Chapter 6 Reed-Solomon Codes

- 6.1 Finite Field Algebra
- 6.2 Reed-Solomon Codes
- 6.3 Syndrome Based Decoding

§ 6.1 Finite Field Algebra

- Nonbinary codes: message and codeword symbols are represented in a finite field of size q, and $q>2$.
- Advantage of presenting a code in a nonbinary image.

A binary codeword sequence in $\{0,1\}$
$\begin{array}{llllllllllllllllllll}b_{0} & b_{1} & b_{2} & b_{3} & b_{4} & b_{5} & b_{6} & b_{7} & b_{8} & b_{9} & b_{10} & b_{11} & b_{12} & b_{13} & b_{14} & b_{15} & b_{16} & b_{17}\end{array}$
$\begin{array}{lll}b_{18} & b_{19} & b_{20}\end{array}$
A nonbinary codeword sequence in $\{0,1,2,3,4,5,6,7\}$
$\begin{array}{llllllllll}c_{0} & c_{1} & c_{2} & c_{3} & c_{4} & c_{5} & c_{6} & c_{7}\end{array}$
\square : where the channel error occurs

8 bit errors are treated as 3 symbol errors in a nonbinary image

§ 6.1 Finite Field Algebra

- Finite field (Galois field) \mathbf{F}_{q} : a set of q elements that perform " + " " $-" " \times "$ / " without leaving the set.
- Let p denote a prime, e.g., $2,3,5,7,11, \cdots$, it is required $q=p$ or $q=p^{\theta}(\theta$ is a positive integer greater than 1). If $q=p^{\theta}, \mathbf{F}_{q}$ is an extension field of \mathbf{F}_{p}.
- Example 6.1: " + " and " \times " in \mathbf{F}_{q}.

$$
\mathbf{F}_{2}=\{0,1\}
$$

+	0	1
0	0	1
1	1	0

\times	0	1
0	0	0
1	0	1

all in
modulo-2
all in modulo-5

§ 6.1 Finite Field Algebra

- " - " and " / " can be performed as " + " and " \times " with additive inverse and multiplicative inverse, respectively.
Additive inverse of $a \quad a^{\prime}: a^{\prime}+a=0$ and $a^{\prime}=-a$
$\underline{\text { Multiplicative inverse of } a \quad a^{\prime}: a^{\prime} \bullet a=1 \text { and } a^{\prime}=1 / a}$
- " - " operation:

Let $h, a \in \mathbf{F}_{q}$.
$h-a=h+(-a)=h+a^{\prime}$.
E.g., in $\mathbf{F}_{5}, 1-3=1+(-3)=1+2=3$;

- " / " operation:

Let $h, a \in \mathbf{F}_{q}$.
$h / a=h \times a^{\prime}$.
E.g., in $\mathbf{F}_{5}, 2 / 3=2 \times(1 / 3)=2 \times 2=4$.

§ 6.1 Finite Field Algebra

- Nonzero elements of \mathbf{F}_{q} can be represented using a primitive element σ such that $\mathbf{F}_{q}=\left\{0,1, \sigma, \sigma^{2}, \cdots, \sigma^{q-2}\right\}$.
- Primitive element σ of $\mathbf{F}_{q}: \sigma \in \mathbf{F}_{q}$ and unity can be produced by at least

$$
\underbrace{\sigma \cdot \sigma \cdot \cdots \cdot \sigma}_{q-1}=1, \text { or } \sigma^{q-1}=1 . \quad \text { all in modulo- } q
$$

E.g., in $\mathbf{F}_{5}, 2^{4}=1$ and $3^{4}=1$. Here, 2 and 3 are the primitive elements of \mathbf{F}_{5}.

- Example 6.2: In \mathbf{F}_{5},

If 2 is chosen as the primitive element, then

$$
\mathbf{F}_{5}=\{0,1,2,3,4\}=\left\{0,2^{4}, 2^{1}, 2^{3}, 2^{2}\right\}=\left\{0,1,2^{1}, 2^{3}, 2^{2}\right\}
$$

If 3 is chosen as the primitive element, then

$$
\mathbf{F}_{5}=\{0,1,2,3,4\}=\left\{0,3^{4}, 3^{3}, 3^{1}, 3^{2}\right\}=\left\{0,1,3^{3}, 3^{1}, 3^{2}\right\}
$$

§ 6.1 Finite Field Algebra

- If \mathbf{F}_{q} is an extension field of \mathbf{F}_{p} such as $q=p^{\theta}$, elements of \mathbf{F}_{q} can also be represented by θ-dimensional vectors in \mathbf{F}_{p}.
- Primitive polynomial $p(x)$ of $\mathbf{F}_{q}\left(q=p^{\theta}\right)$: an irreducible polynomial of degree θ that divides $x^{p^{\theta}-1}-1$ but not other polynomials $x^{\Phi}-1$ with $\Phi<p^{\theta}-1$.
E.g., in \mathbf{F}_{8}, the primitive polynomial $p(x)=x^{3}+x+1$ divides $x^{7}-1$, but not $x^{6}-1, x^{5}-1$, $x^{4}-1, x^{3}-1$.
- If a primitive element σ is a root of $p(x)$ such that $p(\sigma)=0$, elements of \mathbf{F}_{q} can be represented in the form of

$$
w_{\theta-1} \sigma^{\theta-1}+w_{\theta-2} \sigma^{\theta-2}+\ldots+w_{1} \sigma^{1}+w_{0} \sigma^{0}
$$

where $w_{0}, w_{1}, \ldots, w_{\theta-2}, w_{\theta-1} \in \mathbf{F}_{p}$, or alteratively in

$$
\left(w_{\theta-1}, w_{\theta-2}, \cdots, w_{1}, w_{0}\right)
$$

§ 6.1 Finite Field Algebra

- Example 6.3: If $p(x)=x^{3}+x+1$ is the primitive polynomial of \mathbf{F}_{8}, and its primitive element σ satisfies $\sigma^{3}+\sigma+1=0$, then

\mathbf{F}_{8}	$w_{2} \sigma^{2}+w_{1} \sigma^{1}+w_{0} \sigma^{0}$	w_{2}	w_{1}	w_{0}
0	0	0	0	0
1	1	0	0	1
σ	σ	0	1	0
σ^{2}	σ^{2}	1	0	0
σ^{3}	$\sigma+1$	0	1	1
σ^{4}	$\sigma^{2}+\sigma$	1	1	0
σ^{5}	$\sigma^{2}+\sigma+1$	1	1	1
σ^{6}	1	0	1	

§ 6.1 Finite Field Algebra

- Representing $\mathbf{F}_{q}=\left\{0,1, \sigma, \cdots, \sigma^{q-2}\right\}, " \times " \cdots / " "+" "-"$ operations become
$" \times ": \sigma^{i} \times \sigma^{j}=\sigma^{(i+j) \%(q-1)}$

$$
\text { E.g., in } \mathbf{F}_{8}, \sigma^{4} \times \sigma^{5}=\sigma^{(4+5)} \% 7=\sigma^{2}
$$

$" / ": \sigma^{i} / \sigma^{j}=\sigma^{(i-j) \%(q-1)}$
E.g., in $\mathbf{F}_{8}, \sigma^{4} / \sigma^{5}=\sigma^{(4-5) \% 7}=\sigma^{6}$
$"+":$ if $\sigma^{i}=w_{\theta-1} \sigma^{\theta-1}+w_{\theta-2} \sigma^{\theta-2}+\cdots+w_{0} \sigma^{0}$
(\&" - ") $\quad \sigma^{j}=w_{\theta-1}^{\prime} \sigma^{\theta-1}+w_{\theta-2}^{\prime} \sigma^{\theta-2}+\cdots+w_{0}^{\prime} \sigma^{0}$
$\sigma^{i}+\sigma^{j}=\left(w_{\theta-1}+w_{\theta-1}^{\prime}\right) \sigma^{\theta-1}+\left(w_{\theta-2}+w_{\theta-2}^{\prime}\right) \sigma^{\theta-2}+\cdots+\left(w_{0}+w_{0}^{\prime}\right) \sigma^{0}$
E.g., in $\mathbf{F}_{8}, \sigma^{4}+\sigma^{5}=\sigma^{2}+\sigma+\sigma^{2}+\sigma+1=1$

§ 6.2 Reed-Solomon Codes

- An RS code ${ }^{[1]}$ defined over \mathbf{F}_{q} is characterized by its codeword length $n=q-1$, dimension $k<n$ and the minimum Hamming distance d. It is often denoted as an (n, k) (or (n, k, d)) RS code.
- It is a maximum distance separable (MDS) code such that

$$
d=n-k+1
$$

- It is a linear block code and also cyclic.
- The widely used RS codes include the $(255,239)$ and the $(255,223)$ codes both of which are defined in \mathbf{F}_{256}.

§ 6.2 Reed-Solomon Codes

- Notations
$\mathbf{F}_{q}[x]$, a univariate polynomial ring over \mathbf{F}_{q}, i.e., $f(x)=\sum_{i \in \mathrm{~N}} f_{i} x^{i}$ and $f_{i} \in \mathbf{F}_{q}$.
$\mathbf{F}_{q}[x, y]$, a bivariate polynomial ring over \mathbf{F}_{q}, i.e., $f(x, y)=\sum_{i, j \in \mathrm{~N}} f_{i j} x^{i} y^{j}$ and $f_{i j} \in \mathbf{F}_{q}$.
$\mathbf{F}_{q}{ }^{\bullet}, \bullet$ - dimensional vector over \mathbf{F}_{q}.
- Encoding of an $(n, k) \mathrm{RS}$ code.

Message vector $\bar{u}=\left(u_{0}, u_{1}, u_{2}, \cdots, u_{k-1}\right) \in \mathbf{F}_{q}^{k}$
Message polynomial

$$
u(x)=u_{0}+u_{1} x+u_{2} x^{2}+\cdots+u_{k-1} x^{k-1} \in \mathbf{F}_{q}[x]
$$

Codeword

$$
\bar{c}=\left(u(1), u(\sigma), u\left(\sigma^{2}\right), \cdots, u\left(\sigma^{n-1}\right)\right) \in \mathbf{F}_{q}^{n}
$$

$1, \sigma, \sigma^{2}, \cdots, \sigma^{n-1}$ are the $q-1$ nonzero elements of \mathbf{F}_{q}. They are often called code locators.

§ 6.2 Reed-Solomon Codes

- Encoding of an (n, k) RS code in a linear block code fashion

$$
\bar{c}=\bar{u} \cdot \mathbf{G}
$$

$$
=\left(u_{0}, u_{1}, \cdots, u_{k-1}\right)\left[\begin{array}{cccc}
\left(\sigma^{0}\right)^{0} & \left(\sigma^{1}\right)^{0} & \cdots & \left(\sigma^{n-1}\right)^{0} \\
\left(\sigma^{0}\right)^{1} & \left(\sigma^{1}\right)^{1} & \cdots & \left(\sigma^{n-1}\right)^{1} \\
\vdots & \vdots & \ddots & \vdots \\
\left(\sigma^{0}\right)^{k-1} & \left(\sigma^{1}\right)^{k-1} & \cdots & \left(\sigma^{n-1}\right)^{k-1}
\end{array}\right]
$$

- Example 6.4: For a $(7,3)$ RS code that is defined in \mathbf{F}_{8}, if the message is $\bar{u}=\left(u_{0}, u_{1}, u_{2}\right)=\left(\sigma^{4}, 1, \sigma^{5}\right)$,
the message polynomial will be $u(x)=\sigma^{4}+x+\sigma^{5} x^{2}$, and the codeword can be generated by
- $\bar{c}=\left(u(1), u(\sigma), u\left(\sigma^{2}\right), u\left(\sigma^{3}\right), u\left(\sigma^{4}\right), u\left(\sigma^{5}\right), u\left(\sigma^{6}\right)\right)=\left(0, \sigma^{6}, \sigma^{4}, \sigma^{3}, \sigma^{6}, \sigma^{3}, 0\right)$
$\cdot \bar{c}=\bar{u} \cdot \mathbf{G}=\left(\sigma^{4}, 1, \sigma^{5}\right) \cdot\left[\begin{array}{ccccccc}1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \sigma^{1} & \sigma^{2} & \sigma^{3} & \sigma^{4} & \sigma^{5} & \sigma^{6} \\ 1 & \sigma^{2} & \sigma^{4} & \sigma^{6} & \sigma^{1} & \sigma^{3} & \sigma^{5}\end{array}\right]=\left(0, \sigma^{6}, \sigma^{4}, \sigma^{3}, \sigma^{6}, \sigma^{3}, 0\right)$

§ 6.2 Reed-Solomon Codes

- MDS property of RS codes $d=n-k+1$
- Singleton bound for an (n, k) linear block code, $d \leq n-k+1$
$-u(x)$ has at most $k-1$ roots. Hence, \bar{c} has at most $k-1$ zeros and

$$
d_{\text {Ham }}=(\bar{c}, \overline{0}) \geq n-k+1
$$

- Parity-check matrix of an $(n, k) \mathrm{RS}$ code

$$
\mathbf{H}=\left[\begin{array}{cccc}
\left(\sigma^{0}\right)^{1} & \left(\sigma^{1}\right)^{1} & \cdots & \left(\sigma^{n-1}\right)^{1} \\
\left(\sigma^{0}\right)^{2} & \left(\sigma^{1}\right)^{2} & \cdots & \left(\sigma^{n-1}\right)^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\left(\sigma^{0}\right)^{n-k} & \left(\sigma^{1}\right)^{n-k} & \cdots & \left(\sigma^{n-1}\right)^{n-k}
\end{array}\right]
$$

$\bar{c} \cdot \mathbf{H}^{T}=\bar{u} \cdot \mathbf{G} \cdot \mathbf{H}^{T}=\overline{0} \quad \leftarrow$ an $n-k$ all zero vector

§ 6.2 Reed-Solomon Codes

- Insight of $\mathbf{G} \cdot \mathbf{H}^{T}$

$$
\left[\begin{array}{cccc}
\left(\sigma^{0}\right)^{0} & \left(\sigma^{1}\right)^{0} & \cdots & \left(\sigma^{n-1}\right)^{0} \\
\left(\sigma^{0}\right)^{1} & \left(\sigma^{1}\right)^{1} & \cdots & \left(\sigma^{n-1}\right)^{1} \\
\vdots & \vdots & \ddots & \vdots \\
\left(\sigma^{0}\right)^{k-1} & \left(\sigma^{1}\right)^{k-1} & \cdots & \left(\sigma^{n-1}\right)^{k-1}
\end{array}\right] \cdot\left[\begin{array}{cccc}
\left(\sigma^{0}\right)^{1} & \left(\sigma^{0}\right)^{2} & \cdots & \left(\sigma^{0}\right)^{n-k} \\
\left(\sigma^{1}\right)^{1} & \left(\sigma^{1}\right)^{2} & \cdots & \left(\sigma^{1}\right)^{n-k} \\
\vdots & \vdots & \ddots & \vdots \\
\left(\sigma^{n-1}\right)^{1} & \left(\sigma^{n-1}\right)^{2} & \cdots & \left(\sigma^{n-1}\right)^{n-k}
\end{array}\right]
$$

- Let $i=0,1, \cdots, k-1, j=0,1, \cdots, n-1, v=1,2, \cdots, n-k$.

Entries of \mathbf{G} can be denoted as $[\mathbf{G}]_{i, j}=\left(\sigma^{j}\right)^{i}$
Entries of \mathbf{H}^{T} can be denoted as $\left[\mathbf{H}^{T}\right]_{j, v-1}=\left(\sigma^{j}\right)^{v}$
Entries of $\mathbf{G} \cdot \mathbf{H}^{T}$ is

$$
\begin{aligned}
{\left[\mathbf{G} \cdot \mathbf{H}^{T}\right]_{i, v-1} } & =\sum_{j=0}^{n-1}\left(\sigma^{j}\right)^{i} \cdot\left(\sigma^{j}\right)^{v} \\
& =\sum_{j=0}^{n-1}\left(\sigma^{j}\right)^{i+v}=0
\end{aligned}
$$

Remark 1: $v=0$ is illegitimate since $\sum_{j=0}^{n-1}\left(\sigma^{j}\right)^{0} \neq 0$

§ 6.2 Reed-Solomon Codes

- Perceiving \mathbf{H}^{T} as in

$$
\left[\begin{array}{cccc}
\left(\sigma^{1}\right)^{0} & \left(\sigma^{2}\right)^{0} & \cdots & \left(\sigma^{n-k}\right)^{0} \\
\left(\sigma^{1}\right)^{1} & \left(\sigma^{2}\right)^{1} & \cdots & \left(\sigma^{n-k}\right)^{1} \\
\vdots & \vdots & \ddots & \vdots \\
\left(\sigma^{1}\right)^{n-1} & \left(\sigma^{2}\right)^{n-1} & \cdots & \left(\sigma^{n-k}\right)^{n-1}
\end{array}\right]
$$

- Perceiving codeword $\bar{c}=\left(c_{0}, c_{1}, \cdots, c_{n-1}\right)$ as in

$$
c(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}
$$

$-\bar{c} \cdot \mathbf{H}^{T}=\overline{0}$ implies

$$
c\left(\sigma^{1}\right)=c\left(\sigma^{2}\right)=\cdots=c\left(\sigma^{n-k}\right)=0
$$

$\sigma^{1}, \sigma^{2}, \cdots, \sigma^{n-k}$ are roots of RS codeword polynomial $c(x)$.

§ 6.2 Reed-Solomon Codes

- An alternatively encoding
- Message polynomial $u(x)=u_{0}+u_{1} x+\cdots+u_{k-1} x^{k-1}$
- Codeword polynomial $c(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1}$
$-c(x)=u(x) \cdot g(x)$ and $\operatorname{deg}(\mathrm{g}(x))=n-k$
- Since $\sigma^{1}, \sigma^{2}, \cdots, \sigma^{n-k}$ are roots of $c(x)$ $g(x)=\left(x-\sigma^{1}\right)\left(x-\sigma^{2}\right) \cdots\left(x-\sigma^{n-k}\right)$
\uparrow The generator polynomial of an (n, k) RS code
- Systematic encoding

$$
c(x)=x^{n-k} u(x)+\left(x^{n-k} u(x)\right) \bmod g(x)
$$

- Example 6.5: For a $(7,3) \mathrm{RS}$ code, its generator polynomial is $g(x)=\left(x-\sigma^{1}\right)\left(x-\sigma^{2}\right)\left(x-\sigma^{3}\right)\left(x-\sigma^{4}\right)=x^{4}+\sigma^{3} x^{3}+x^{2}+\sigma x+\sigma^{3}$
Given message vector $\bar{u}=\left(u_{0}, u_{1}, u_{2}\right)=\left(\sigma^{4}, 1, \sigma^{5}\right)$,
the codeword can be generated by $c(x)=u(x) \cdot g(x)=\left(1, \sigma^{2}, \sigma^{4}, \sigma^{6}, \sigma, \sigma^{3}, \sigma^{5}\right)$ For systematic encoding, $\left(x^{n-k} u(x)\right) \bmod g(x)=\left(x^{4} \cdot u(x)\right) \bmod g(x)=x^{3}+\sigma^{4} x+\sigma^{5}$, and the codeword is $\quad \bar{c}=\left(\sigma^{5}, \sigma^{4}, 0,1, \sigma^{4}, 1, \sigma^{5}\right)$

§ 6.3 Syndrome Based Decoding

- The channel: $r(x)=c(x)+e(x)$ $c(x)=c_{0}+c_{1} x+\cdots+c_{n-1} x^{n-1} \quad$ - codeword polynomial $e(x)=e_{0}+e_{1} x+\cdots+e_{n-1} x^{n-1} \quad$ - error polynomial $r(x)=r_{0}+r_{1} x+\cdots+r_{n-1} x^{n-1} \quad$ - received word polynomial
- Let $n-k=2 t, \sigma^{1}, \sigma^{2}, \cdots, \sigma^{2 t}$ are roots of $c(x)$
$-2 t$ syndromes can be determined as

$$
S_{1}=r\left(\sigma^{1}\right), S_{2}=r\left(\sigma^{2}\right), \cdots, S_{2 t}=r\left(\sigma^{2 t}\right)
$$

If $S_{1}=S_{2}=\cdots=S_{2 t}=0, r(x)$ is a valid codeword. Otherwise, $e(x) \neq 0$, error-correction is needed.

§ 6.3 Syndrome Based Decoding

- If $e(x) \neq 0$, we assume there are ω errors with $e_{j_{1}} \neq 0, e_{j_{2}} \neq 0, \cdots, e_{j_{\omega}} \neq 0$.
- Let $v=1,2, \cdots, 2 t$

$$
S_{v}=\sum_{j=0}^{n-1} c_{j} \sigma^{j v}+\sum_{j=0}^{n-1} e_{j} \sigma^{j v}=\sum_{j=0}^{n-1} e_{j} \sigma^{j v}=\sum_{\tau=1}^{\omega} e_{j_{\tau}}\left(\sigma^{j_{\tau}}\right)^{v}
$$

- For simplicity, let $X_{\tau}=\sigma^{j_{\tau}}$, we can list the $2 t$ syndromes by

$$
\begin{gathered}
S_{1}=e_{j_{1}} X_{1}^{1}+e_{j_{2}} X_{2}^{1}+\cdots+e_{j_{\omega}} X_{\omega}^{1} \\
S_{2}=e_{j_{1}} X_{1}^{2}+e_{j_{2}} X_{2}^{2}+\cdots+e_{j_{\omega}} X_{\omega}^{2} \\
S_{2 t}=e_{j_{1}} X_{1}^{2 t}+e_{j_{2}} X_{2}^{2 t}+\cdots+e_{j_{\omega}} X_{\omega}^{2 t}
\end{gathered}
$$

- In the above non-linear equation group, there are 2ω unknowns $X_{1}, X_{2}, \cdots, X_{\omega}$, $e_{j_{1}}, e_{j_{2}}, \cdots, e_{j_{\omega}}$. It will be solvable if $2 \omega \leq 2 t$. The number of correctable errors is $\omega \leq \frac{n-k}{2}$.
- Since $X_{j_{\tau}}, e_{j_{\tau}} \in \mathbf{F}_{q} \backslash\{0\}$, an exhaustive search solution will have a complexity of $O\left(n^{2 \omega}\right)$.

§ 6.3 Syndrome Based Decoding

- In order to decode an RS code with a polynomial-time complexity, the decoding is decomposed into determining the error locations and error magnitudes, i.e., $X_{1}, X_{2}, \cdots, X_{\omega}$ and $e_{j_{1}}, e_{j_{2}}, \cdots, e_{j_{\rho}}$, respectively.
- Error locator polynomial

$$
\begin{aligned}
\Lambda(x) & =\prod_{\tau=1}^{\omega}\left(1-X_{\tau} x\right) \\
& =\Lambda_{\omega} x^{\omega}+\Lambda_{\omega-1} x^{\omega-1}+\cdots+\Lambda_{1} x+\Lambda_{0}\left(\Lambda_{0}=1\right)
\end{aligned}
$$

$X_{1}^{-1}=\sigma^{-j_{1}}, X_{2}^{-1}=\sigma^{-j_{2}}, \cdots, X_{\omega}^{-1}=\sigma^{-j_{\omega}}$ are roots of the polynomial such that $\Lambda\left(X_{1}^{-1}\right)=\Lambda\left(X_{2}^{-1}\right)=\cdots=\Lambda\left(X_{\omega}^{-1}\right)=0$.

- Determine $\Lambda(x)$ by finding out $\Lambda_{\omega}, \Lambda_{\omega-1}, \cdots$, and Λ_{1}, and its roots tell the error locations.

§ 6.3 Syndrome Based Decoding

- How to determine $\Lambda_{\omega}, \Lambda_{\omega-1}, \cdots$, and Λ_{1} ?

Since $\Lambda\left(X_{\tau}^{-1}\right)=\Lambda_{\omega} X_{\tau}^{-\omega}+\Lambda_{\omega-1} X_{\tau}^{1-\omega}+\cdots+\Lambda_{1} X_{\tau}^{-1}+\Lambda_{0}=0$

$$
\begin{aligned}
& \quad \sum_{\tau=1}^{\omega} e_{j_{\tau}} X_{\tau}^{v} \Lambda\left(X_{\tau}^{-1}\right)=0, \text { for } v=1,2, \cdots, 2 t \\
& =e_{j_{1}} \Lambda_{\omega} X_{1}^{v-\omega}+e_{j_{1}} \Lambda_{\omega-1} X_{1}^{v-\omega+1}+\cdots+e_{j_{1}} \Lambda_{1} X_{1}^{v-1}+e_{j_{1}} \Lambda_{0} X_{1}^{v} \\
& +e_{j_{2}} \Lambda_{\omega} X_{2}^{v-\omega}+e_{j_{2}} \Lambda_{\omega-1} X_{2}^{v-\omega+1}+\cdots+e_{j_{2}} \Lambda_{1} X_{2}^{v-1}+e_{j_{2}} \Lambda_{0} X_{2}^{v} \\
& \vdots \\
& +e_{j_{\omega}} \Lambda_{\omega} X_{\omega}^{v-\omega}+e_{j_{\omega}} \Lambda_{\omega-1} X_{\omega}^{v-\omega+1}+\cdots+e_{j_{\omega}} \Lambda_{1} X_{\omega}^{v-1}+e_{j_{\omega}} \Lambda_{0} X_{\omega}^{v} \\
& =\Lambda_{\omega} S_{v-\omega}+\Lambda_{\omega-1} S_{v-\omega+1}+\cdots+\Lambda_{1} S_{v-1}+\Lambda_{0} S_{v} \\
& \quad \Lambda_{\omega} S_{v-\omega}+\Lambda_{\omega-1} S_{v-\omega+1}+\cdots+\Lambda_{1} S_{v-1}+\Lambda_{0} S_{v}=0
\end{aligned}
$$

- Error locator polynomial can be determined using the syndromes.

§ 6.3 Syndrome Based Decoding

- List all $\Lambda_{\omega} S_{v-\omega}+\Lambda_{\omega-1} S_{v-\omega+1}+\cdots+\Lambda_{1} S_{v-1}+\Lambda_{0} S_{v}=0$

$$
\begin{gathered}
v=1: \\
v=2: \\
v=3: \\
\vdots \\
v=\omega:
\end{gathered}
$$

$$
\Lambda_{1} S_{0}+\Lambda_{0} S_{1}=\cdot \cdot
$$

$$
\Lambda_{2} S_{0}+\Lambda_{1} S_{1}+\Lambda_{0} S_{2}=\cdot \cdot
$$

$$
\Lambda_{3} S_{0}+\Lambda_{2} S_{1}+\Lambda_{1} S_{2}+\Lambda_{0} S_{3}=\cdot \cdot
$$

$$
\Lambda_{\omega} S_{0}+\Lambda_{\omega-1} S_{1}+\cdots+\Lambda_{1} S_{\omega-1}+\Lambda_{0} S_{\omega}=\cdot \cdot
$$

$$
\begin{array}{rlrl}
v & =\omega+1: & \Lambda_{\omega} S_{1}+\Lambda_{\omega-1} S_{2}+\cdots+\Lambda_{1} S_{\omega}+\Lambda_{0} S_{\omega+1}=0 \\
v & =\omega+2: & \Lambda_{\omega} S_{2}+\Lambda_{\omega-1} S_{3}+\cdots+\Lambda_{1} S_{\omega+1}+\Lambda_{0} S_{\omega+2}=0 \\
\vdots & & & \\
v & =2 t: & \Lambda_{\omega} S_{2 t-\omega}+\Lambda_{\omega-1} S_{2 t-\omega+1}+\cdots+\Lambda_{1} S_{2 t-1}+\Lambda_{0} S_{2 t}=0
\end{array}
$$

$S_{v}=-\sum_{\tau=1}^{\infty} \Lambda_{\tau} S_{v-\tau}$

Remark 2:

S_{0} is not one of the $n-k$ syndromes.

$$
\left[\begin{array}{cccc}
S_{1} & S_{2} & \cdots & S_{\omega} \\
S_{2} & S_{3} & \cdots & S_{\omega+1} \\
\vdots & \vdots & \ddots & \vdots \\
S_{2 t-\omega} & S_{2 t-\omega+1} & \cdots & S_{2 t-1}
\end{array}\right] \cdot\left[\begin{array}{c}
\Lambda_{\omega} \\
\Lambda_{\omega-1} \\
\vdots \\
\Lambda_{1}
\end{array}\right]=-\left[\begin{array}{c}
S_{\omega+1} \\
S_{\omega+2} \\
\vdots \\
S_{2 t}
\end{array}\right]
$$

§ 6.3 Syndrome Based Decoding

- Solving the linear system in finding $\Lambda(x)$ has a complexity of $O\left(\omega^{3}\right)$. It can be facilitated by the Berlekamp-Massey algorithm ${ }^{[2]}$ whose complexity is $O\left(\omega^{2}\right)$.
- The Berlekamp-Massey algorithm can be implemented using the Linear Feedback Shift Register. Its pseudo program is the follows.

```
The Berlekamp-Massey Algorithm
```

```
Input: Syndromes }\mp@subsup{S}{1}{},\mp@subsup{S}{2}{},\ldots,\mp@subsup{S}{2t}{
```

Input: Syndromes }\mp@subsup{S}{1}{},\mp@subsup{S}{2}{},···,\mp@subsup{S}{2t}{
Output: }\Lambda(x)\mathrm{ ;
Output: }\Lambda(x)\mathrm{ ;
Initialization: }r=0,\ell=0,z=-1,\Lambda(x)=1,T(x)=x
Initialization: }r=0,\ell=0,z=-1,\Lambda(x)=1,T(x)=x
Determine }\Delta=\mp@subsup{\sum}{i=0}{\ell}\mp@subsup{\Lambda}{i}{}\mp@subsup{S}{r-i+1}{\prime}
Determine }\Delta=\mp@subsup{\sum}{i=0}{\ell}\mp@subsup{\Lambda}{i}{}\mp@subsup{S}{r-i+1}{\prime}
If }\Delta=
If }\Delta=
T(x)=xT(x) ;
T(x)=xT(x) ;
r=r+1
r=r+1
If r<2t
If r<2t
Go to 1;
Go to 1;
Else
Else
Terminate the algorithm;
Terminate the algorithm;
Else
Else
Update }\mp@subsup{\Lambda}{}{*}(x)=\Lambda(x)-\DeltaT(x)
Update }\mp@subsup{\Lambda}{}{*}(x)=\Lambda(x)-\DeltaT(x)
If }\ell\geqr-
If }\ell\geqr-
\Lambda(x)=\Lambda* (x);
\Lambda(x)=\Lambda* (x);
Else
Else
\ell*}=r-z;z=r-\ell;T(x)=\Lambda(x)/\Delta;\ell=\mp@subsup{\ell}{}{*};\Lambda(x)=\mp@subsup{\Lambda}{}{*}(x)
\ell*}=r-z;z=r-\ell;T(x)=\Lambda(x)/\Delta;\ell=\mp@subsup{\ell}{}{*};\Lambda(x)=\mp@subsup{\Lambda}{}{*}(x)
T(x)=xT(x);
T(x)=xT(x);
r=r+1 ;
r=r+1 ;
If r<2t
If r<2t
Go to 1;
Go to 1;
Else
Else
Terminate the algorithm;

```
            Terminate the algorithm;
```

[2] J. L. Massey, "Shift register synthesis and BCH decoding," IEEE Trans. Inf. Theory, vol. 15(1), pp. 122-127, 1969.

§ 6.3 Syndrome Based Decoding

- Example 6.6: Given the $(7,3)$ RS codeword generated in Example 6.5, after the channel, the received word is

$$
\bar{r}=\left(\sigma^{5}, \sigma^{4}, \sigma^{3}, \sigma^{0}, \sigma^{4}, \sigma^{2}, \sigma^{5}\right) .
$$

With the received word, we can calculate syndromes as

$$
S_{1}=r(\sigma)=\sigma^{0}, S_{2}=r\left(\sigma^{2}\right)=\sigma^{6}, S_{3}=r\left(\sigma^{3}\right)=\sigma^{6}, S_{4}=r\left(\sigma^{4}\right)=\sigma^{0} .
$$

Running the above Berlekamp-Massey algorithm, we obtain

r	ℓ	z	$\Lambda(x)$	$T(x)$	Δ
0	0	-1	1	x	σ^{0}
1	1	0	$1-x$	x	σ^{2}
2	1	0	$1-\sigma^{6} x$	x^{2}	σ
3	2	1	$1-\sigma^{6} x-\sigma x^{2}$	$\sigma^{6} x-\sigma^{5} x^{2}$	σ^{5}
4			$1-\sigma^{3} x-x^{2}$	$\sigma^{6} x^{2}-\sigma^{5} x^{3}$	

Therefore, the error locator polynomial is $\Lambda(x)=1-\sigma^{3} x-x^{2}$. In $\mathbf{F}_{8}, \sigma^{5}$ and σ^{2} are its roots. Therefore, r_{2} and r_{5} are corrupted.

§ 6.3 Syndrome Based Decoding

- Determine the error magnitudes $e_{j_{1}}, e_{j_{2}}, \cdots, e_{j_{\rho}}$, so that the erroneous symbols can be corrected by

$$
c_{j_{1}}=r_{j_{1}}-e_{j_{1}}, c_{j_{2}}=r_{j_{2}}-e_{j_{2}}, \cdots, c_{j_{\omega}}=r_{j_{\omega}}-e_{j_{\omega_{\omega}}}
$$

- The syndromes $S_{v}=\sum_{\tau=1}^{\omega} e_{j_{\tau}} X_{\tau}^{v}, v=1,2, \cdots, 2 t$. Knowing $X_{1}=\sigma^{j_{1}}, X_{2}=\sigma^{j_{2}}, \cdots, X_{\omega}=\sigma^{j_{\omega}}$ from the error location polynomial $\Lambda(x)$, the above syndrome definition implies

$$
\left[\begin{array}{cccc}
X_{1}^{1} & X_{2}^{1} & \cdots & X_{\omega}^{1} \\
X_{1}^{2} & X_{2}^{2} & \cdots & X_{\omega}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
X_{1}^{2 t} & X_{2}^{2 t} & \cdots & X_{\omega}^{2 t}
\end{array}\right]\left[\begin{array}{c}
e_{j_{1}} \\
e_{j_{2}} \\
\vdots \\
e_{j_{\omega}}
\end{array}\right]=\left[\begin{array}{c}
S_{1} \\
S_{2} \\
\vdots \\
S_{2 t}
\end{array}\right]
$$

- Error magnitudes can be determined from the above set of linear equations.

§ 6.3 Syndrome Based Decoding

- The linear equation set can be efficiently solved using Forney's algorithm.
- Syndrome polynomial

$$
S(x)=S_{1}+S_{2} x+\cdots+S_{2 t} x^{2 t-1}=\sum_{v=1}^{2 t} S_{v} x^{v-1}
$$

- Error evaluation polynomial (The key equation)

$$
\Omega(x)=S(x) \cdot \Lambda(x) \bmod x^{2 t}
$$

- Formal derivative of $\Lambda(x)=\Lambda_{\omega} x^{\omega}+\Lambda_{\omega-1} x^{\omega-1}+\cdots+\Lambda_{1} x+\Lambda_{0}$

$$
\begin{aligned}
& \Lambda^{\prime}(x)=\underbrace{\omega \Lambda_{\omega}}_{\omega} x^{\omega-1} \\
& \underbrace{\omega}_{\omega}
\end{aligned} \frac{(\omega-1) \Lambda_{\omega-1}}{\Lambda_{\omega}+\Lambda_{\omega}+\cdots+\Lambda_{\omega}} x^{\omega-2}+\cdots+\Lambda_{1} \underbrace{\Lambda_{\omega-1}+\Lambda_{\omega-1}+\cdots+\Lambda_{\omega-1}}_{\omega-1}
$$

- Error magnitude $e_{j_{\tau}}$ can be determined by $e_{j_{\tau}}=-\frac{\Omega\left(X_{\tau}^{-1}\right)}{\Lambda^{\prime}\left(X_{\tau}^{-1}\right)}$.

§ 6.3 Syndrome Based Decoding

- Example 6.7: Continue from Example 6.6,

The syndrome polynomial is $S(x)=S_{1}+S_{2} x+S_{3} x^{2}+S_{4} x^{3}=\sigma^{0}+\sigma^{6} x+\sigma^{6} x^{2}+\sigma^{0} x^{3}$.
The error locator polynomial is $\Lambda(x)=1-\sigma^{3} x-x^{2}$.
The error evaluation polynomial is $\Omega(x)=S(x) \cdot \Lambda(x) \bmod x^{4}=\sigma^{4} x+\sigma^{0}$.
Formal derivative of $\Lambda(x)$ is $\Lambda^{\prime}(x)=\sigma^{3}$.
Error magnitudes are

$$
\begin{aligned}
& e_{2}=-\frac{\Omega\left(\sigma^{-2}\right)}{\Lambda^{\prime}\left(\sigma^{-2}\right)}=\sigma^{3}, \\
& e_{5}=-\frac{\Omega\left(\sigma^{-5}\right)}{\Lambda^{\prime}\left(\sigma^{-5}\right)}=\sigma^{6} .
\end{aligned}
$$

As a result, $c_{2}=r_{2}-e_{2}=0, c_{5}=r_{5}-e_{5}=\sigma^{0}$.

§ 6.3 Syndrome Based Decoding

- BM decoding performances over AWGN channel with BPSK.

