Chapter 3 Source Coding

» 3.1 An Introduction to Source Coding
» 3.2 Optimal Source Codes

3.3 Shannon-Fano Code

» 3.4 Huffman Code

% 3.1 An Introduction to Source Coding
|

« Entropy (e.g., in bits per symbol) implies the average number of bits that are
required to represent a source symbol. This indicates a mapping between the
source symbols and bits.

« Source coding can be seen as a mapping mechanism between source symbols
and e.g., bits.

* For a string of symbols, how can we use less bits to represent them?
Intuition: Use short description to represent the most frequently occurred

symbols; Use necessarily long description to represent the less

frequently occurred symbols.

% 3.1 An Introduction to Source Coding

T —S—S—S—_—_..
Symbols: 1 2 4 4 3 1 4 4

4

bits: 00 01 11 11 10 00 11 11

g

Or can this be a shorter string of bits?

» Expected Length : Let x denote a source symbol and C (x) denote a codeword of
x. If the length of C(x) is I(x) (e.g., in bits) and x occurs with a probability of
p(x), the expected length L(C) of source code C is:

L(C) = Xxp(x) - 1(x).

« It implies the average number of bits that are required to represent a source symbol

in source coding scheme C.

% 3.1 An Introduction to Source Coding

Let us look at the following example:
Example 3.1 Let X be a random variable with an alphabet of {1, 2, 3, 4}, ithasa
distribution of

Px=1)=5Px=2)=,Px=3)=-Px=4) ==
Entropy of X is:

H(X) = Yxeqr,2,3,4) P (%) log, P(x)™*
= 1.75 bits/sym.

% 3.1 An Introduction to Source Coding

Source Coding 1 (C):
C(1)=00,C(2)=01,C(3) =10,C(4) =11
L(C)=2-2+=+242.2+-.2 =2 bits.
2 4 8 8

On average, we use 2 bits to represent a symbol.

> L(C) > H(X).

Source Coding 2 (C*):
c*(1)=0,C*(2) =10,Cc*(3) =110,C*(4) = 111
L(CY) =§-1+%-2+§.3+%-3 = 1.75 bits

On average, we use 1.75 bits to represent a symbol.

) L(C*) = H(X).

Observation: C* should be a better source coding scheme than C.

% 3.1 An Introduction to Source Coding
|

Memoryless Source: Given a source symbol sequence s, Sy, ..., Sy It IS memoryless if

P(Sj) = P(sj | S1,S2, ...,sj_l),‘v’j =1,2,..,n.

The source symbols are statistically independent.

Theorem 3.1 Shannon’s Source Coding Theorem Given a memoryless source X whose
symbols are chosen from the alphabet {x;, x,, ..., xy } with the alphabet symbol probabilities
of P(x;1) = p1, P(x3) = py, ..., P(xy) = py, and Y, p; = 1. If the source is of length n,
when n — oo, it can be encoded with H(X) bits per symbol. The coded sequence will be of

nH (X) bits.

Note: H(X) = Y._, p;log, p; * bits/sym.

% 3.1 An Introduction to Source Coding

Important Features of Source Coding:
1. Non-singularity: Unambiguous representation of source symbols.

That says if x; # x;, c(x;) # c(x;).

Problem: When we try to decode

‘010°, it can be 2 or 14

or 31.

The decoding is NOT unique.

X C(X)
1 0

2 010
3 01
4 10

2. Uniquely decodable: A codeword can only be uniquely decoded into a source symbol.

Problem: When we try to decode

‘001011000°, we have

133

We will have to wait and see the end of the bit

X C(X)
1 10
2 00
3 11
4 110

string. The decoding is NOT instantaneous.

% 3.1 An Introduction to Source Coding

3. Instantaneous decoding: The decoding (demapping) happens once a codeword is read.

Instantaneous codes: For an instantaneous code, no codeword is a prefix of
any other codeword.

% C(X) Observation: Ifyou try to decode _‘11111(_)1_01100111’,

1 0 you would notice that the puncturing positions are
determined by the instances you have reached a source

2 10 codeword. The decoding is instantaneous, and the

3 110 decoding outputis ‘432314,

4 111

Non-sinqular codes
Source Codes: g

Uniquely decodable codes
Instantaneous codes

§ 3.2 Optimal Source Codes

How can we find an optimal source code?
An optimal source code :
(1) An instantaneous code (prefix code)
(2) The smallest expected length L = }; p;!;

Theorem 3.2 Kraft Inequality For an instantaneous code over an alphabet of size D (e.g.,
D = 2 for binary codes), the codeword lengths [, L,, -+, [must satisfy
»iDli<1.

Remark: An instantaneous code =— Y, D74 <1

Example 3.2 For the source code C* of Example 3.1.

27142724273 4273 =1,

§ 3.2 Optimal Source Codes

Proof: R00t< . X
<<

- Assume D = 2, and the above binary tree illustrates the assignment of binary
source codeword. A complete solid path represents a source codeword.

- Based on property of instantaneous codes, if the first source codeword goes
the ‘0’ path, the next source codeword should not go the ‘0’ path. Such a
source codeword symbol assignment process repeats as the number of data

symbols increases.

§ 3.2 Optimal Source Codes

- Atlevel I, of the tree (source codeword length is | .), there are at most D!max

codewords. Similarly, at level |. of the tree, there are at most D% codewords. A

codeword at level |, has D'max~li descendants at level |

max*

- The descendent sets of all codewords should be disjoint. Consider all codewords,

this property implies

ZDlmax_li < Dlmax _ ZD_li <1
7 i

§ 3.2 Optimal Source Codes

- The tree represents an instantaneous source code.

-
-X
-

<N

o<k -
Root< 0<%
1 < >

1

- The expected length of this tree is
E[l] = X lip;
l;: length of a source codeword for symbol x;
p;: probability of symbol x;

- Expected length of the tree is the expected length of the source code.

§ 3.2 Optimal Source Codes

B TTTTTTTTTTTTTTTTEEmESSSS
- Finding the smallest expected length L becomes
minimize: L =),;p;l;

st. Y, D7hi<1,

- The constrained minimization problem can be interpreted through the Lagrange

multipliers as:
minimize:] =Y,;p;l; + A(X; DY)
- Calculus: 2L = p, — AD klog, D. To enable 2L = 0, we need D~k = —PL
1A L e - dal; ’ Aloge D
- To satisfy the Kraft Inequality, we have A= 1Og1 = Hence, p; = D7k .

- To minimized L, we need [= logp p; *.

- With [= logp pi_l, we have
L=Y,pli=Y;p;logpp;* = Hy(X) _ Entropy of the source symbols

§ 3.2 Optimal Source Codes

Theorem 3.3 (Lower Bound of the Expected Length) The expected length L of an
instantaneous D-ary code for a random variable X is lower bounded by

L = Hp(X).
Proof:
L—Hp(X) =2;lipi +2;pilogp p;
= — X p;logp D™+ 3 p; logp p;
= X, pilogp Dp—lzl- :
Letp; = D7k,

L—Hp(X) =X,;pi 1080%

= D(p;|lp{) = 0.

Remark: Since [; can only be an integer,
L =Hp(X), ifl; = —logp p;.
L > Hp(X), ifl; = [—logp p;].

§ 3.2 Optimal Source Codes

Corollary 3.4 (Upper Bound of the Expected Length) The expected length L of an
instantaneous D-ary code for a random variable X is upper bounded by

L<Hy(X)+1.

Proof: Since —logpp; < [; < —logpp; + 1.
By multiplying p; to the above inequality and performing summation

over i as

Z —p;logp; < Z_pili < Z —p;logp; + Z,pi
n l l l

l

Hy(X) <L < Hp(X) + 1.

§ 3.3 Shannon-Fano Code

- Given a source that contains symbols x4, x5, ..., x; with probabilities of

p1, P2, -, Py, respectively.

- Determine the source codeword length for symbol x; as

l; = [log2 pil] bits.
- Further determine [,,,,x = max{l;, Vi}.
- Shannon-Fano Code Construction:
Step 1: Construct a binary tree of depth [«

Step 2: Choose a node of depth [; and delete its following paths and nodes. The

path from root to the node represents the source codeword for source symbol x;.

§ 3.3 Shannon-Fano Code

B TTTTTTTTTTTTTTTTEEmESSSS
- Example 3.3 Given a source with symbols x4, x,, x3, x4, they occur with a

probability of p, = 0.4, p, = 0.3, p; = 0.2, p, = 0.1, respectively. Construct its
Shannon-Fano code.

We can determine

[[1 1 2,1 [1 1 2,1 [1 1 3,1 [l 1 4
= 102, —| = 4, = 108, —| = 4, = 102, —| = O, = |log,—| = 4,
1) , 2 82) 3 g2 Dy 4 g2 D

and l.x = 4.
Construct a binary tree of depth 4.

The source codewords are
X;:00

X,:01

X5:100

Root X,-1010.

Note: L = 2.4 bits/sym., H(X) = 1.85 bits/sym.,
and H(X) < L < H(X) + 1.

§ 3.4 Huffman Code

- Given a source that contains symbols x4, x,, ..., xy with probabilities of p4, p,, ..., Py,

respectively.

- Huffman Code Construction:
Step 1: Merge the 2 smallest symbol probabilities;
Step 2: Assign the 2 corresponding symbols with 0 and 1, then go back to Step 1;
Repeat the above process until two probabilities are merged into a

probability of 1.

- Huffman code is the shortest prefix code, i.e., an optimal code.

§ 3.4 Huffman Code

Example 3.4 Given a source with symbols X;, X,, X3, X,, Xs. They occur with
probabilities of P, = 0.25, P, = 0.25,P; = 0.2, P, = 0.15, P, = 0.15, respectively.
Construct its Huffman code.

Codeword | x;
X;| 0.25 0.3
X,| 0.25 0.25
Xg| 0.2 0.25
0 X,| 0.15 0.2
1 Xs | 0.15

§ 3.4 Huffman Code

Codeword | x; P,
X, | 0.25 0.3 0.45
0 X, | 0.25 0.25 0.3
1 Xg| 0.2 0.25 0.25
0 X,| 0.15 0.2
1 Xs | 0.15
Codeword | x; P,
1 X;| 0.25 0.3 45 0.55
0 X, | 0.25 0.25 0.3 %0.45
1 Xg| 0.2 0.25 0.25
00 X,| 0.15 0.2
01 X | 0.15

§ 3.4 Huffman Code

Codeword X;
01 X, | 0.25 O 45 0.55—— 1
1 X, | 0.25 O O 45
11 Xg | 0.2 O 25 O 25
0 00 X, | 0.15
0 01 Xg | 0.15
Validations:

lL,=21,=21;=2,1,=3,1.=3
L =), 1P, = 2.3 bits/symbol
H,(X) =Y, P,log, P,~1 = 2.3 bits/sym.

Q: Try to construct a Shannon-Fano code and see if it is also optimal.

§ 3.4 Huffman Code

So now, let us look back at the problem proposed at the beginning.
How to represent the source vector {1 2 4 4 3 1 4 4}7?

Codeword | x P(x)
000 2 0.1257(0.25/0.5
001 3 0.125/ 0.5

1 4 0.5

It should be representedas{0 1000110010111 }andL = 1.75 bits/symbol.

Q: How if the source vector becomes {12434421}?

Remark: The source coding depends on the source vector.

§ 3.4 Huffman Code

- Huffman code can also be defined as a D-ary code.

- A D-ary Huffman code can be similarly constructed following the binary
construction.

Step 1: Merge the D smallest symbol probabilities;
Step 2: Assign the corresponding symbols with 0, 1, ..., D — 1, then

go back to Step 1; Repeat the above process until D probabilities are
merged into a probability of 1.

§ 3.4 Huffman Code

Example 3.5 Consider a source with symbols x;, X,, X3, X4, Xs, Xg. They occur with
probabilities of P, =0.25, P, =0.25,P;=0.2,P,=0.1, P = 0.1, P; = 0.1,

respectively. Construct a ternary ({0, 1, 2}) Huffman code.

Codeword X; P,
0 Xy 0.25— 0.25 — 0.25 1
1 X, 0.25— 0.25 —0.257
2 0 X3 02— 0.2 0.5
2 1 X, 0.1 — 0.1 7
2 20 Xz 0.1 0.2
2 21 Xg 0.17
2 2 2 |Dummy| O

Note: A dummy symbol is created such that 3 probabilities can merge into a

probability of 1 in the end.

§ 3.4 Huffman Code

Properties on an optimal D-ary source code (Huffman code)

() If D; > D then l]- < l;

(2) The D longest codewords have the same length;

(3) The D longest codewords differ only at the last symbol and correspond to the D

least likely source symbols.

Theorem 3.5 (Optimal Source Code) A source code (C*) is optimal if giving any
other source code C’, we have L(C*) <L(C").

Note: Huffman codes are optimal.

References:
[1] Elements of Information Theory, by T. Cover and J. Thomas.
[2] Scriptum for the lectures, Applied Information Theory, by M. Bossert.

