Assignment of Chapter 5

1. Given a rate 2/3 convolutional code, the memory order is m=1. The encoder consists of two shift registers, each with m=1 delay element, along with three mod-2 adders. Let $u_t^{(i)}$ denote the i-th input of the encoder in the t-th time, where $i \in \{1,2\}$. Thus, the message vector can be defined as

$$\underline{u} = \left(u_0^{(1)}, u_0^{(2)}, u_1^{(1)}, u_1^{(2)}, u_2^{(1)}, u_2^{(2)}, \cdots\right),\,$$

or as the two input vectors

$$\underline{u}^{(1)} = \left(u_0^{(1)}, u_1^{(1)}, u_2^{(1)}, \cdots\right),$$

and

$$\underline{u}^{(2)} = \left(u_0^{(2)}, u_1^{(2)}, u_2^{(2)}, \cdots\right).$$

There are three generator sequences corresponding to each message vector. Let $c_t^{(j)}$ denote the j-th output of the encoder in the t-th time, where $j \in \{1,2,3\}$. Let us further define the generator sequence corresponding to the input $u_t^{(i)}$ and the output $c_t^{(j)}$ as $g_i^{(j)}$. The transfer functions are as follows:

$$\begin{cases} g_1^{(0)}(x) = 1 + x; \\ g_1^{(1)}(x) = x; \\ g_1^{(2)}(x) = 1 + x, \end{cases}$$

and

$$\begin{cases} g_2^{(0)}(x) = x; \\ g_2^{(1)}(x) = 1; \\ g_2^{(2)}(x) = 1. \end{cases}$$

- (a) Please determine its shift register encoder structure, state table and trellis.
- (b) Please determine the codeword of a message vector $\underline{u} = (1, 0, 1, 1, 0, 0, 1, 0)$.

Solution tip: The codeword should follow the order $(c_t^{(1)}, c_t^{(2)}, c_t^{(3)})$, and so on.

2. Given a 4-state $(7,5)_8$ convolutional code, the received word is

$$r = (1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0).$$

Please determine the estimation of message vector u.

Solution tip: The decoding computation can be performed using the Viterbi trellis, as shown in Figure 1.

- 3. Given a 2/3 TCM code whose encoder structure and mapping scheme are shown in Figure 2.
 - (a) Please determine the trellis of the TCM code.
 - (b) Please determine the free distance of the TCM code.
 - (c) Please determine the codeword of a message vector $\underline{u} = (0, 1, 1, 0, 1, 1, 0, 1)$.
 - (d) Please determine the asymptotic coding gain (in dB) that the TCM coded system is able to achieve over an uncoded QPSK system.

Solution tip: Each pair of bits is in the order (a_2, a_1) , and tailing bits are in the form $(a_2, a_1) = (0, 0)$. The codeword should follow the order (c_3, c_2, c_1) , and so on.

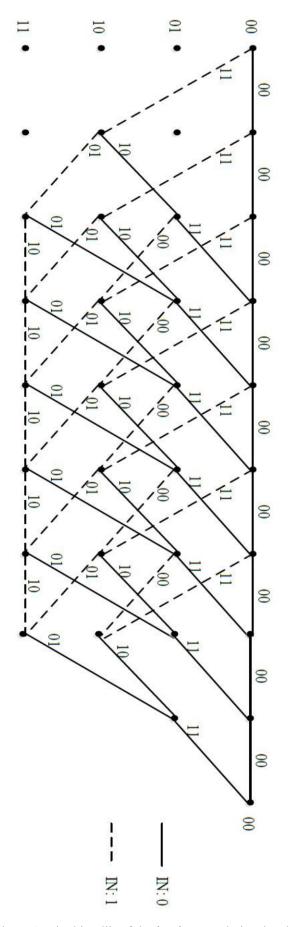


Figure 1: Viterbi trellis of the $(7,5)_8$ convolutional code.

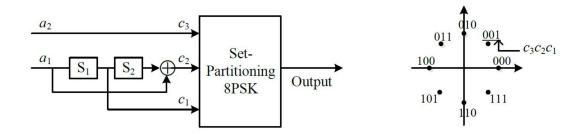


Figure 2: Rate 2/3 TCM encoder and the 8-PSK mapping scheme.