖 log 𝑝𝑖 ≤෍
𝑖
𝑝𝑖𝑙𝑖 <෍

𝑖
−𝑝𝑖 log 𝑝𝑖 +෍

𝑖
𝑝𝑖

𝐻𝐷 𝑋 ≤ 𝐿 < 𝐻𝐷 𝑋 + 1.

§3.3 Shannon-Fano Code

- Given a source that contains symbols 𝑥1, 𝑥2, … , 𝑥𝑈 with probabilities of

𝑝1, 𝑝2, … , 𝑝𝑈, respectively.

- Determine the source codeword length for symbol xi as

𝑙𝑖 = log2
1

𝑝𝑖
bits.

- Further determine 𝑙max = max{𝑙𝑖 , ∀𝑖}.

- Shannon-Fano Code Construction:

Step 1: Construct a binary tree of depth 𝑙max.

Step 2: Choose a node of depth 𝑙𝑖 and delete its following paths and nodes. The

path from root to the node represents the source codeword for source symbol xi.

§3.3 Shannon-Fano Code

- Example 3.3 Given a source with symbols 𝑥1, 𝑥2, 𝑥3, 𝑥4, they occur with a

probability of p1 = 0.4, p2 = 0.3, p3 = 0.2, p4 = 0.1, respectively. Construct its

Shannon-Fano code.

We can determine

𝑙1 = log2
1

𝑝1
= 2, 𝑙2 = log2

1

𝑝2
= 2, 𝑙3 = log2

1

𝑝3
= 3, 𝑙4 = log2

1

𝑝4
= 4,

and 𝑙max = 4.

Construct a binary tree of depth 4.

Root

0

1
1
×

○0

0
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1

0

1

1

01

×
×
×

×
×

×
×

×
×
×
×
×
×

○

○

○

The source codewords are

x1: 0 0

x2: 0 1

x3: 1 0 0

x4: 1 0 1 0.

Note: 𝐿 = 2.4 bits/sym., 𝐻 𝑋 = 1.85 bits/sym.,

and 𝐻 𝑋 < 𝐿 < 𝐻 𝑋 + 1.

§3.4 Huffman Code

- Given a source that contains symbols 𝑥1, 𝑥2, … , 𝑥𝑈 with probabilities of 𝑝1, 𝑝2, … , 𝑝𝑈 ,

respectively.

- Huffman Code Construction:

Step 1: Merge the 2 smallest symbol probabilities;

Step 2: Assign the 2 corresponding symbols with 0 and 1, then go back to Step 1;

Repeat the above process until two probabilities are merged into a

probability of 1.

- Huffman code is the shortest prefix code, i.e., an optimal code.

§3.4 Huffman Code

Example 3.4 Given a source with symbols x1, x2, x3, x4, x5. They occur with

probabilities of 𝑃1 = 0.25, 𝑃2 = 0.25, 𝑃3 = 0.2, 𝑃4 = 0.15, 𝑃5 = 0.15, respectively.

Construct its Huffman code.

Codeword 𝑥𝑖 𝑃𝑖

x1 0.25 0.3

x2 0.25 0.25

x3 0.2 0.25

0 x4 0.15 0.2

1 x5 0.15

§3.4 Huffman Code

Codeword 𝑥𝑖 𝑃𝑖

x1 0.25 0.3 0.45

0 x2 0.25 0.25 0.3

1 x3 0.2 0.25 0.25

0 x4 0.15 0.2

1 x5 0.15

Codeword 𝑥𝑖 𝑃𝑖

1 x1 0.25 0.3 0.45 0.55

0 x2 0.25 0.25 0.3 0.45

1 x3 0.2 0.25 0.25

0 0 x4 0.15 0.2

0 1 x5 0.15

§3.4 Huffman Code

Codeword 𝑥𝑖 𝑃𝑖

0 1 x1 0.25 0.3 0.45 0.55 1

1 0 x2 0.25 0.25 0.3 0.45

1 1 x3 0.2 0.25 0.25

0 0 0 x4 0.15 0.2

0 0 1 x5 0.15

Validations:

𝑙1 = 2, 𝑙2 = 2, 𝑙3 = 2, 𝑙4 = 3, 𝑙5 = 3

𝐿 = σ 𝑖 𝑙𝑖 ∙ 𝑃𝑖 = 2.3 bits/symbol

𝐻2 𝑋 = σ 𝑖 𝑃𝑖 log2 𝑃𝑖
−1 = 2.3 bits/sym.

Q: Try to construct a Shannon-Fano code and see if it is also optimal.

§3.4 Huffman Code

So now, let us look back at the problem proposed at the beginning.

How to represent the source vector {1 2 4 4 3 1 4 4} ?

Codeword 𝑥 𝑃(𝑥)

0 1 1 0.25 0.25 0.5 1

0 0 0 2 0.125 0.25 0.5

0 0 1 3 0.125 0.5

1 4 0.5

It should be represented as {0 1 0 0 0 1 1 0 0 1 0 1 1 1 } and 𝐿 = 1.75 bits/symbol.

Q: How if the source vector becomes {1 2 4 3 4 4 2 1}?

Remark: The source coding depends on the source vector.

§3.4 Huffman Code

- Huffman code can also be defined as a D-ary code.

- A D-ary Huffman code can be similarly constructed following the binary

construction.

Step 1: Merge the D smallest symbol probabilities;

Step 2: Assign the corresponding symbols with 0, 1, ..., D – 1, then

go back to Step 1; Repeat the above process until D probabilities are

merged into a probability of 1.

§3.4 Huffman Code

Example 3.5 Consider a source with symbols x1, x2, x3, x4, x5, x6. They occur with

probabilities of P1 = 0.25, P2 = 0.25, P3 = 0.2, P4 = 0.1, P5 = 0.1, P6 = 0.1,

respectively. Construct a ternary ({0, 1, 2}) Huffman code.

Codeword 𝑥𝑖 𝑃𝑖

0 x1 0.25 0.25 0.25 1

1 x2 0.25 0.25 0.25

2 0 x3 0.2 0.2 0.5

2 1 x4 0.1 0.1

2 2 0 x5 0.1 0.2

2 2 1 x6 0.1

2 2 2 Dummy 0

Note: A dummy symbol is created such that 3 probabilities can merge into a

probability of 1 in the end.

§3.4 Huffman Code

Properties on an optimal D-ary source code (Huffman code)

(1) If 𝑝𝑗 > 𝑝𝑘, then 𝑙𝑗 ≤ 𝑙𝑘;

(2) The 𝐷 longest codewords have the same length;

(3) The 𝐷 longest codewords differ only at the last symbol and correspond to the 𝐷

least likely source symbols.

Theorem 3.5 (Optimal Source Code) A source code (C*) is optimal if giving any

other source code C’, we have L(C*) ≤ L(C’).

Note: Huffman codes are optimal.

References:

[1] Elements of Information Theory, by T. Cover and J. Thomas.

[2] Scriptum for the lectures, Applied Information Theory, by M. Bossert.

