«%Jﬁ\iﬁ—%%m»

{Information Theory and Coding)

Li Chen ([%37)

Professor, School of Electronics and Information Technology (SEIT)
Sun Yat-sen University

Office: 511, JIE Building

Email: chenliS5@mail.sysu.edu.cn

Website: www.chencode.cn



mailto:chenli55@mail.sysu.edu.cn

{Information Theory and Coding)

Textbooks:

1. {Elements of Information Theory) , by T. Cover and J. Thomas, Wiley
(and introduced by Tsinghua University Press), 2003.

2. (Error Control Coding) , by S. Lin and D. Costello, Prentice Hall, 2004.

3. (ERIEmIZEL)  FER. ZHEE, 5% E Bttt 2013.




Outlines

O O O O O O O

Na

Na

Na

Na

Na

Na

Na

pter 1.
nter 2:
pter 3:
pter 4:
pter 5:
pter 6:

nter 7

Entropy and Mutual Information
Channel Capacity

Source Coding

Channel Coding

Convolutional Codes and TCM
Turbo Codes

Reed-Solomon Codes

(8
(6
(4
(4

4W)
L/3W)
L/2W)

L/1W)

(10L/2.5W)
(6L/1.5W)
(12L/3W)

L: Lectures / W: Weeks



Analogue comm.

Late 80s to early 90s

[ Information theory and coding techniques J Digital comm.

o i
i

E




Chapter 1 Entropy and Mutual Information

» 1.1 An Introduction of Information

« 1.2 Entropy

1.3 Mutual Information

1.4 Further Results on Information Theory



% 1.1 An Introduction of Information

Information Theory, founded by Claude E. Shannon (1916-2001)

via "A Mathematical Theory of Communication," Bell System Technical Journal, 1948.

* What is information?

* How to measure information?

« How to represent information?

* How to transmit information and its limit?



% 1.1 An Introduction of Information

What is information?

Let us look at the following sentences
1) 1 will be one year older next year.

No information Boring!
2) | was born in 1993.
Some information Being frank!
3) 1 was born in 1990s.
More information Interesting, so which year?

Observation 1: Information comes from uncertainty.

Observation 2: The number of possibilities should be linked to the information.



% 1.1 An Introduction of Information

Let us do the following game
Throw a die once

o ° You have 6 possible outcomes.

f: y {1,2.3,4,5,6}

Throw three dies You have 63 possible outcomes.

{(1, 1,1),(,1,2),(1, 1,3),(1,1,4)

y" 2. 1.1).2.1,2).(2.1.3). (2. 1.4)

=
-
'Y

o” ......

(6, 6, 3),(6,6,4),(6,6,5),(6,6,6)}

Observation 3: Information should be ‘additive’.



% 1.1 An Introduction of Information
.

Let us look at the following problem

Q: If there are 120 students in our class, and we would like to use bits to distinguish ea
ch of them, how many bits do we need?

Solution: 120 possibilities requires
log, 120 = 6.907 bits
We need at least 7 bits to represent each of us.

Q: There are 7 billion people on our planet, how many bits do we need?
Observation 4: We can use ‘logarithm’ to scale down the a huge amount of possibilities.

Observation 5: Bit (=binary+digit) permutations are used to represent all possibilities.



% 1.1 An Introduction of Information

Finally, let us look into the following game

Pick one ball from the hat randomly,
The probability of picking up a white ball, % (25%).
Representing the probability needs
log, — = 2 bits
82 1/

The probability of picking up a black ball, = (75%)
Representing the probability needs
log, 3—}4 = 0.415 bits

On average, how many bits do we need to represent an outcome?
1 1 3 1 ]
5 108> s + log; i 0.811 bits

Observation 6: Measure of information should consider the probabilities of various
possible events.



§ 1.1 An Introduction of Information

Events: 1, 2, ..., N
Probabilities: P, P,, ..., Py

P,log, Py1 + P,log, P;1 + ...+ Pylog, Pyt




% 1.1 An Introduction of Information
.

 Information: knowledge not precisely known by the recipient, as it is a measure of

uncertainty.
«  Amount of information o< (probability of occurance) ™!
E.g., given messages M, M5, ..., M, with prob. of occur. Py, P, ..., B,
(P, + P, + ---+ B; = 1) , measure of amount of information carried by each

message Is

I(M;) = log, P71, i=12,..,q
x = 2, 1(M;) in bits
x = e, I(M;) in nats
x = 10, I(M;) in Hartley.
» Properties of the measurement
1) I(M;) -0, if P -1
2) I(M;) =0, when 0<P; <1;
3) IMy) >1(M;), if P >P
4) Given M; and M; are statistically independent,
1(M;&M;) = I(M;) + 1(M)).



% 1.1 An Introduction of Information

Information €-> 8

(N
e ()

WIERE=HR, W ESHERE -
WEHEREDAEH, BOIE T,
B NILEE, HFEKBEES.
RSB 215, /KT A,




§ 1.2 Entropy

I
How to measure information?

Given a source vector of length N. It has U possible symbols S, S,, ..., Sy, with a
probability of occurrence of Py, P,, ..., Py, respectively.

To represent the source vector, we need
I =Y, NP;log, P " bits

On average, how many bits do we need for a source symbol?

I — .
H =~ =%, Pilogy P * bits/symbol

H is called the source entropy - average amount of information per source symbol.
It can also be understood as the expectation of function log, P!

H = E[log, P *| bits/symbol




§ 1.2 Entropy

Example 1.1: A source vector contains symbols of four possible outcomes
A, B, C,D. They occur with probabilities of P(4) = %, P(B) = %
P(C) = %,P(D) = 1—12 respectively.
Entropy of the source vector can be determined as

1otz 1 1 1
3 082773 730823 T 13082
= 1 856 blts/symbol

H =

Note: If P(A) = P(B) = P(C) = P(D) = i

H = 4 --log, 4 = 2 bits/symbol



§ 1.2 Entropy

Entropy of a binary source: The vector has only two possible symbols, i.e., 0 and 1. Let
P(0) denote the probability of a source symbol being 0, and P(1) denote the probability
of a source symbol being 1, we have

H = P(0) -log,P(0)~1 + P(1)log,P(1)?!

or
H = P(0) - log,P(0)™ + (1 — P(0)) - log,(1 — P(O))_l

T Binary Entropy Function H (x), x €{0. 1}
1.1

Binary Entropy Function ol

0.6

H(x)

05
04 r
03 r
02

0.1 r

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P(0)(or1-P(1)



§ 1.2 Entropy

B TTTTTTTTTTTTTTTTEEmESSSS
Entropy of different bases can be interchanged by

Hp(x) = Hg(x) logp a
Proof:
Hq(x) = E[—logg P(x)]

lga

H,(x)log,a = lg—bIE [

Ig P(x)
lga




§ 1.2 Entropy

|
e Entropy for two random variables X and Y.

e Realizations of X and Y are x and y.
e Distributions of X and Y are P(x) and P(y).

Joint Entropy H(X, Y): Given a joint distribution P(x, y),
H(X,Y) = — Z Z P(x,y)log,P(x,y)

XEX yeEY
= —E[log,P(x, y)]
Condition Entropy H(Y|X):
H(Y|X) = z POOH(Y|X = x)

x€eX

- _ Z Z P(x)P(y|x)log,P(y|x)

XEX YEY

- Z Z P(x,y)log,P(y|x) = —E[log,P(y|x)]

XEX yEY



§ 1.2 Entropy

BT
The Chain Rule (Relationship between Joint Entropy and Conditional Entropy)

H(X,Y) = HX) + H(Y|X) If X and Y are independent,
H(X|Y) = H(X)

Hence,
HX,Y)=HX)+ H®)

= H(Y) + H(X|Y)

Proof:

HOGY) == ) ) PG, y)log,P(x, )

XEX yEY

- _ z Z P(x, y)log, (P(y|x)P(x))

XEX yEY

= — z z P(x,y)log,P(x) — z z P(x,y)log,P(y|x)

XEX YEY XEX YEY

= — Z P(x)log,P(x) — 2 z P(x,y)log,P(y|x)

x€X xX€X yEY
=HX)+ H(Y|X)



§ 1.2 Entropy

[ ]
The above chain rule can be extended to

(1) HX,Y|Z) = HX|Z) + H(Y|X, Z)
(2) H(X1, Xz, o, Xy) = Do HX X210, Xi—2) ) X1)

Proof:

H(X1,X;) = HXy) + H(X,|X1)

H(Xy, X3, X3) = H(X1) + H(X3, X3|X7)
= H(X1) + H(X;|X;) + H(X3]X5, X1)

H(Xl,Xz, ,XN) - H(Xl) + H(X2|X1) + H(X3|X2,X1) + -+ H(XN|XN—1IXN—21 ...,Xl)



§ 1.3 Mutual Information

e Two random variables X and Y.

e Realizations of X and Y are x and y.

e Distributions of X and Y are P(x) and P(y).
e Joint distribution of X and Y is P(X, y).

e Conditional distribution of X is P(x|y).

Mutual Information between X and Y:

P
1Y) = ) ) PG ylog, (x1y)

XEX yEY P(x)

P(x|y)
2 P(x)

=E [log




§ 1.3 Mutual Information

Pxly) _ P(xy)
P(x)  P()PQY)

) P(x,y) P(x,y)
I(X,Y) = ;{;P(x, y)log, POP(Y) E llogz P(x)P(y)

Note: If X and Y are independent, P(x)P(y) = P(x,y),I(X,Y) = 0.



§ 1.3 Mutual Information

Mutual Information’s Relationship with Entropy:
IX,Y)=HX)+H(Y)—-HX,Y)

Proof: P(x,y)
X,y
) — ) 1
10X, 1) ;;P(x V1082 eSS
= Z Z P(x,y)log,P(x,y) — Z P(x)log,P(x) — Z P(y)log,P(y)
XEX YEY XEX yEY

= H(X) + H(Y) — H(X,Y)

Note: The above proof also shows the symmetry of mutual information as

I(X,Y)=1(Y,X)



§ 1.3 Mutual Information

Mutual Information’s Relationship with Entropy:

I(X,Y) = HX) + HY) — H(X,Y)

This relationship can be visualized in the Venn diagram

I(X,Y)

H(X) H(Y)

H(X,Y)
Fig. A Venn diagram



§ 1.3 Mutual Information

B TTTTTTTTTTTTTTTTEEmESSSS
Corollary:
I(X,Y) = HX) — HX|Y)
=H(Y) - H(Y|X)
This can also be concluded using the chain rule.
Notes: 1) 0 <I(X,Y) <min{H(X),H(Y)}.
2) IFHX) = H(Y), I(X,Y) = H(X).
Similarly if H(YY) = H(X), I(X,Y) = H(Y).
IX,X)=HX)—-HXI|X) =HX)
Entropy is also called self information

I1(X,Y)

H(X) H(Y)

H(X,Y)

Fig. A Venn diagram



§ 1.3 Mutual Information

B TTTTTTTTTTTTTTTTEEmESSSS
The chain rules for arbitrary number of variables

For entropy,

H(X1, X5, .., Xn) = H(X7) + H(X2|X1) + H(X3|X5, X1) + -+ HXy|Xy_1, Xn—2) ) X1)
= Zé\,:lH(Xilxi—liXi—Zi ---;Xl)

For mutual information,

1(X, X, o, X3 Y) = HX(, Xy, oo, Xn) — H(X1, X5, o, Xy |Y)
— Zévle(XilxerZJ '--;Xi—l) - Zévzl H(Xi|X1;X2; ---;Xi—lr Y)
=YV HX| X1, Xp 0, Xi—q) — HX; | X1, Xo, o, X1, Y)

= Zlivzll(xii Y|X1,X2, ---:Xi—1)



§ 1.3 Mutual Information

Mutual Information of a Channel

X

Source ———>{ Channel ——>{ Sink

- Consider X is the transmitted signal, Y is the received signal.
- Y isavariant of X where the discrepancy is introduced by channel.

H(X) — H(X|Y)

How much we don’t know
BEFORE the channel observations.

How much we still don’t know
AFTER the channel observations.

T L
g

How much information is carried by the channel, and this is called the
mutual information of the channel, denoted as I(X,Y).

Note: Mutual information 1(X, Y) describes the amount of information one variable X
contains about the other Y, or vice versa as in I(Y, X).




§ 1.3 Mutual Information

|
Example 1.2: Given the binary symmetric channel shown as

X Y

1 : 1

0
We know P(x =0) =03, P(x=1)=0.7, P(y=1|x =1) = 0.8,
P(y=1|x=0)=10.2, Py=0|x=1) =0.2 and P(y = 0|x = 0) = 0.8.
Please determine the mutual information of the channel.

Solution: We may determine the channel mutual information by I(X,Y) = H(X) — H(X|Y)
- Entropy of the binary source is

H(X)=—-P(x=0)log, P(x=0)—P(x=1)log, P(x =1)
1 1
= 0.3 - log, st 0.7 - log, o
= 0.881 bits/symbol



§ 1.3 Mutual Information

|
- With P(x) and P(y|x), we know

Py=1)=P(y=1lx=1)P(x=1)+P(y=1|x = 0)P(x = 0)

= 0.62
Py=0)=P(y=0x=1)P(x=1)+P(y=0|x=0)P(x =0)
= 0.38
Px=0,y=0)=P(y=0|x=0)P(x=0)=0.24
P(x=0,y=0
P(x = 0|y = 0) = (i(yzyo) ) — 0,63
Px=1y=0)=P(y=0x=1)P(x=1) =0.14
P(x=1,y=0
P(x =1|y = 0) = (;f(y:yo) ) — 0.37
Px=0,y=1)=P(y=1|x=0)P(x =0) = 0.06
P(x=0,y=1
Px=0ly=1) = (;f(yzyl) )~ 0.10
Px=1y=1)=P(y=1x=1)P(x =1) =0.56
P(x = 1|y = 1) = 252D _ g g9

P(y=1)



§ 1.3 Mutual Information

* Hence, the conditional entropy is:

HX|Y)=P(x =0,y

+P(x=1,y

= Ole 5 =1y =0)
=1)1 1
- DB =1y =1

= p =0y =0)

+P(x =0,y +P(x=1,y

= Dlgz o o =1

1 1 1 1
= 0.24108, —— + 0.1410g., —— + 0.06 log, —— + 0.56 log., ——
82063 " 082037 " °82570 " 982790

= 0.644 bits/sym.

e The mutual information is;

I(X,Y) = H(X) — H(X|Y) = 0.237 bits

Note: You may try to solve the same problem through
I(X,Y)=H() - HY|X)



S 1.4 Further Results on Information Theory
B TTTTTTTTTTTTTTTTEEmESSSS

Relative Entropy: Assume X and X are two random variables with realizations of x and &,
respectively. They aim to describe the same event, with probability mass functions of P(x)
and P(X), respectively. Their relative entropy is

. P(x)
D(PCO),P®) = ) P(log, 5
P(x)
X€Esupp P(x)
P(x)
=E [logz PR)
- It is often called the Kullback-Leibler distance between two distributions P(x) and

P(X).

- It is a measure of inefficiency by assuming a distribution P(X) when the true
distribution is P(x). E.g., an event can be described by an average length of H(P(x))
bits. However, if we assume its distribution is P(X), we will need an average length
of H(P(x)) + D(P(x), P(%)) bits to describe it.

- Itis not symmetric as D(P(x), P(%)) # D(P(®), P(x)).



S 1.4 Further Results on Information Theory
B TTTTTTTTTTTTTTTTEEmESSSS

Example 1.3:
Let X A B C D
1 1 1 1
P(x) - - - -
(=) 4 2 8 8
P(R) : 3 2 $ 1
8 5 10 8
H(P(x)) = 1.75 bits/symbol H(P(®)) = 1.805 bits/symbol

D(P()P(A))_H 4 112 1 1/8 1 1/8
X B = g 0823 g T 50627 5 T gl027 10 T g %82 g

If P(x;) = P(x;), no extra bits;
If P(x;) < P(X;), less bits;
If P(x;) > P(X;), more bits.



S 1.4 Further Results on Information Theory
B TR

- Corollary 1: When P(x) = P(%), D(P(x),P(®)) = 0.
- Corollary 2: D(P(x), P(%)) = 0.

Proof: —D (P (x), P(J?)) = z P(x)log,

xesupp P(x)

P(x)
P(x)
P(%)
P(x)

IA

P(x) ( — 1> log, e

x€esupp P(x)

P(x) — z P(x)) log, e

(xEsupp P(x) x€esupp P(x)
< (1-1log,e
=0

IT Inequality: Givenb > 1and e > 0

1
(1 — E) logpe < logpe < (¢ — 1)logye




S 1.4 Further Results on Information Theory

Example 1.4: The true distribution P(x) is given. If we assume a distribution of P(X;) =
fori = 1,2, ..., k to describe the same event, then

x)
P(x

D(P(x),P(®)) =E [logz ] E[log,kP(x)]

= E[log,k] + E[log,P(x)]

= E[log,P(2)~*] — E[log,P(x)™"]

= H(P(®)) — H(P(x))



S 1.4 Further Results on Information Theory

Convex Function: A function f(x) is convex (i'1) over the interval (a, b) if Vx;, x, € (a, b)
and0 <A1 <1,

fxs + (1= Dxz) < Af(x1) + (1 =D f (x2).
It is strictly convex if the equality holds when A =0 orA = 1.

- If f(x) is convex, —f(x) is concave ([M]).




S 1.4 Further Results on Information Theory

|
- Example 1.5: log, i Is strictly convex over (0, «).

Letx; =2, x, =5and A = 0.5,

1

1 — _181
%5205 %x2+05x5

1 1
0.5 X logzz + 0.5 X log, T = —1.66

When 1 = 0 or A = 1, the equality holds.
Note that log,x is concave.

log,(x) | |
| — 7Iogz(1/x)

Hh A N LN o a4 w o~ o
T T T T T T T
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|
Jensen’s Inequality: If function f(x) is convex, then

f(E[x]) < E[f(x)].

Proof: With two mass points x; and x, and distributions of p; and p,, the convexity implies
f(p1x1 + D2x2) < p1f(x1) + p2f (x2).
Assume this is also true for k — 1 mass points that
fo1x1 + -+ Pro1Xp—1) S 01f (1) + -+ Preoa f (1)

For k mass points that substantiate Y= p; + p;, = 1, we have

k
f1x1 + -+ Pr1xk—1) + D f (X)) S p1f(xg) + -+ pif(xp) = z pif (x;)

=1



S 1.4 Further Results on Information Theory

Letp] = 1f;k, fori=12,...k—1

k k-1

Z pif (x;) = Z (1 = pp; f(x;) + prf ()

i=1 i=1
k-1

> (1—pr)f (Z pl{xi> + pif (xi)
i=1
k-1
= f (Z (1 - pr)pix; + kak>

i=1

Note: If function f(x) is concave, E[f(x)] < f(E[x]).
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|
- Jensen’s inequality can be applied to prove some properties on entropy.
- Corollary 2: D(P(x),P(%)) = 0

Proof: P(%
~D(P(x), P()) = z P(x) log, PES

xesupp P(x)

< log, z P(x%)
x€esupp P(x)
< log,1 =0
- Corollary 3: I(X,Y) = 0

P )
1Y) = ) ) PG ylog, P(gpy&)
XEX yEY

=D(P(x,y),P(x)P(y)) 2 0

Proof:

I(X,Y)=0onlyif P(x,y) = P(x)P(y), i.e.,, Xand Y are independent.
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B TTTTTTTTTTTTTTTTEEmESSSS
- Corollary 4 (Maximum Entropy Distribution):

Given variable X € {x, x5, ..., xy}, with a distribution of P, P,, ..., Py. We have
H(X) <log,U
Proof:

U
H(X) = z P;log, P!
i=1

Since log, (+) is a concave function, based on Jensen’s inequality, we have
U
H(X) < log, Z PPt
i=1

= log,U

Note: If X is uniformly distributed over x4, x5, ..., xy, .., P, = P, = -+ = Py =
H(X) =log,U

1
E;
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|
Fano’s Inequality: Let X and Y be two random variables with realizations in {x;, x5, ... X3 }.
Let P, = Pr[X +# Y], then

H(X|Y) < H(P,) + P,log,(k — 1).
Proof: Let us create a binary variable Z such that

Z=0ifX=Y _ Pr(Z=0)=1-F
Z=1ifX+#Y Pr(Z=1) =P,

Hence, H(Z) = H(P,). Base on the chain rule for entropy,

H(XZ|Y) = HX|Y) + H(Z|XY) = H(X|Y)
Note, with the knowledge of X and Y, Z is deterministic and H(Z|XY) = 0.
Also based on the chain rule,

H(XZ|Y) = H(Z|Y) + H(X|YZ)
<H(Z) +HX|YZ)



S 1.4 Further Results on Information Theory

BT
Therefore, HX|Y) < H(Z) + HX|YZ).

-H(Z) + H(X|YZ).
-HX|YZ) =Pr(Z = 0)H(X|Y,Z = 0) + Pr(Z = 1) H(X|Y,Z = 1).

=(1—-P,)-0+Plog,(k—1)
= P,log,(k — 1)

Note: H(P,) is the number of bits required to describe X whenever X =Y;
log,(k — 1) is the number of bits required to describe X whenever X # Y.
The equality is reached when X is uniformly distributed over all k — 1 values.



S 1.4 Further Results on Information Theory

B TTTTTTTTTTTTTTTTEEmESSSS
Data Processing Inequality: Given a concatenated data processing system as

v

Processor 1 Processor 2

X - Y — Z form a Markov chain that holds

P(x,y,z) = P(x,y) - P(z|y) = P(x)P(y|x)P(z|y)
P(z|x,y) = P(z|y)
P(x|y,z) = P(x|y)

We have

I(X,Y)
I(X,2) < { 1.2



S 1.4 Further Results on Information Theory

B TTTTTTTTTTTTTTTTEEmESSSS
Proof:  Since P(z|x,y) = P(z|y) holds,
H(Z|XY) = E[-log,P(z|xy)] = E[-log,P(z|y)] = H(Z|Y)

Similarly, since P(x|y, z) = P(x|y) holds,

H(X|ZY) = H(X|Y)

I(X,Z) = H(X) — H(X|Z) I(X,Z) = H(Z) — H(Z|X)
< H(X) — H(X|ZY) < H(Z) — H(Z|XY)
= H(X) — HX|Y) =H(Z) - H(Z|Y)
=1(X,Y) =1(Y,2)

Remark: Information cannot be increased by data processing.
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