Assignment of Chapter 5

1. Given an 8 -state $(15,13)_{8}$ convolutional code, please
(a) Show its shift register encoder structure.
(b) Show its state table and trellis. Determine the free distance of this code.
(c) Determine the codeword of a message vector $\boldsymbol{u}=(1,1,1,0,1,0,1)$. (You should consider adding tailing bits)
(d) Assume the length of message is 7 bits. Determine the generator matrix of this code. (You should consider adding tailing bits)
2. Given a 4 -state $(7,5)_{8}$ convolutional code and a received word of

$$
\boldsymbol{r}=(11,01,11,00,00,01,11,00,10),
$$

please utilize the Viterbi trellis shown in Figure 1 to decode the received word. (The decoding computation can be performed in Figure 1).

Figure 1: Viterbi trellis of the $(7,5)_{8}$ convolutional code
3. Given a rate $2 / 3$ TCM code whose encoder structure and mapping scheme are shown in Figure 2, please

Figure 2: Rate $2 / 3$ TCM encoder and the 8PSK mapping scheme.
(a) Determine trellis of the TCM code.
(b) Determine squared free distance $d_{\text {free }}^{2}$ of the TCM code.
(c) Determine the codeword of a message vector $\boldsymbol{u}=(10,11,00,10)$. (Each pair of bits is in order of (a_{1}, a_{2}). You should consider adding tailing bits. Assume $a_{2}=0$ in the tailing bits)
(d) Determine the asymptotic coding gain (in dB) that the TCM coded system is able to achieve over an uncoded QPSK system.
4. Given a trellis of 4 -state $(7,5)_{8}$ convolutional code shown in Figure 3, we have

Figure 3: Viterbi trellis of the 4 -state $(7,5)_{8}$ convolutional code
the channel observations as

$$
\left\{\begin{array} { c }
{ P _ { \mathrm { ch } } (c _ { t ^ { \prime } - 1 } ^ { 1 } = 0) = 0 . 6 } \\
{ P _ { \mathrm { ch } } (c _ { t ^ { \prime } - 1 } ^ { 1 } = 1) = 0 . 2 } \\
{ P _ { \mathrm { ch } } (c _ { t ^ { \prime } - 1 } ^ { 2 } = 0) = 0 . 4 } \\
{ P _ { \mathrm { ch } } (c _ { t ^ { \prime } - 1 } ^ { 2 } = 1) = 0 . 4 }
\end{array} \left\{\begin{array} { c }
{ P _ { \mathrm { ch } } (c _ { t ^ { \prime } } ^ { 1 } = 0) = 0 . 3 } \\
{ P _ { \mathrm { ch } } (c _ { t ^ { \prime } } ^ { 1 } = 1) = 0 . 5 } \\
{ P _ { \mathrm { ch } } (c _ { t ^ { \prime } } ^ { 2 } = 0) = 0 . 1 } \\
{ P _ { \mathrm { ch } } (c _ { t ^ { \prime } } ^ { 2 } = 1) = 0 . 7 }
\end{array} \left\{\begin{array}{c}
P_{\mathrm{ch}}\left(c_{t^{\prime}+1}^{1}=0\right)=0.4 \\
P_{\mathrm{ch}}\left(c_{t^{\prime}+1}^{1}=1\right)=0.4 \\
P_{\mathrm{ch}}\left(c_{t^{\prime}+1}^{2}=0\right)=0.7 \\
P_{\mathrm{ch}}\left(c_{t^{\prime}+1}^{2}=1\right)=0.1
\end{array},\right.\right.\right.
$$

(In continuous channel, channel observations are the probability densities. Hence their sum may not necessarily be equal to 1)
the probabilities of the beginning states at time instant $t^{\prime}-1$ are

$$
A_{t^{\prime}-1}(a)=0.3, \quad A_{t^{\prime}-1}(b)=0.3, \quad A_{t^{\prime}-1}(c)=0.2, \quad A_{t^{\prime}-1}(d)=0.2
$$

and the probabilities of the ending states at time instant $t^{\prime}+2$ are

$$
B_{t^{\prime}+2}(a)=0.6, \quad B_{t^{\prime}+2}(b)=0.1, \quad B_{t^{\prime}+2}(c)=0.2, \quad B_{t^{\prime}+2}(d)=0.1 .
$$

(a) Determine the state transition probabilities for all transitions. (Assume we do not have knowledge of information bits)
(b) Determine the probability of each beginning state at time instant t^{\prime}. (That is to determine $\left.A_{t^{\prime}}(a), A_{t^{\prime}}(b), A_{t^{\prime}}(c), A_{t^{\prime}}(d)\right)$
(c) Determine the probability of each ending state at time instant $t^{\prime}+1$. (That is to determine $\left.B_{t^{\prime}+1}(a), B_{t^{\prime}+1}(b), B_{t^{\prime}+1}(c), B_{t^{\prime}+1}(d)\right)$
(d) Determine the a posteriori probability of information bit at time instant t^{\prime}. Estimate this information bit.

