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Chapter 1 Entropy and Mutual Information

• 1.1 An Introduction of Information

• 1.2 Entropy

• 1.3 Mutual Information

• 1.4 Further Results on Information Theory



Information Theory, founded by Claude E. Shannon (1916-2001)

§1.1  An Introduction of Information 

via "A Mathematical Theory of Communication," Bell System Technical Journal, 1948.  

• What is information?

• How to measure information?

• How to represent information?

• How to transmit information and its limit?



What is information?

Let us look at the following sentences

1)  I will be one year older next year.

No information

2)  I was born in 1993.

Some information

3)  I was born in 1990s.

More information

Boring!

Being frank!

Interesting, so which year?  

Observation 1: Information comes from uncertainty.

Observation 2: The number of possibilities should be linked to the information.

§1.1  An Introduction of Information 



Throw a die once

Throw three dies

Observation 3: Information should be ‘additive’.

You have 6 possible outcomes.

{1, 2, 3, 4, 5, 6}

Let us do the following game

§1.1  An Introduction of Information 



Observation 4: We can use ‘logarithm’ to scale down the a huge amount of possibilities.

Observation 5: Bit (=binary+digit) permutations are used to represent all possibilities.

Let us look at the following problem

§1.1  An Introduction of Information 

Q: If there are 120 students in our class, and we would like to use bits to distinguish ea

ch of them, how many bits do we need?

Solution: 120 possibilities requires

log2 120 = 6.907 bits

We need at least 7 bits to represent each of us.

Q: There are 7 billion people on our planet, how many bits do we need?



Finally, let us look into the following game

§1.1  An Introduction of Information 

Pick one ball from the hat randomly,

The probability of picking up a white ball, 
1

4
(25%).

Representing the probability needs

log2
1

1/4
= 2 bits

The probability of picking up a black ball, 
3

4
(75%)

Representing the probability needs

log2
1

3/4
= 0.415 bits

On average, how many bits do we need to represent an outcome?

Observation 6: Measure of information should consider the probabilities of various 

possible events.

1

4
log2

1

1/4
+

3

4
log2

1

3/4
= 0.811 bits



§1.1  An Introduction of Information 

Events: 1,    2,  … , N

𝑃1 log2 𝑃1
−1 + 𝑃2 log2 𝑃2

−1 + …+ 𝑃𝑁 log2 𝑃𝑁
−1

Probabilities: P1, P2, … , PN



• Properties of the measurement

§1.1 An Introduction of Information 

• Information: knowledge not precisely known by the recipient, as it is a measure of 

uncertainty.

• Amount of information ∝ probability of occurance −1

E.g., given messages 𝑀1, 𝑀2, … ,𝑀𝑞 with prob. of occur. 𝑃1, 𝑃2, … , 𝑃𝑞
(𝑃1 + 𝑃2 +⋯+ 𝑃𝑞 = 1) , measure of amount of information carried by each 

message is

𝐼 𝑀𝑖 = log𝑥 𝑃𝑖
−1 , 𝑖 = 1,2, … , 𝑞

𝑥 = 2, 𝐼 𝑀𝑖 in bits

𝑥 = 𝑒, 𝐼 𝑀𝑖 in nats

𝑥 = 10, 𝐼 𝑀𝑖 in Hartley.



§1.1 An Introduction of Information 

Information   → 信息

《暮春怀故人》

李中（唐）

池馆寂寥三月尽，落花重叠盖莓苔。
惜春眷恋不忍扫，感物心情无计开。
梦断美人沈信息，目穿长路倚楼台。
琅玕绣段安可得，流水浮云共不回。



§1.2 Entropy

How to measure information?

Given a source vector of length 𝑁. It has 𝑈 possible symbols 𝑆1, 𝑆2, … , 𝑆𝑈, with a 

probability of occurrence of 𝑃1, 𝑃2, … , 𝑃𝑈, respectively.

To represent the source vector, we need

𝐼 = σ𝑖=1
𝑈 𝑁𝑃𝑖 log2 𝑃𝑖

−1 bits

On average, how many bits do we need for a source symbol?

𝐻 =
𝐼

𝑁
= σ𝑖=1

𝑈 𝑃𝑖 log2 𝑃𝑖
−1 bits/symbol

𝐻 is called the source entropy - average amount of information per source symbol. 

It can also be understood as the expectation of function log2 𝑃𝑖
−1

𝐻 = 𝔼 log2 𝑃𝑖
−1 bits/symbol



Example 1.1:

§1.2 Entropy

A source vector contains symbols of four possible outcomes 

𝐴, 𝐵, 𝐶, 𝐷. They occur with probabilities of 𝑃 𝐴 =
1

4
, 𝑃 𝐵 =

1

3
,

𝑃 𝐶 =
1

3
, 𝑃 𝐷 =

1

12
, respectively. 

Entropy of the source vector can be determined as

Note: If 𝑃 𝐴 = 𝑃 𝐵 = 𝑃 𝐶 = 𝑃 𝐷 =
1

4

𝐻 = 4 ·
1

4
log2 4 = 2 bits/symbol

𝐻 =
1

4
log2

1

1/4
+
2

3
log2

1

1/3
+

1

12
log2

1

1/12
= 1.856 bits/symbol



Binary Entropy Function

§1.2 Entropy

𝐻 = 𝑃(0) ∙ log2𝑃(0)
−1 + 𝑃 1 log2𝑃(1)

−1

Entropy of a binary source: The vector has only two possible symbols, i.e., 0 and 1. Let 

𝑃 0 denote the probability of a source symbol being 0, and 𝑃 1 denote the probability 

of a source symbol being 1, we have

𝐻 = 𝑃(0) ∙ log2𝑃(0)
−1 + 1 − 𝑃 0 ∙ log2 1 − 𝑃 0

−1
or



§1.2 Entropy

Entropy of different bases can be interchanged by

𝐻𝑏(𝑥) = 𝐻𝑎(𝑥) log𝑏 𝑎

Proof:

𝐻𝑎(𝑥) = 𝔼 − log𝑎 𝑃 𝑥

𝐻𝑎 𝑥 log𝑏 𝑎 =
lg 𝑎

lg 𝑏
𝔼 −

lg𝑃 𝑥

lg 𝑎

= 𝔼 −
lg 𝑃 𝑥

lg 𝑏

= 𝔼 − log𝑏 𝑃 𝑥

= 𝐻𝑏(𝑥)



§1.2 Entropy

⚫ Entropy for two random variables X and Y.

⚫ Realizations of X and Y are x and y.

⚫ Distributions of X and Y are P(x) and P(y).

Joint Entropy H(X, Y): Given a joint distribution P(x, y),

𝐻 𝑋, 𝑌 = −෍

𝑥∈𝑋

෍

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2𝑃 𝑥, 𝑦

= −𝔼 log2𝑃(𝑥, 𝑦)

Condition Entropy 𝐻 𝑌 𝑋 :

𝐻 𝑌 𝑋 = ෍

𝑥∈𝑋

𝑃 𝑥 𝐻(𝑌|𝑋 = 𝑥)

= −෍

𝑥∈𝑋

෍

𝑦∈𝑌

𝑃 𝑥 𝑃(𝑦|𝑥)log2𝑃(𝑦|𝑥)

= −෍

𝑥∈𝑋

෍

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2𝑃(𝑦|𝑥) = −𝔼 log2𝑃(𝑦|𝑥)



§1.2 Entropy

The Chain Rule (Relationship between Joint Entropy and Conditional Entropy)

𝐻 𝑋, 𝑌 = −෍

𝑥∈𝑋

෍

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2𝑃(𝑥, 𝑦)

= −෍

𝑥∈𝑋

෍

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2(𝑃 𝑦 𝑥 𝑃 𝑥 )

= −෍

𝑥∈𝑋

𝑃(𝑥) log2𝑃 𝑥 −෍

𝑥∈𝑋

෍

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2𝑃 𝑦|𝑥

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻(𝑌|𝑋)

= 𝐻 𝑌 + 𝐻(𝑋|𝑌)

= −෍

𝑥∈𝑋

෍

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2𝑃 𝑥 −෍

𝑥∈𝑋

෍

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2𝑃 𝑦|𝑥

= 𝐻 𝑋 + 𝐻(𝑌|𝑋)

Proof:

If 𝑋 and 𝑌 are independent, 

𝐻 𝑋 𝑌 = 𝐻(𝑋)

Hence, 

𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻(𝑌)



§1.2 Entropy

The above chain rule can be extended to

(1)  𝐻 𝑋, 𝑌|𝑍 = 𝐻 𝑋|𝑍 + 𝐻(𝑌|𝑋, 𝑍)
(2)  𝐻 𝑋1, 𝑋2, … , 𝑋𝑁 = σ𝑖=1

𝑁 𝐻 𝑋𝑖|𝑋𝑖−1, 𝑋𝑖−2, … , 𝑋1

Proof:

𝐻 𝑋1, 𝑋2 = 𝐻 𝑋1 + 𝐻(𝑋2|𝑋1)

𝐻 𝑋1, 𝑋2, 𝑋3 = 𝐻 𝑋1 + 𝐻 𝑋2, 𝑋3 𝑋1
= 𝐻 𝑋1 + 𝐻 𝑋2 𝑋1 + 𝐻 𝑋3 𝑋2, 𝑋1

⋮

𝐻 𝑋1, 𝑋2, … , 𝑋𝑁 = 𝐻 𝑋1 + 𝐻 𝑋2 𝑋1 + 𝐻 𝑋3 𝑋2, 𝑋1 +⋯+ 𝐻 𝑋𝑁|𝑋𝑁−1, 𝑋𝑁−2, … , 𝑋1



§1.3 Mutual Information

⚫ Two random variables X and Y.

⚫ Realizations of X and Y are x and y.

⚫ Distributions of X and Y are P(x) and P(y).

⚫ Joint distribution of X and Y is P(x, y).

⚫ Conditional distribution of X is 𝑃(𝑥|𝑦).

Mutual Information between X and Y: 

𝐼 𝑋, 𝑌 = ෍

𝑥∈𝑋

෍

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2
𝑃(𝑥|𝑦)

𝑃(𝑥)

= 𝔼 log2
𝑃(𝑥|𝑦)

𝑃(𝑥)



§1.3 Mutual Information

𝑃(𝑥|𝑦)

𝑃(𝑥)
=

𝑃(𝑥, 𝑦)

𝑃(𝑥)𝑃(𝑦)

𝐼 𝑋, 𝑌 = ෍

𝑥∈𝑋

෍

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2
𝑃(𝑥, 𝑦)

𝑃(𝑥)𝑃(𝑦)
= 𝔼 log2

𝑃(𝑥, 𝑦)

𝑃(𝑥)𝑃(𝑦)

Note: If X and Y are independent, 𝑃(𝑥)𝑃(𝑦) = 𝑃(𝑥, 𝑦), 𝐼 𝑋, 𝑌 = 0.



§1.3 Mutual Information

Mutual Information’s Relationship with Entropy:

𝐼 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)

𝐼 𝑋, 𝑌 = ෍

𝑥∈𝑋

෍

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2
𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)

Proof:

= ෍

𝑥∈𝑋

෍

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2𝑃 𝑥, 𝑦 −෍

𝑥∈𝑋

𝑃 𝑥 log2𝑃 𝑥 −෍

𝑦∈𝑌

𝑃 𝑦 log2𝑃 𝑦

= 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)

Note: The above proof also shows the symmetry of mutual information as 

𝐼 𝑋, 𝑌 = 𝐼 𝑌, 𝑋



§1.3 Mutual Information

Mutual Information’s Relationship with Entropy: 

𝐼 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻(𝑋, 𝑌)

This relationship can be visualized in the Venn diagram



§1.3 Mutual Information

Corollary: 

𝐼 𝑋, 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)

This can also be concluded using the chain rule.

= 𝐻 𝑌 − 𝐻(𝑌|𝑋)

Notes: 1)  0 ≤ 𝐼 𝑋, 𝑌 ≤ min 𝐻 𝑋 ,𝐻 𝑌 .

2)  If 𝐻 𝑋 ⊏ 𝐻 𝑌 , 𝐼 𝑋, 𝑌 = 𝐻 𝑋 .

Similarly if 𝐻 𝑌 ⊏ 𝐻 𝑋 , 𝐼 𝑋, 𝑌 = 𝐻 𝑌 .

Entropy is also called self information

3) 𝐼 𝑋, 𝑋 = 𝐻 𝑋 − 𝐻 𝑋 𝑋 = 𝐻 𝑋



§1.3 Mutual Information

The chain rules for arbitrary number of variables

𝐻 𝑋1, 𝑋2, … , 𝑋𝑁 = 𝐻 𝑋1 + 𝐻 𝑋2 𝑋1 + 𝐻 𝑋3 𝑋2, 𝑋1 +⋯+ 𝐻 𝑋𝑁|𝑋𝑁−1, 𝑋𝑁−2, … , 𝑋1

= σ𝑖=1
𝑁 𝐻 𝑋𝑖|𝑋𝑖−1, 𝑋𝑖−2, … , 𝑋1

For entropy, 

For mutual information, 

𝐼 𝑋1, 𝑋2, … , 𝑋𝑁; 𝑌 = 𝐻 𝑋1, 𝑋2, … , 𝑋𝑁 − 𝐻 𝑋1, 𝑋2, … , 𝑋𝑁|𝑌

= σ𝑖=1
𝑁 𝐻 𝑋𝑖|𝑋1, 𝑋2, … , 𝑋𝑖−1 − σ𝑖=1

𝑁 𝐻 𝑋𝑖|𝑋1, 𝑋2, … , 𝑋𝑖−1, 𝑌

= σ𝑖=1
𝑁 𝐻 𝑋𝑖|𝑋1, 𝑋2, … , 𝑋𝑖−1 − 𝐻 𝑋𝑖|𝑋1, 𝑋2, … , 𝑋𝑖−1, 𝑌

= σ𝑖=1
𝑁 𝐼 𝑋𝑖; 𝑌|𝑋1, 𝑋2, … , 𝑋𝑖−1



Mutual Information of a Channel

Source Channel Sink

§1.3 Mutual Information

- Consider X is the transmitted signal, Y is the received signal.

- Y is a variant of X where the discrepancy is introduced by channel.

How much we don’t know 

BEFORE the channel observations.

How much we still don’t know 

AFTER the channel observations.

𝐻 𝑋 − 𝐻(𝑋|𝑌)

−

How much information is carried by the channel, and this is called the 

mutual information of the channel, denoted as 𝐼(𝑋, 𝑌).

Note: Mutual information I(X, Y) describes the amount of information one variable X

contains about the other Y, or vice versa as in I(Y, X).



Example 1.2: Given the binary symmetric channel shown as

0.8

0.8

0.2

0.2

0 0

1 1

Please determine the mutual information of the channel.

Solution: We may determine the channel mutual information by 𝐼 𝑋, 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)

˗ Entropy of the binary source is

§1.3 Mutual Information

𝑋 𝑌

𝐻 𝑋 = −𝑃 𝑥 = 0 log2 𝑃 𝑥 = 0 − 𝑃 𝑥 = 1 log2 𝑃 𝑥 = 1

= 0.3 · log2
1

0.3
+ 0.7 · log2

1

0.7

= 0.881 bits/symbol



§1.3 Mutual Information

𝑃 𝑦 = 1 = 𝑃 𝑦 = 1|𝑥 = 1 𝑃 𝑥 = 1 + 𝑃 𝑦 = 1|𝑥 = 0 𝑃 𝑥 = 0
= 0.62

𝑃 𝑦 = 0 = 𝑃 𝑦 = 0|𝑥 = 1 𝑃 𝑥 = 1 + 𝑃 𝑦 = 0|𝑥 = 0 𝑃 𝑥 = 0
= 0.38

𝑃 𝑥 = 0, 𝑦 = 0 = 𝑃 𝑦 = 0|𝑥 = 0 𝑃 𝑥 = 0 = 0.24

𝑃 𝑥 = 0|𝑦 = 0 =
𝑃 𝑥=0,𝑦=0

𝑃 𝑦=0
= 0.63

𝑃 𝑥 = 1, 𝑦 = 0 = 𝑃 𝑦 = 0|𝑥 = 1 𝑃 𝑥 = 1 = 0.14

𝑃 𝑥 = 1|𝑦 = 0 =
𝑃 𝑥=1,𝑦=0

𝑃 𝑦=0
= 0.37

𝑃 𝑥 = 0, 𝑦 = 1 = 𝑃 𝑦 = 1|𝑥 = 0 𝑃 𝑥 = 0 = 0.06

𝑃 𝑥 = 0|𝑦 = 1 =
𝑃 𝑥=0,𝑦=1

𝑃 𝑦=1
= 0.10

𝑃 𝑥 = 1, 𝑦 = 1 = 𝑃 𝑦 = 1|𝑥 = 1 𝑃 𝑥 = 1 = 0.56

𝑃 𝑥 = 1|𝑦 = 1 =
𝑃 𝑥=1,𝑦=1

𝑃 𝑦=1
= 0.90



• Hence, the conditional entropy is:

• The mutual information is:

𝐻(𝑋|𝑌) = 𝑃(𝑥 = 0, 𝑦 = 0) log2
1

𝑃(𝑥 = 0|𝑦 = 0)
+ 𝑃(𝑥 = 1, 𝑦 = 0) log2

1

𝑃(𝑥 = 1|𝑦 = 0)

§1.3 Mutual Information

+𝑃(𝑥 = 0, 𝑦 = 1) log2
1

𝑃(𝑥 = 0|𝑦 = 1)
+ 𝑃(𝑥 = 1, 𝑦 = 1) log2

1

𝑃(𝑥 = 1|𝑦 = 1)

= 0.24 log2
1

0.63
+ 0.14 log2

1

0.37
+ 0.06 log2

1

0.10
+ 0.56 log2

1

0.90

𝐼(𝑋, 𝑌) = 𝐻(𝑋) − 𝐻(𝑋|𝑌) = 0.237 bits

Note: You may try to solve the same problem through

𝐼 𝑋, 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)

= 0.644 bits/sym.



§1.4 Further Results on Information Theory

Relative Entropy: Assume X and ෠𝑋 are two random variables with realizations of x and ො𝑥, 

respectively. They aim to describe the same event, with probability mass functions of 𝑃 𝑥
and 𝑃(ො𝑥), respectively. Their relative entropy is  

𝐷 𝑃 𝑥 , 𝑃 ො𝑥 = ෍

𝑥∈supp 𝑃(𝑥)

𝑃 𝑥 log2
𝑃(𝑥)

𝑃(ො𝑥)

= 𝔼 log2
𝑃 𝑥

𝑃 ො𝑥

- It is often called the Kullback-Leibler distance between two distributions 𝑃 𝑥 and

𝑃 ො𝑥 .

- It is a measure of inefficiency by assuming a distribution 𝑃 ො𝑥 when the true

distribution is 𝑃 𝑥 . E.g., an event can be described by an average length of 𝐻(𝑃 𝑥 )
bits. However, if we assume its distribution is 𝑃 ො𝑥 , we will need an average length

of 𝐻 𝑃 𝑥 + 𝐷 𝑃 𝑥 , 𝑃 ො𝑥 bits to describe it.

- It is not symmetric as 𝐷 𝑃 𝑥 , 𝑃 ො𝑥 ≠ 𝐷 𝑃 ො𝑥 , 𝑃 𝑥 .



Example 1.3:

𝐻 𝑃 𝑥 = 1.75 bits/symbol
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Let 𝑿 : A B C D

𝑃 𝑥 :
1

4

1

2

1

8

1

8

𝑃 ො𝑥 :
3

8

2

5

1

10

1

8

𝐻 𝑃 ො𝑥 = 1.805 bits/symbol

𝐷 𝑃 𝑥 , 𝑃 ො𝑥 =
1

4
log2

1/4

3/8
+
1

2
log2

1/2

2/5
+
1

8
log2

1/8

1/10
+
1

8
log2

1/8

1/8

If 𝑃 𝑥𝑖 = 𝑃 ෝ𝑥𝑖 , no extra bits;

If 𝑃 𝑥𝑖 < 𝑃 ෝ𝑥𝑖 , less bits;

If 𝑃 𝑥𝑖 > 𝑃 ෝ𝑥𝑖 , more bits.
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- Corollary 1: When 𝑃 𝑥 = 𝑃(ො𝑥), 𝐷 𝑃 𝑥 , 𝑃 ො𝑥 = 0.

- Corollary 2: 𝐷 𝑃 𝑥 , 𝑃 ො𝑥 ≥ 0.

−𝐷 𝑃 𝑥 , 𝑃 ො𝑥 = ෍

𝑥∈supp 𝑃 𝑥

𝑃 𝑥 log2
𝑃 ො𝑥

𝑃 𝑥

≤ ෍

𝑥∈supp 𝑃 𝑥

𝑃 𝑥
𝑃 ො𝑥

𝑃 𝑥
− 1 log2 𝑒

Proof:

= ෍

𝑥∈supp 𝑃 𝑥

𝑃 ො𝑥 − ෍

𝑥∈supp 𝑃 𝑥

𝑃 𝑥 log2 𝑒

≤ (1 − 1)log2 𝑒

= 0

IT Inequality: Given 𝑏 > 1 and 𝜀 > 0

1 −
1

𝜀
log𝑏𝑒 ≤ log𝑏𝜀 ≤ 𝜀 − 1 log𝑏𝑒
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Example 1.4: The true distribution 𝑃 𝑥 is given. If we assume a distribution of 𝑃 ො𝑥𝑖 =
1

𝑘

for 𝑖 = 1,2, … , 𝑘 to describe the same event, then

𝐷 𝑃 𝑥 , 𝑃 ො𝑥 = 𝔼 log2
𝑃 𝑥

𝑃 ො𝑥
= 𝔼[log2𝑘𝑃(𝑥)]

= 𝔼 log2𝑘 + 𝔼[log2𝑃(𝑥)]

= 𝐻 𝑃 ො𝑥 − 𝐻(𝑃 𝑥 )

= 𝔼 log2𝑃 ො𝑥 −1 − 𝔼[log2𝑃 𝑥 −1]
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Convex Function: A function 𝑓 𝑥 is convex (凸) over the interval (a, b) if ∀𝑥1, 𝑥2 ∈ (𝑎, 𝑏)
and 0 ≤ 𝜆 ≤ 1,

𝑓 𝜆𝑥1 + 1 − 𝜆 𝑥2 ≤ 𝜆𝑓 𝑥1 + 1 − 𝜆 𝑓(𝑥2).

It is strictly convex if the equality holds when 𝜆 = 0 or 𝜆 = 1.

- If 𝑓 𝑥 is convex, −𝑓 𝑥 is concave (凹).
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- Example 1.5: log2
1

𝑥
is strictly convex over (0,∞).

Let 𝑥1 = 2, 𝑥2 = 5 and 𝜆 = 0.5,

log2
1

0.5 × 2 + 0.5 × 5
= −1.81

0.5 × log2
1

2
+ 0.5 × log2

1

5
= −1.66

When 𝜆 = 0 or 𝜆 = 1, the equality holds.

Note that log2𝑥 is concave.
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Jensen’s Inequality: If function 𝑓 𝑥 is convex, then

𝑓 𝔼[𝑥] ≤ 𝔼[𝑓(𝑥)].

With two mass points 𝑥1 and 𝑥2 and distributions of 𝑝1 and 𝑝2, the convexity implies  Proof:

𝑓 𝑝1𝑥1 + 𝑝2𝑥2 ≤ 𝑝1𝑓 𝑥1 + 𝑝2𝑓(𝑥2).

Assume this is also true for 𝑘 − 1 mass points that

𝑓 𝑝1𝑥1 +⋯+ 𝑝𝑘−1𝑥𝑘−1 ≤ 𝑝1𝑓 𝑥1 +⋯+ 𝑝𝑘−1𝑓(𝑥𝑘−1).

For k mass points that substantiate σ𝑖=1
𝑘−1𝑝𝑖 + 𝑝𝑘 = 1, we have

𝑓 𝑝1𝑥1 +⋯+ 𝑝𝑘−1𝑥𝑘−1 + 𝑝𝑘𝑓 𝑥𝑘 ≤ 𝑝1𝑓 𝑥1 +⋯+ 𝑝𝑘𝑓 𝑥𝑘 =෍

𝑖=1

𝑘

𝑝𝑖𝑓(𝑥𝑖)
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Let 𝑝𝑖
′ =

𝑝𝑖

1−𝑝𝑘
, for 𝑖 = 1,2, … , 𝑘 − 1.

෍

𝑖=1

𝑘

𝑝𝑖𝑓(𝑥𝑖) = ෍

𝑖=1

𝑘−1

1 − 𝑝𝑘 𝑝𝑖
′ 𝑓 𝑥𝑖 + 𝑝𝑘𝑓 𝑥𝑘

≥ 𝑓 ෍

𝑖=1

𝑘−1

(1 − 𝑝𝑘)𝑝𝑖
′𝑥𝑖 + 𝑝𝑘𝑥𝑘

= 𝑓 ෍

𝑖=1

𝑘

𝑝𝑖𝑥𝑖

Note: If function 𝑓 𝑥 is concave, 𝔼[𝑓(𝑥)] ≤ 𝑓 𝔼[𝑥] .

≥ 1 − 𝑝𝑘 𝑓 ෍

𝑖=1

𝑘−1

𝑝𝑖
′𝑥𝑖 + 𝑝𝑘𝑓 𝑥𝑘
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- Jensen’s inequality can be applied to prove some properties on entropy.

- Corollary 2: 𝐷 𝑃 𝑥 , 𝑃 ො𝑥 ≥ 0

- Corollary 3: 𝐼(𝑋, 𝑌) ≥ 0

Proof:
−𝐷 𝑃 𝑥 , 𝑃 ො𝑥 = ෍

𝑥∈supp 𝑃 𝑥

𝑃 𝑥 log2
𝑃 ො𝑥

𝑃 𝑥

≤ log2 ෍

𝑥∈supp 𝑃 𝑥

𝑃 ො𝑥

≤ log21 = 0

Proof:

𝐼 𝑋, 𝑌 = ෍

𝑥∈𝑋

෍

𝑦∈𝑌

𝑃 𝑥, 𝑦 log2
𝑃(𝑥, 𝑦)

𝑃 𝑥 𝑃(𝑦)

= 𝐷(𝑃 𝑥, 𝑦 , 𝑃 𝑥 𝑃(𝑦)) ≥ 0

𝐼 𝑋, 𝑌 = 0 only if 𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑃(𝑦), i.e., X and Y are independent.
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- Corollary 4 (Maximum Entropy Distribution):

Given variable 𝑋 ∈ 𝑥1, 𝑥2, … , 𝑥𝑈 , with a distribution of 𝑃1, 𝑃2, … , 𝑃𝑈. We have

Proof:

𝐻 𝑋 ≤ log2𝑈

Note: If 𝑋 is uniformly distributed over 𝑥1, 𝑥2, … , 𝑥𝑈, i.e., 𝑃1 = 𝑃2 = ⋯ = 𝑃𝑈 =
1

𝑈
,

𝐻 𝑋 =෍

𝑖=1

𝑈

𝑃𝑖 log2 𝑃𝑖
−1

Since log2 · is a concave function, based on Jensen’s inequality, we have

𝐻 𝑋 ≤ log2 ෍

𝑖=1

𝑈

𝑃𝑖𝑃𝑖
−1

= log2𝑈

𝐻 𝑋 = log2𝑈
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Fano’s Inequality: Let X and Y be two random variables with realizations in {𝑥1, 𝑥2, … 𝑥𝑘}. 

Let 𝑃𝑒 = Pr 𝑋 ≠ 𝑌 , then

Proof: Let us create a binary variable Z such that

𝐻 𝑋 𝑌 ≤ 𝐻 𝑃𝑒 + 𝑃𝑒log2 𝑘 − 1 .

Hence, 𝐻 𝑍 = 𝐻(𝑃𝑒). Base on the chain rule for entropy, 

𝑍 = 0, if 𝑋 = 𝑌

𝐻 𝑋𝑍 𝑌 = 𝐻 𝑋 𝑌 + 𝐻 𝑍 𝑋𝑌 = 𝐻(𝑋|𝑌)

Note, with the knowledge of X and Y, Z is deterministic and 𝐻 𝑍 𝑋𝑌 = 0.

Also based on the chain rule,

𝑍 = 1, if 𝑋 ≠ 𝑌

Pr 𝑍 = 0 = 1 − 𝑃𝑒

Pr 𝑍 = 1 = 𝑃𝑒
⇒

𝐻 𝑋𝑍 𝑌 = 𝐻 𝑍 𝑌 + 𝐻(𝑋|𝑌𝑍)

≤ 𝐻 𝑍 + 𝐻(𝑋|𝑌𝑍)



§1.4 Further Results on Information Theory

Therefore, 𝐻 𝑋 𝑌 ≤ 𝐻 𝑍 + 𝐻 𝑋|𝑌𝑍 .

Note: 𝐻 𝑃𝑒 is the number of bits required to describe X whenever X = Y; 

log2(𝑘 − 1) is the number of bits required to describe X whenever 𝑋 ≠ 𝑌. 

The equality is reached when 𝑋 is uniformly distributed over all 𝑘 − 1 values.

- 𝐻 𝑍 + 𝐻 𝑋|𝑌𝑍 .

- 𝐻 𝑋|𝑌𝑍 = Pr 𝑍 = 0 𝐻 𝑋 𝑌, 𝑍 = 0 + Pr 𝑍 = 1 𝐻 𝑋 𝑌, 𝑍 = 1 .

= 1 − 𝑃𝑒 · 0 + 𝑃𝑒log2(𝑘 − 1)

= 𝑃𝑒log2(𝑘 − 1)
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Data Processing Inequality: Given a concatenated data processing system as

We have

𝐼 𝑋, 𝑍 ≤ ቊ
𝐼(𝑋, 𝑌)
𝐼(𝑌, 𝑍)

.

Processor 1 Processor 2
X Y Z

𝑋 → 𝑌 → 𝑍 form a Markov chain that holds

𝑃 𝑥, 𝑦, 𝑧 = 𝑃 𝑥, 𝑦 · 𝑃 𝑧|𝑦 = 𝑃 𝑥 𝑃 𝑦|𝑥 𝑃 𝑧|𝑦
𝑃 𝑧|𝑥, 𝑦 = 𝑃 𝑧|𝑦
𝑃 𝑥|𝑦, 𝑧 = 𝑃 𝑥|𝑦
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Proof:

Remark: Information cannot be increased by data processing.

𝐼 𝑋, 𝑍 = 𝐻 𝑋 − 𝐻 𝑋 𝑍

= 𝐻 𝑋 − 𝐻(𝑋|𝑌)

= 𝐼(𝑋, 𝑌)

𝐼 𝑋, 𝑍 = 𝐻 𝑍 − 𝐻 𝑍 𝑋

= 𝐻 𝑍 − 𝐻(𝑍|𝑌)

= 𝐼(𝑌, 𝑍)

≤ 𝐻 𝑋 − 𝐻(𝑋|𝑍𝑌) ≤ 𝐻 𝑍 − 𝐻(𝑍|𝑋𝑌)

𝐻 𝑍|𝑋𝑌 = 𝔼 −log2𝑃(𝑧|𝑥𝑦) = 𝔼 −log2𝑃(𝑧|𝑦) = 𝐻 𝑍|𝑌

Since 𝑃 𝑧|𝑥, 𝑦 = 𝑃 𝑧|𝑦 holds, 

Similarly, since 𝑃 𝑥|𝑦, 𝑧 = 𝑃 𝑥|𝑦 holds, 

𝐻 𝑋 𝑍𝑌 = 𝐻(𝑋|𝑌)
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