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§2.1  Introduction

Channel
Input X Output Y

⚫ In a communication system, with the observation of Y, we aim to recover X.

⚫ Mutual Information 𝐼 𝑋, 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)

⚫ Channel capacity describes the channel’s best capability in reducing the 

uncertainty.

= 𝐻 𝑌 − 𝐻(𝑌|𝑋)

It defines the amount of uncertainty about X that has been reduced by 

knowing Y, and vise versa. This uncertainty discrepancy is introduced by 

the channel. 
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Channel

P(y | x)

Input X Output Y

⚫ Let the realizations of input X and output Y be x and y, respectively.

⚫ Channel transition probability P(y | x): knowing x was transmitted, the 

probability of observing y. It defines the channel quality.

⚫ Mutual information between X and Y

= 𝔼 log2
P(y | x)

σ𝑥P(y | x)P(x)

P(y | x) : channel quality ; P(x) : input distribution

𝐼 𝑋, 𝑌 = 𝔼 log2
P(y | x)

P(y)
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⚫ Channel Capacity

𝐶 = max
𝑃(𝑥)

{𝐼(𝑋, 𝑌)}

The maximum mutual information 𝐼(𝑋, 𝑌) that can be realized over all 

input distribution P(x).

⚫ In a wireless communication system, it is the maximum number of 

information bits that can be carried by a modulated symbol such that the 

information can be recovered with an arbitrarily low probability of error.

Channel

P(y | x)

Input X Output Y
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⚫ A wireless communication system

⚫ Channel coding is needed to realize this reliable communications

⚫ Given 𝑘 information symbols (or bits), redundancy is added to obtain 𝑛 (𝑛 > 𝑘) 

codeword symbols (or bits), and the coding rate is 𝑟 =
𝑘

𝑛
. 

⚫ Using binary modulation, e.g., BPSK, reliable communications is possible if 𝑟 < 𝐶. 

This property will be proved in Shannon’s Channel Coding Theorem (Chapter 4).

Channel

Encoder

𝑚0, 𝑚1, … ,𝑚𝑘−1 Modulator

(D/A)

Channel

Demodulator

(A/D)
Channel

Decoder

𝑐0, 𝑐1, … , 𝑐𝑛−1 𝑥0, 𝑥1, … , 𝑥𝑛−1

𝑦0, 𝑦1, … , 𝑦𝑛−1

ෝ𝑚0, ෝ𝑚1, … , ෝ𝑚𝑘−1
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⚫ Why input distribution P(x) matters?

⚫ Example 2.1: Consider the data rate as the human flow measured by capitals per hour

(that cross the border from Shenzhen to Hong Kong). There are 200k people wanting to

make the cross on the day.

LW’s capacity: 10k/hr SZB’ capacity: 30k/hr

LW takes 100k

SZB takes 100k

LW takes 60k

SZB takes 140k

LW takes 50k

SZB takes 150k
LW only

10 hrs

SZB only

6 hrs6.67 hrs 5 hrs20 hrs
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⚫ Discrete Input:       𝑋 ∈ 0, 1, … , 𝑢 − 1

⚫ Channel transition probability 𝑃 𝑦 𝑥 . Note that

⚫ Memoryless: Given input and output sequences 𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝒚 =
(𝑦1, 𝑦2, … , 𝑦𝑛)

Discrete Output: 𝑌 ∈ 0, 1, … , 𝑣 − 1

σ𝑦 𝑃 𝑦 𝑥 = 1, ∀𝑥

𝑃 𝑦 𝑥 ≥ 0

𝑃 𝒚 𝒙 =ෑ

𝑖=1

𝑛

𝑃 𝑦𝑖 𝑥𝑖

X Y

P(y | x)⋮ ⋮

1
0

𝑢 − 1

1
0

𝑣 − 1

⚫ Discrete Memoryless Channel (DMC)



§2.1  Introduction

⚫ The channel can often be described by a transition probability matrix 

𝐏 =

𝑃 0 0 ⋯ 𝑃 𝑣 − 1 0
𝑃 0 1 ⋯ 𝑃 𝑣 − 1 1

⋮ ⋱ ⋮
𝑃 0 𝑢 − 1 ⋯ 𝑃 𝑣 − 1 𝑢 − 1

Y :         0        1   ⋯ 𝑣 − 1

0     

⋮

𝑢 − 1

⚫ Classical DMCs : BSC, BEC.

X Y

P(y | x)⋮ ⋮

1
0

𝑢 − 1

1
0

𝑣 − 1

X :



§2.2  Binary Symmetric Channel (BSC)

⚫ Input:    0  1  0  0  0  1  1  0  1  0 ...

⚫ Input and output are discrete

⚫ The channel condition

⚫ It is the simplest wireless communication channel model. 

1 - p

p

p

1 1

0 0
1 - p

X Y

Output: 0 1 1 1 0 0 1 0 0 0 ...

𝑃 𝑦 = 0 𝑥 = 0 = 𝑃 𝑦 = 1 𝑥 = 1 = 1 − 𝑝

𝑃 𝑦 = 1 𝑥 = 0 = 𝑃 𝑦 = 0 𝑥 = 1 = 𝑝
𝑃 =

𝑋 ⋱ 𝑌 0 1
0 1 − 𝑝 𝑝
1 𝑝 1 − 𝑝
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⚫ Analytic intuition 

1 - p

p
p

1 1

0 0
1 - p

X Y

𝐼 𝑋, 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)
𝐼 𝑋, 𝑌 will be maximized if 𝐻 𝑌 is maximized and 𝐻 𝑌|𝑋 is minimized.

𝐻 𝑌 ≤ 1. 

𝐻 𝑌|𝑋 = −σ𝑥∈𝑋σ𝑦∈𝑌𝑃 𝑥, 𝑦 log2𝑃(𝑦|𝑥)

= −σ𝑥∈𝑋σ𝑦∈𝑌𝑃 𝑦|𝑥 𝑃(𝑥)log2𝑃(𝑦|𝑥)

= −𝑃(𝑥 = 0)σ𝑦∈{0,1}𝑃 𝑦 𝑥 = 0 log2𝑃(𝑦|𝑥 = 0)

−𝑃(𝑥 = 1)σ𝑦∈{0,1}𝑃 𝑦 𝑥 = 1 log2𝑃(𝑦|𝑥 = 1)

= −𝑃(𝑥 = 0)( 1 − 𝑝 log2 1 − 𝑝 + 𝑝log2𝑝)
−𝑃(𝑥 = 1)(𝑝log2𝑝 + 1 − 𝑝 log2 1 − 𝑝 )

= −(1 − 𝑝)log2 1 − 𝑝 − 𝑝log2𝑝 bits/sym.

𝐶 = 1 − 𝐻(𝑌|𝑋) bits/sym.

When 𝑃 𝑥 = 0 = 𝑃 𝑥 = 1 =
1

2
, 𝐻 𝑌 = 1 and  

⚫ Analysis



§2.2  Binary Symmetric Channel (BSC)

⚫ Intuition: If 0 and 1 experience the same degree of channel impairment, i.e., 

𝑃 𝑦 = 1 𝑥 = 0 = 𝑃(𝑦 = 0|𝑥 = 1), there is no need to prioritize either 0 or 1 for 

transmission and  𝑃 𝑥 = 0 = 𝑃 𝑥 = 1 =
1

2
.

⚫ If 𝑃 𝑥 = 0 = 𝑃 𝑥 = 1 =
1

2
, 𝑃 𝑦 = 0 = 𝑃 𝑦 = 1 =

1

2
and 𝐻 𝑌 = 1.

⚫ 𝐶 = 1 + 𝑝log2𝑝 + 1 − 𝑝 log2(1 − 𝑝) bits/sym.

1 - p

p
p

1 1

0 0
1 - p

X Y

= −𝑃(𝑦 = 1|𝑥 = 0) ∙
1

2
∙ log2𝑃(𝑦 = 1|𝑥 = 0)

= −𝑃(𝑦 = 1|𝑥 = 1) ∙
1

2
∙ log2𝑃(𝑦 = 1|𝑥 = 1)

= −𝑃(𝑦 = 0|𝑥 = 1) ∙
1

2
∙ log2𝑃(𝑦 = 0|𝑥 = 1)

= −𝑝log2𝑝 − 1 − 𝑝 log2(1 − 𝑝) bits/sym.

𝐻 𝑌|𝑋 = −𝑃(𝑦 = 0|𝑥 = 0) ∙
1

2
∙ log2𝑃(𝑦 = 0|𝑥 = 0)



§2.2  Binary Symmetric Channel (BSC)

⚫ 𝐶 = 1 + 𝑝log2𝑝 + 1 − 𝑝 log2(1 − 𝑝) bits/symbol

1 - p

p
p

1 1

0 0
1 - p

X Y



§2.3  Binary Erasure Channel (BEC)

1 - p

p

p

1 1

0 0
1 - p

X Y

e

⚫ Input:    1  0  0  1  0  1  0  1  0  0 ...

⚫ The channel condition

⚫ It is a channel model often used in computer networks. Data packets are either 

perfectly received or lost.

Output: 1 e 0 1 0 e 0 e 0 e ...

𝑃 𝑦 = 0 𝑥 = 0 = 𝑃 𝑦 = 1 𝑥 = 1 = 1 − 𝑝

𝑃 𝑦 = 𝑒 𝑥 = 0 = 𝑃 𝑦 = 𝑒 𝑥 = 1 = 𝑝
𝑃 =

𝑋 ⋱ 𝑌 0 1 𝑒
0 1 − 𝑝 0 𝑝
1 0 1 − 𝑝 𝑝
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X Y

1 - p

p

p

1 1

0 0
1 - p

e

⚫ Similar to the analytic intuition of BSC, channel capacity is reached when 𝑃 𝑥 = 0 =

𝑃 𝑥 = 1 =
1

2
.

⚫ Since 𝑃 𝑦 = 0 = 𝑃 𝑦 = 1 =
1

2
(1 − 𝑝) and 𝑃 𝑦 = 𝑒 = 𝑝

𝐻 𝑌 = −σ𝑦∈𝑌𝑃 𝑦 log2𝑃(𝑦)

= −𝑃 𝑦 = 0 log2𝑃(𝑦 = 0) −𝑃 𝑦 = 𝑒 log2𝑃(𝑦 = 𝑒) −𝑃 𝑦 = 1 log2𝑃(𝑦 = 1)

= −
1

2
(1 − 𝑝)log2

1

2
(1 − 𝑝) −𝑝log2𝑝 −

1

2
(1 − 𝑝)log2

1

2
(1 − 𝑝)

= − (1 − 𝑝)log2
1

2
(1 − 𝑝) −𝑝log2𝑝 bits/sym.

⚫ 𝐶 = 𝐻 𝑌 − 𝐻(𝑌|𝑋) bits/sym.
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⚫ 𝐻 𝑌|𝑋 = −σ𝑥∈𝑋σ𝑦∈𝑌𝑃 𝑦|𝑥 𝑃(𝑥)log2𝑃(𝑦|𝑥)

= −𝑃 𝑦 = 0|𝑥 = 0 ∙
1

2
∙ log2𝑃(𝑦 = 0|𝑥 = 0)

−𝑃 𝑦 = 1|𝑥 = 1 ∙
1

2
∙ log2𝑃(𝑦 = 1|𝑥 = 1)

−𝑃 𝑦 = 𝑒|𝑥 = 0 ∙
1

2
∙ log2𝑃(𝑦 = 𝑒|𝑥 = 0)

−𝑃 𝑦 = 𝑒|𝑥 = 1 ∙
1

2
∙ log2𝑃(𝑦 = 𝑒|𝑥 = 1)

= −(1 − 𝑝)log2(1 − 𝑝) −𝑝log2𝑝 bits/sym.

⚫ 𝐶 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

= 1 − 𝑝 bits/sym.

X Y

1 - p

p

p

1 1

0 0
1 - p

e
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⚫ 𝐶 = 1 − 𝑝 bits/sym.

X Y

1 - p

p

p

1 1

0 0
1 - p

e



§2.4  AWGN Channel

⚫ The additive white Gaussian noise (AWGN) channel model 𝑦 = 𝑥 + 𝑛

⚫ It is a more realistic wireless channel model where the transmitted signal is impaired 

by noise.

⚫ It is adopted to represent the space communication channel where light-of-sight (LoS) 

transmission can be ensured. 

⚫ It is also often used as a common platform for evaluating channel codes.

Input

𝑥
Output

𝑦

Noise

𝑛

𝑥: discrete input signal, a modulated signal

𝑛: white Gaussian noise as 𝒩(0, 𝜎𝑁
2), independent of 𝑥

𝑦: continuous output signal, a variation of 𝑥



§2.4  AWGN Channel

⚫ Channel model 𝑦 = 𝑥 + 𝑛

⚫ Mutual Information: 𝐼 𝑋, 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

⚫ Capacity: 𝐶

= 𝐻 𝑌 − 𝐻 𝑋 + 𝑁 𝑋

= 𝐻 𝑌 − 𝐻(𝑁|𝑋)

= 𝐻 𝑌 − 𝐻(𝑁)

= max
𝑃(𝑥)

{𝐻 𝑌 − 𝐻 𝑁 }

= max
𝑃(𝑥)

{𝐼(𝑋, 𝑌)}

Input

𝑥
Output

𝑦

Noise

𝑛
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⚫ For AWGN, 𝑁: 𝒩 0, 𝜎𝑁
2 , its pdf is

𝑃 𝑛 =
1

2𝜋𝜎𝑁
exp −

𝑛2

2𝜎𝑁
2

𝐻 𝑁 = −න
−∞

+∞

𝑃 𝑛 log2𝑃 𝑛 d𝑛

= −න
−∞

+∞ 1

2𝜋𝜎𝑁
exp −

𝑛2

2𝜎𝑁
2 log2

1

2𝜋𝜎𝑁
exp −

𝑛2

2𝜎𝑁
2 d𝑛

=
1

2
log2(2𝜋𝑒𝜎𝑁

2)bits/sym.

⚫ If input X is a continuous signal and Gaussian distributed as 𝒩 𝜇𝑋, 𝜎𝑋
2 , 

𝐼(𝑋, 𝑌) will be maximized and  

𝐶 = 𝐻 𝑌 − 𝐻(𝑁)

Input

𝑥
Output

𝑦

Noise

𝑛



§2.4  AWGN Channel

⚫ For input 𝑋 ∶ 𝒩 𝜇𝑋, 𝜎𝑋
2 , its pdf is

𝑃 𝑥 =
1

2𝜋𝜎𝑋
exp −

(𝑥 − 𝜇𝑋)
2

2𝜎𝑋
2

𝐻 𝑋 = −න
−∞

+∞

𝑃 𝑥 log2𝑃 𝑥 d𝑥

= −න
−∞

+∞ 1

2𝜋𝜎𝑋
exp −

𝑥 − 𝜇𝑋
2

2𝜎𝑋
2 log2

1

2𝜋𝜎𝑋
exp −

(𝑥 − 𝜇𝑋)
2

2𝜎𝑋
2 d𝑥

=
1

2
log2(2𝜋𝑒𝜎𝑋

2) bits/sym.

⚫ Since 𝑌 = 𝑋 + 𝑁 and X and N are independent

𝐻 𝑌 =
1

2
log2(2𝜋𝑒(𝜎𝑋

2 + 𝜎𝑁
2))

Output Y : 𝒩 𝜇𝑋, 𝜎𝑋
2 + 𝜎𝑁

2 = 𝒩 𝜇𝑋, 𝜎𝑌
2

bits/sym.

Input

𝑥
Output

𝑦

Noise

𝑛
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bits/sym.

⚫ 𝜎𝑋
2 is the power of the transmitted signal, while 𝜎𝑁

2 is the power of noise. Hence, 

𝜎𝑋
2

𝜎𝑁
2 is often defined as the channel signal-to-noise ratio (SNR).

⚫ This only defines the unachievable transmission limit since in a practical 

communication system, X will not be normal distributed.

⚫ Channel model: 𝑦 = 𝑥 + 𝑛

⚫ Capacity: 𝐶 = 𝐻 𝑌 − 𝐻(𝑁)

=
1

2
log2 2𝜋𝑒 𝜎𝑋

2 + 𝜎𝑁
2 −

1

2
log2(2𝜋𝑒𝜎𝑁

2)

=
1

2
log2 1 +

𝜎𝑋
2

𝜎𝑁
2

Input

𝑥
Output

𝑦

Noise

𝑛
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⚫ Transmission resource (dimension) in an electromagnetic wave: amplitude, frequency, 

phase.

𝐶1−dim =
1

2
· log2(1 +

𝜎𝑋
2

𝜎𝑁
2 )  bits/sym.

𝐶2−dim = 1 · log2(1 +
𝜎𝑋
2

𝜎𝑁
2 )  bits/sym.

𝐶3−dim =
3

2
· log2(1 +

𝜎𝑋
2

𝜎𝑁
2 )  bits/sym.

Note: 
𝜎𝑋
2

𝜎𝑁
2 in dB = 10log10

𝜎𝑋
2

𝜎𝑁
2

𝐶3−dim

𝐶2−dim

𝐶1−dim

25



§2.4  AWGN Channel

⚫ Band Limited AWGN Channel

⚫ In a practical system, sampling is needed at the receiver to reconstruct the received 

signal as Fig. 1.

⚫ If the signal has a frequency of W, the sampling frequency should be at least 2W for 

perfect signal reconstruction, as in Fig. 2.

Fig. 1 Received Signal and Sampling Fig. 2 Signal Sampling in frequency domain
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⚫ Band Limited AWGN Channel

⚫ With the sampling, we now have a series of time discrete Gaussian samples and the 

channel model becomes

⚫ Signal 𝑥 𝑡 =
𝑠

2𝑊
has variance 𝜎𝑋

2

𝑦 𝑡 =
𝑠

2𝑊
= 𝑥 𝑡 =

𝑠

2𝑊
+ 𝑛 𝑡 =

𝑠

2𝑊
, 𝑠 = 1, 2,⋯

⚫ Capacity for each time discrete Gaussian channel 

𝐶𝑠 =
1

2
log2 1 +

𝜎𝑋
2

𝜎𝑁
2

bits/sample

Noise 𝑛 𝑡 =
𝑠

2𝑊
has variance 𝜎𝑁

2
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⚫ Band Limited AWGN Channel

⚫ 𝜎𝑁
2: Power spectral density of noise samples

⚫ 𝑁0: Power spectral density of noise symbols

⚫ 𝜎𝑋
2: Power of signal samples

⚫ 𝐸: Power of signal symbols

⚫ Over a period of 𝑇

𝜎𝑁
2 ∙ 2𝑊 ∙ 𝑇 = 𝑁0 ∙ 𝑊 ∙ 𝑇

𝜎𝑁
2 =

𝑁0
2

𝜎𝑋
2 ∙ 2𝑊 ∙ 𝑇 = 𝐸 ∙ 𝑇

𝐸 = 2𝑊𝜎𝑋
2
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⚫ Band Limited AWGN Channel

⚫ Since

⚫ Capacity of this band limited AWGN channel can be determined by

𝐶 =
σ𝑠=1
2𝑊𝑇 𝐶𝑠
𝑇

𝐶 =
2𝑊𝑇 ∙

1
2 log2 1 +

𝐸
𝑊𝑁0

𝑇
= 𝑊log2 1 +

𝐸

𝑊𝑁0
bits/sec.

, T–sampling duration

𝐶𝑠 =
1

2
log2 1 +

𝐸

𝑊𝑁0
bits/sample
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⚫ Example 2.2 (Shannon Limit): Error free transmission over the Gaussian channel 

is possible if the signal-to-noise ratio 
𝐸𝑏

𝑁0
is at least -1.6 dB.

Proof: ➢ This possibility is sealed by the use of a channel code (information 

length k, codeword length n).

➢ Let Eb and Ec denote the energy of each information symbol and each 

coded symbol, respectively. It is required

𝑘 ∙ 𝐸𝑏 = 𝑛 ∙ 𝐸𝑐
such that adding redundancy does not increase the transmission energy. 

➢ Consider the binary modulation (BPSK) with a modulated symbol 

energy of E, e.g.,

𝐸 = 𝐸𝑐 =
𝐸𝑏 ∙ 𝑘

𝑛
= 𝐸𝑏 ∙ 𝑟
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Continue the Proof

➢ Assume the signal frequency 𝑊 → ∞

𝐶 = lim
𝑊→∞

𝑊log2 1 +
𝐸

𝑁0𝑊

bits/sec.

➢ For error free transmission, it is required

𝑟 < 𝐶 ⟹
𝐸𝑏
𝑁0

> ln2 = 0.69

=
𝐸

𝑁0ln2

=
𝐸𝑏 ∙ 𝑟

𝑁0ln2

➢ The pinch-off SNR would be

SNRoff = 10log100.69 = −1.6 dB
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⚫ Finite Modulation Alphabets

⚫ In a wireless communication system, digital signals are modulated (mapped) to 
analog signals for transmission.

⚫ Commonly used modulation schemes include:

BPSK QPSK 8PSK 16QAM

⚫ The AWGN channel has finite inputs but continuous outputs.
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⚫ Finite Modulation Alphabets

⚫ Input 𝑋 ∈ 𝑥1, 𝑥2, … , 𝑥𝑀 , e.g., BPSK M = 2, QPSK M = 4, 16QAM M = 16.

⚫ Output 𝑦 = 𝑥 + 𝑛, where 𝑛 is AWGN.

⚫ Channel Capacity

𝐶 = max
𝑃(𝑥𝑖)

෍

𝑖=1

𝑀

න
𝑦:−∞

+∞

𝑃(𝑥𝑖 , 𝑦)log2
𝑃 𝑦 𝑥𝑖
𝑃(𝑦)

d𝑦

𝑃 𝑥𝑖 , 𝑦 = 𝑃 𝑦 𝑥𝑖 𝑃(𝑥𝑖)

Since

𝑃 𝑦 = ෍

𝑖′=1

𝑀

𝑃(𝑦|𝑥𝑖′)𝑃 𝑥𝑖′and

𝐶 = max
𝑃(𝑥𝑖)

෍

𝑖=1

𝑀

න
𝑦:−∞

+∞

𝑃 𝑦 𝑥𝑖 𝑃(𝑥𝑖)log2
𝑃 𝑦 𝑥𝑖
𝑃 𝑦

d𝑦
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⚫ Finite Modulation Alphabets

𝐶 = max
𝑃(𝑥𝑖)

෍

𝑖=1

𝑀

𝑃(𝑥𝑖)න
𝑦:−∞

+∞

𝑃 𝑦 𝑥𝑖 log2
𝑃 𝑦 𝑥𝑖

σ𝑖′=1
𝑀 𝑃 𝑥𝑖′ 𝑃(𝑦|𝑥𝑖′)

d𝑦

⚫ Assume each modulated symbol is equally likely to be transmitted

𝑃 𝑥𝑖 = 𝑃 𝑥𝑖′ =
1

𝑀
.

⚫ Capacity:

𝐶 =
1

𝑀
෍

𝑖=1

𝑀

න
𝑦:−∞

+∞

𝑃 𝑦 𝑥𝑖 log2
𝑃 𝑦 𝑥𝑖

1
𝑀
σ𝑖′=1
𝑀 𝑃(𝑦|𝑥𝑖′)

d𝑦 bits/sym.
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⚫ Finite Modulation Alphabets

⚫ Over the AWGN Channel with noise power 𝜎𝑁
2

𝑃 𝑦|𝑥𝑖 =
1

2𝜋𝜎𝑁
exp −

|𝑦 − 𝑥𝑖|
2

2𝜎𝑁
2

⚫ Capacity:

𝐶 =
1

𝑀
෍

𝑖=1

𝑀

න
𝑦:−∞

+∞

𝑃 𝑦 𝑥𝑖 log2
𝑃 𝑦 𝑥𝑖

1
𝑀
σ𝑖′=1
𝑀 𝑃(𝑦|𝑥𝑖′)

d𝑦

and likewise for 𝑃(𝑦|𝑥𝑖′).

=
1

𝑀
෍

𝑖=1

𝑀

𝔼 log2
𝑃 𝑦 𝑥𝑖

1
𝑀
σ𝑖′=1
𝑀 𝑃(𝑦|𝑥𝑖′)



§2.4  AWGN Channel

= log2𝑀 −
1

𝑀
෍

𝑖=1

𝑀

𝔼 log2 ෍

𝑖′=1

𝑀

exp
|𝑦 − 𝑥𝑖|

2− |𝑦 − 𝑥𝑖′|
2

2𝜎𝑁
2 bits/sym.

Continue

=
1

𝑀
෍

𝑖=1

𝑀

𝔼 log2𝑀 + log2
𝑃 𝑦 𝑥𝑖

σ𝑖′=1
𝑀 𝑃(𝑦|𝑥𝑖′)

= log2𝑀 −
1

𝑀
෍

𝑖=1

𝑀

𝔼 log2
σ𝑖′=1
𝑀 𝑃(𝑦|𝑥𝑖′)

𝑃 𝑦 𝑥𝑖
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⚫ Finite Modulation Alphabets

SNR =
𝜎𝑋
2

𝜎𝑁
2



§2.5  Fading Channels

⚫ Channel Model: 𝑦 = 𝛼 ∙ 𝑥 + 𝑛

𝑥

𝛼 𝑛

𝑦

⚫ Fading coefficients 𝛼 further represent the effect of signal attenuation, signal 

scattering, path loss and multi-path accumulation. 

⚫ It is a channel model often used for urban communications.

⚫ If 𝛼 is Rayleigh distributed following 𝛼 = 𝛼 exp 𝑗𝜑 , it is called the Rayleigh 

fading channel.

(1) Fast fading: 𝛼 changes independently for every 𝑥.

(2) Quasi-static fading: 𝛼 remains unchanged during the transmission of a codeword 

and changes independently from one codeword to another. 

(3) Block fading: 𝛼 changes independently block by block.

⚫ Fading types: 
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⚫ Assume fading coefficients 𝛼 are known by both the transmitter and receiver.

⚫ Instantaneous capacity:

𝐶 𝛼𝑖 = 𝑊log2 1 +
𝛼𝑖
2 ∙ 𝐸(𝛼𝑖)

𝑊𝑁0

⚫ Ergodic Capacity:

𝐸(𝛼𝑖): the signal power depending on 𝛼𝑖.

It is the maximal achievable transmission rate defined by a particular fading 

realization 𝛼𝑖.

𝐶 = max
𝐸(𝛼𝑖)

𝔼 𝑊log2 1 +
𝛼𝑖
2 ∙ 𝐸(𝛼𝑖)

𝑊𝑁0

It is the average transmission rate that can be realized over all fading realizations.
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