

- 3.1 An Introduction to Source Coding
- 3.2 Optimal Source Codes
- 3.3 Shannon-Fano Code
- 3.4 Huffman Code

- Entropy (e.g., in bits per symbol) implies the average number of bits that are required to represent a source symbol. This indicates a mapping between the source symbols and bits.
- **Source coding** can be seen as a mapping mechanism between source symbols and e.g., bits.
- For a string of symbols, how can we use less bits to represent them?

Intuition: Use short description to represent the most frequently occurred symbols; Use necessarily long description to represent the less frequently occurred symbols.

Or can this be a shorter string of bits?

• Expected Length: Let x denote a source symbol and C(x) denote a codeword of x. If the length of C(x) is l(x) (e.g., in bits) and x occurs with a probability of p(x), the expected length L(C) of source code C is:

$$L(C) = \sum_{x} p(x) \cdot l(x).$$

• It implies the average number of bits that are required to represent a source symbol in source coding scheme *C*.

Let us look at the following example:

Example 3.1 Let *X* be a random variable with an alphabet of {1, 2, 3, 4}, it has a distribution of

$$P(x = 1) = \frac{1}{2}, P(x = 2) = \frac{1}{4}, P(x = 3) = \frac{1}{8}, P(x = 4) = \frac{1}{8}$$

Entropy of *X* is:

$$H(X) = \sum_{x \in \{1,2,3,4\}} P(x) \log_2 P(x)^{-1}$$

= 1.75 bits/sym.

Source Coding 1 (C):

$$C(1) = 00, C(2) = 01, C(3) = 10, C(4) = 11$$

$$L(C) = \frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 2 + \frac{1}{8} \cdot 2 = 2$$
 bits.

On average, we use 2 bits to represent a symbol.

$$L(C) > H(X)$$
.

Source Coding $2(C^*)$:

$$C^*(1) = 0, C^*(2) = 10, C^*(3) = 110, C^*(4) = 111$$

$$L(C^*) = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 = 1.75$$
 bits

On average, we use 1.75 bits to represent a symbol.

Observation: C^* should be a better source coding scheme than C.

Memoryless Source: Given a source symbol sequence $s_1, s_2, ..., s_n$. It is memoryless if

$$P(s_j) = P(s_j \mid s_1, s_2, ..., s_{j-1}), \forall j = 1, 2, ..., n.$$

The source symbols are statistically independent.

Theorem 3.1 Shannon's Source Coding Theorem Given a memoryless source X whose symbols are chosen from the alphabet $\{x_1, x_2, ..., x_U\}$ with the alphabet symbol probabilities of $P(x_1) = p_1, P(x_2) = p_2, ..., P(x_U) = p_U$, and $\sum_{i=1}^{U} p_i = 1$. If the source is of length n, when $n \to \infty$, it can be encoded with H(X) bits per symbol. The coded sequence will be of nH(X) bits.

Note: $H(X) = \sum_{i=1}^{U} p_i \log_2 p_i^{-1}$ bits/sym.

Important Features of Source Coding:

1. Non-singularity: Unambiguous representation of source symbols.

That says if $x_i \neq x_i$, $c(x_i) \neq c(x_i)$.

X	C(X)
1	0
2	010
3	01
4	10

Problem: When we try to decode '010', it can be 2 or 14 or 31.

The decoding is NOT unique.

2. Uniquely decodable: A codeword can only be uniquely decoded into a source symbol.

X	C(X)
1	10
2	00
3	11
4	110

Problem: When we try to decode '001011000', we have

$$21 < \frac{32 \dots}{42}$$

We will have to wait and see the end of the bit string. The decoding is NOT instantaneous.

3. Instantaneous decoding: The decoding (demapping) happens once a codeword is read.

Instantaneous codes: For an instantaneous code, no codeword is a prefix of any other codeword.

X	C(X)
1	0
2	10
3	110
4	111

Observation: If you try to decode '111110101100111', you would notice that the puncturing positions are determined by the instances you have reached a source codeword. The decoding is instantaneous, and the decoding output is '4 3 2 3 1 4'.

Source Codes:

How can we find an optimal source code?

An optimal source code:

- (1) An instantaneous code (prefix code)
- (2) The smallest expected length $L = \sum_{i} p_{i} l_{i}$

Theorem 3.2 Kraft Inequality For an instantaneous code over an alphabet of size D (e.g., D=2 for binary codes), the codeword lengths l_1, l_2, \dots, l_U must satisfy $\sum_i D^{-l_i} \leq 1$.

Remark: An instantaneous code $\Longrightarrow \sum_i D^{-l_i} \le 1$

Example 3.2 For the source code C^* of Example 3.1.

$$2^{-1} + 2^{-2} + 2^{-3} + 2^{-3} = 1.$$

Proof: Root $\bigcirc 0$

- Assume D = 2, and the above binary tree illustrates the assignment of binary source codeword. A complete solid path represents a source codeword.
- Based on property of instantaneous codes, if the first source codeword goes the '0' path, the next source codeword should not go the '0' path. Such a source codeword symbol assignment process repeats as the number of data symbols increases.

- At level l_{\max} of the tree (source codeword length is l_{\max}), there are at most $D^{l_{\max}}$ codewords. Similarly, at level l_i of the tree, there are at most D^{l_i} codewords. A codeword at level l_i has $D^{l_{\max}-l_i}$ descendants at level l_{\max} .
- The descendent sets of all codewords should be <u>disjoint</u>. Consider all codewords, this property implies

$$\sum_{i} D^{l_{\max} - l_i} \le D^{l_{\max}} \qquad \longrightarrow \qquad \sum_{i} D^{-l_i} \le 1.$$

- The tree represents an instantaneous source code.

- The expected length of this tree is

$$\mathbb{E}[l] = \sum_{i} l_i p_i$$

 l_i : length of a source codeword for symbol x_i

 p_i : probability of symbol x_i

- Expected length of the tree is the expected length of the source code.

- Finding the smallest expected length *L* becomes

minimize:
$$L = \sum_{i} p_{i} l_{i}$$

s.t. $\sum_{i} D^{-l_{i}} \leq 1$.

- The constrained minimization problem can be interpreted through the Lagrange multipliers as:

minimize:
$$J = \sum_{i} p_i l_i + \lambda(\sum_{i} D^{-l_i})$$

- Calculus: $\frac{\partial J}{\partial l_i} = p_i \lambda D^{-l_i} \log_e D$. To enable $\frac{\partial J}{\partial l_i} = 0$, we need $D^{-l_i} = \frac{p_i}{\lambda \log_e D}$.
- To satisfy the Kraft Inequality, we have $\lambda = \frac{1}{\log_e D}$. Hence, $p_i = D^{-l_i}$.
- To minimized L, we need $l_i^* = \log_D p_i^{-1}$.

- With
$$l_i^* = \log_D p_i^{-1}$$
, we have
$$L = \sum_i p_i l_i^* = \sum_i p_i \log_D p_i^{-1} = H_D(X)$$
 Entropy of the source symbols

Theorem 3.3 (Lower Bound of the Expected Length) The expected length L of an instantaneous D-ary code for a random variable X is lower bounded by $L \ge H_D(X)$.

Proof:

$$L - H_D(X) = \sum_i l_i p_i + \sum_i p_i \log_D p_i$$

= $-\sum_i p_i \log_D D^{-l_i} + \sum_i p_i \log_D p_i$
= $\sum_i p_i \log_D \frac{p_i}{D^{-l_i}}$.

Let
$$p_i' = D^{-l_i}$$
,
$$L - H_D(X) = \sum_i p_i \log_D \frac{p_i}{p_i'}$$
$$= D(p_i||p_i') \ge 0.$$

Remark: Since l_i can only be an integer,

$$L = H_D(X)$$
, if $l_i = -\log_D p_i$.
 $L > H_D(X)$, if $l_i = [-\log_D p_i]$.

Corollary 3.4 (Upper Bound of the Expected Length) The expected length L of an instantaneous D-ary code for a random variable X is upper bounded by

$$L < H_D(X) + 1.$$

Proof: Since $-\log_D p_i \le l_i < -\log_D p_i + 1$.

By multiplying p_i to the above inequality and performing summation over i as

$$\sum_{i} -p_{i} \log p_{i} \leq \sum_{i} p_{i} l_{i} < \sum_{i} -p_{i} \log p_{i} + \sum_{i} p_{i}$$

$$H_{D}(X) \leq L < H_{D}(X) + 1.$$

§ 3.3 Shannon-Fano Code

- Given a source that contains symbols $x_1, x_2, ..., x_U$ with probabilities of $p_1, p_2, ..., p_U$, respectively.
- Determine the source codeword length for symbol x_i as

$$l_i = \left[\log_2 \frac{1}{p_i}\right]$$
 bits.

- Further determine $l_{max} = max\{l_i, \forall i\}$.
- Shannon-Fano Code Construction:
 - **Step 1:** Construct a binary tree of depth l_{max} .
 - **Step 2:** Choose a node of depth l_i and delete its following paths and nodes. The path from root to the node represents the source codeword for source symbol x_i .

§ 3.3 Shannon-Fano Code

- **Example 3.3** Given a source with symbols x_1, x_2, x_3, x_4 , they occur with a probability of $p_1 = 0.4$, $p_2 = 0.3$, $p_3 = 0.2$, $p_4 = 0.1$, respectively. Construct its Shannon-Fano code.

We can determine

$$l_1 = \left[\log_2 \frac{1}{p_1}\right] = 2, l_2 = \left[\log_2 \frac{1}{p_2}\right] = 2, l_3 = \left[\log_2 \frac{1}{p_3}\right] = 3, l_4 = \left[\log_2 \frac{1}{p_4}\right] = 4,$$

and $l_{\text{max}} = 4$.

Construct a binary tree of depth 4.

The source codewords are

$$x_1$$
: 0 0

$$x_2$$
: 0 1

$$x_3$$
: 1 0 0

$$x_4$$
: 1 0 1 0.

Note: L = 2.4 bits/sym., H(X) = 1.85 bits/sym., and H(X) < L < H(X) + 1.

- Given a source that contains symbols $x_1, x_2, ..., x_U$ with probabilities of $p_1, p_2, ..., p_U$, respectively.

- Huffman Code Construction:

Step 1: Merge the 2 smallest symbol probabilities;

Step 2: Assign the 2 corresponding symbols with 0 and 1, then go back to **Step 1**;

Repeat the above process until two probabilities are merged into a probability of 1.

- Huffman code is the shortest prefix code, i.e., an optimal code.

Example 3.4 Given a source with symbols x_1 , x_2 , x_3 , x_4 , x_5 . They occur with probabilities of $P_1 = 0.25$, $P_2 = 0.25$, $P_3 = 0.2$, $P_4 = 0.15$, $P_5 = 0.15$, respectively. Construct its Huffman code.

Codeword	x_i	P_i	
	x_1	0.25	0.3
	x_2	0.25	0.25
	x_3	0.2	0.25
0	x_4	0.15	0.2
1	x_5	0.15	

Codeword	x_i	P_{i}
	x_1	0.25
0	x_2	0.25 0.25 0.3
1	x_3	0.2 0.25 0.25
0	x_4	0.15 // 0.2 /
1	x_5	0.15

Codeword	x_i	P_{i}
1	x_1	0.25 0.3 0.45 0.55
0	x_2	0.25
1	x_3	0.2 0.25 0.25
0 0	x_4	0.15 // 0.2
0 1	x_5	0.15

Codeword	x_i	P_i
0 1	x_1	0.25 / 0.3 / 0.45 / 0.55
1 0	x_2	0.25 0.25 0.3 0.45
1 1	x_3	0.2 / 0.25 / 0.25
0 0 0	x_4	0.15 / 0.2 /
0 0 1	x_5	0.15

Validations:

$$l_1 = 2, l_2 = 2, l_3 = 2, l_4 = 3, l_5 = 3$$

 $L = \sum_i l_i \cdot P_i = 2.3 \text{ bits/symbol}$
 $H_2(X) = \sum_i P_i \log_2 P_i^{-1} = 2.3 \text{ bits/sym.}$

Q: Try to construct a Shannon-Fano code and see if it is also optimal.

So now, let us look back at the problem proposed at the beginning. How to represent the source vector {1 2 4 4 3 1 4 4}?

Codeword	x	P(x)
0 1	1	$0.25 \longrightarrow 0.25 \longrightarrow 0.5 \longrightarrow 1$
0 0 0	2	0.125 0.25 0.5
0 0 1	3	0.125 / 0.5
1	4	0.5

It should be represented as $\{0\ 1\ 0\ 0\ 1\ 1\ 0\ 0\ 1\ 1\ 1\ \}$ and L=1.75 bits/symbol.

Q: How if the source vector becomes {1 2 4 3 4 4 2 1}?

Remark: The source coding depends on the source vector.

- Huffman code can also be defined as a *D*-ary code.
- A *D*-ary Huffman code can be similarly constructed following the binary construction.
 - **Step 1:** Merge the *D* smallest symbol probabilities;
 - **Step 2:** Assign the corresponding symbols with 0, 1, ..., D-1, then go back to **Step 1**; Repeat the above process until D probabilities are merged into a probability of 1.

Example 3.5 Consider a source with symbols x_1 , x_2 , x_3 , x_4 , x_5 , x_6 . They occur with probabilities of $P_1 = 0.25$, $P_2 = 0.25$, $P_3 = 0.2$, $P_4 = 0.1$, $P_5 = 0.1$, $P_6 = 0.1$, respectively. Construct a ternary ($\{0, 1, 2\}$) Huffman code.

Codeword	x_i	P_{i}
0	x_1	0.25 — 0.25 — 0.25 — 1
1	x_2	0.25— 0.25 — 0.25 /
2 0	x_3	0.2 - 0.2 - 0.5
2 1	x_4	0.1 — 0.1
2 2 0	x_5	$0.1 \longrightarrow 0.2$
2 2 1	x_6	0.1
2 2 2	Dummy	0 /

Note: A dummy symbol is created such that 3 probabilities can merge into a probability of 1 in the end.

Properties on an optimal *D*-ary source code (Huffman code)

- (1) If $p_j > p_k$, then $l_j \le l_k$;
- (2) The *D* longest codewords have the same length;
- (3) The *D* longest codewords differ only at the last symbol and correspond to the *D* least likely source symbols.

Theorem 3.5 (Optimal Source Code) A source code (C^*) is optimal if giving any other source code C', we have $L(C^*) \leq L(C')$.

Note: Huffman codes are optimal.

References:

- [1] Elements of Information Theory, by T. Cover and J. Thomas.
- [2] Scriptum for the lectures, Applied Information Theory, by M. Bossert.