

Chapter 6 Reed-Solomon Codes

- 6.1 Finite Field Algebra
- 6.2 Reed-Solomon Codes
- 6.3 Syndrome Based Decoding

- Nonbinary codes: message and codeword symbols are represented in a finite field of size q, and q>2.
- Advantage of presenting a code in a nonbinary image.

A binary codeword sequence in $\{0,1\}$ $b_0 \ b_1 \ b_2 \ b_3 \ b_4 \ b_5 \ b_6 \ b_7 \ b_8 \ b_9 \ b_{10} \ b_{11} \ b_{12} \ b_{13} \ b_{14} \ b_{15} \ b_{16} \ b_{17}$ $b_{18} \ b_{19} \ b_{20}$

A nonbinary codeword sequence in $\{0, 1, 2, 3, 4, 5, 6, 7\}$ $c_0 c_1 c_2 c_3 c_4 c_5 c_6 c_7$

: where the channel error occurs

8 bit errors are treated as 3 symbol errors in a nonbinary image

- Finite field (Galois field) \mathbf{F}_q : a set of q elements that perform "+""-""×""/" without leaving the set.
- Let *p* denote a prime, e.g., 2, 3, 5, 7, 11, ..., it is required q = p or $q = p^{\theta}(\theta)$ is a positive integer greater than 1). If $q = p^{\theta}$, \mathbf{F}_q is an extension field of \mathbf{F}_p .

- Example 6.1: "+" and "
$$\times$$
 " in \mathbf{F}_{q}

 $\mathbf{F}_2 = \{ 0, 1 \}$

+ 0 1	0 0 1	1 1 0	-				× 0 1	0 0 0	1 0 1				all in modulo-2
$\mathbf{F}_5 = \{ 0, 1, 2, 3, 4 \}$													
+	0	1	2	3	4		×	0	1	2	3	4	_
0	0	1	2	3	4		0	0	0	0	0	0	all in
1	1	2	3	4	0		1	0	1	2	3	4	modulo-5
2	2	3	4	0	1		2	0	2	4	1	3	
3	3	4	0	1	2		3	0	3	1	4	2	
4	4	0	1	2	3		4	0	4	3	2	1	

- "-" and "/" can be performed as "+" and "×" with additive inverse and multiplicative inverse, respectively.
<u>Additive inverse of a</u> a': a' + a = 0 and a' = -a
<u>Multiplicative inverse of a</u> a': a' • a = 1 and a' = 1/a

```
- " - " operation:

Let h, a \in \mathbf{F}_q.

h - a = h + (-a) = h + a'.

E.g., in \mathbf{F}_5, 1 - 3 = 1 + (-3) = 1 + 2 = 3;
```

- "/" operation: Let $h, a \in \mathbf{F}_q$. $h/a = h \times a'$. E.g., in \mathbf{F}_5 , $2/3 = 2 \times (1/3) = 2 \times 2 = 4$.

- Nonzero elements of \mathbf{F}_q can be represented using a primitive element σ such that $\mathbf{F}_q = \{ 0, 1, \sigma, \sigma^2, \dots, \sigma^{q-2} \}.$
- Primitive element σ of \mathbf{F}_q : $\sigma \in \mathbf{F}_q$ and unity can be produced by at least $\underbrace{\sigma \bullet \sigma \bullet \cdots \bullet \sigma}_{q-1} = 1$, or $\sigma^{q-1} = 1$. all in modulo-q

E.g., in \mathbf{F}_5 , $2^4 = 1$ and $3^4 = 1$. Here, 2 and 3 are the primitive elements of \mathbf{F}_5 .

– Example 6.2: In **F**₅,

If 2 is chosen as the primitive element, then

 $\mathbf{F}_5 = \{ 0, 1, 2, 3, 4 \} = \{0, 2^4, 2^1, 2^3, 2^2 \} = \{0, 1, 2^1, 2^3, 2^2 \}$ If 3 is chosen as the primitive element, then

 $\mathbf{F}_5 = \{ 0, 1, 2, 3, 4 \} = \{0, 3^4, 3^3, 3^1, 3^2 \} = \{0, 1, 3^3, 3^1, 3^2 \}$

- If \mathbf{F}_q is an extension field of \mathbf{F}_p such as $q = p^{\theta}$, elements of \mathbf{F}_q can also be represented by θ -dimensional vectors in \mathbf{F}_p .
- Primitive polynomial *p*(*x*) of **F**_q (*q* = *p*^θ): an irreducible polynomial of degree θ that divides x^{p^{θ-1}}-1 but not other polynomials x^Φ 1 with Φ < p^θ 1.
 E.g., in **F**₈, the primitive polynomial *p*(*x*) = x³ + x + 1 divides x⁷-1, but not x⁶-1, x⁵-1, x⁴-1, x³-1.
- If a primitive element σ is a root of p(x) such that $p(\sigma) = 0$, elements of \mathbf{F}_q can be represented in the form of

$$w_{\theta-1}\sigma^{\theta-1} + w_{\theta-2}\sigma^{\theta-2} + \dots + w_1\sigma^1 + w_0\sigma^0$$

where $w_0, w_1, \dots, w_{\theta-2}, w_{\theta-1} \in \mathbf{F}_p$, or alteratively in
 $(w_{\theta-1}, w_{\theta-2}, \dots, w_1, w_0)$

- Example 6.3: If $p(x) = x^3 + x + 1$ is the primitive polynomial of \mathbf{F}_8 , and its primitive element σ satisfies $\sigma^3 + \sigma + 1 = 0$, then

\mathbf{F}_8	$w_2\sigma^2 + w_1\sigma^1 + w_0\sigma^0$	$w_2 w_1 w_0$
0	0	0 0 0
1	1	0 0 1
σ	σ	0 1 0
σ^2	σ^2	1 0 0
σ^3	$\sigma + 1$	0 1 1
σ^4	$\sigma^2 + \sigma$	1 1 0
σ^5	$\sigma^2 + \sigma + 1$	1 1 1
σ^{6}	$\sigma^2 + 1$	1 0 1

- Representing $\mathbf{F}_q = \{ 0, 1, \sigma, \dots, \sigma^{q-2} \}, `` \times ``` / ``` + ``` - `` operations become$

"
$$\overset{"}{\times} \overset{"}{:} \sigma^{i} \times \sigma^{j} = \sigma^{(i+j)\%(q-1)}$$
E.g., in $\mathbf{F}_{8}, \sigma^{4} \times \sigma^{5} = \sigma^{(4+5)\%7} = \sigma^{2}$

"." / ":
$$\sigma^i / \sigma^j = \sigma^{(i-j)\% (q-1)}$$

E.g., in **F**₈, $\sigma^4 / \sigma^5 = \sigma^{(4-5)\% 7} = \sigma^6$

"+ ": if
$$\sigma^{i} = w_{\theta - 1}\sigma^{\theta - 1} + w_{\theta - 2}\sigma^{\theta - 2} + \dots + w_{0}\sigma^{0}$$

(& "- ") $\sigma^{j} = w'_{\theta - 1}\sigma^{\theta - 1} + w'_{\theta - 2}\sigma^{\theta - 2} + \dots + w'_{0}\sigma^{0}$
 $\sigma^{i} + \sigma^{j} = (w_{\theta - 1} + w'_{\theta - 1})\sigma^{\theta - 1} + (w_{\theta - 2} + w'_{\theta - 2})\sigma^{\theta - 2} + \dots + (w_{0} + w'_{0})\sigma^{0}$
E.g., in \mathbf{F}_{8} , $\sigma^{4} + \sigma^{5} = \sigma^{2} + \sigma + \sigma^{2} + \sigma + 1 = 1$

- An RS code^[1] defined over \mathbf{F}_q is characterized by its codeword length n = q 1, dimension k < n and the minimum Hamming distance d. It is often denoted as an (n, k) (or (n, k, d)) RS code.
- It is a maximum distance separable (MDS) code such that

d = n - k + 1

- It is a linear block code and also cyclic.
- The widely used RS codes include the (255, 239) and the (255, 223) codes both of which are defined in \mathbf{F}_{256} .

[1] I. Reed and G. Solomon, "Polynomial codes over certain finite fields," J. Soc. Indust. Appl. Math, vol. 8, pp. 300-304, 1960.

- Notations

 $\mathbf{F}_q[x]$, a univariate polynomial ring over \mathbf{F}_q , i.e., $f(x) = \sum_{i \in \mathbb{N}} f_i x^i$ and $f_i \in \mathbf{F}_q$.

 $\mathbf{F}_{q}[x, y]$, a bivariate polynomial ring over \mathbf{F}_{q} , i.e., $f(x, y) = \sum_{i, j \in \mathbb{N}} f_{ij} x^{i} y^{j}$ and $f_{ij} \in \mathbf{F}_{q}$.

 \mathbf{F}_{q}^{\bullet} , \bullet - dimensional vector over \mathbf{F}_{q} . - Encoding of an (n, k) RS code. Message vector $\overline{u} = (u_{0}, u_{1}, u_{2}, \dots, u_{k-1}) \in \mathbf{F}_{q}^{k}$ Message polynomial

$$u(x) = u_0 + u_1 x + u_2 x^2 + \dots + u_{k-1} x^{k-1} \in \mathbf{F}_q[x]$$

Codeword

$$\overline{c} = (u(1), u(\sigma), u(\sigma^2), \cdots, u(\sigma^{n-1})) \in \mathbf{F}_q^n$$

 $1, \sigma, \sigma^2, \dots, \sigma^{n-1}$ are the q - 1 nonzero elements of \mathbf{F}_q . They are often called code locators.

- Encoding of an (n, k) RS code in a linear block code fashion

$$\overline{c} = \overline{u} \cdot \mathbf{G}$$

$$= (u_0, u_1, \cdots, u_{k-1}) \begin{bmatrix} (\sigma^0)^0 & (\sigma^1)^0 & \cdots & (\sigma^{n-1})^0 \\ (\sigma^0)^1 & (\sigma^1)^1 & \cdots & (\sigma^{n-1})^1 \\ \vdots & \vdots & \ddots & \vdots \\ (\sigma^0)^{k-1} & (\sigma^1)^{k-1} & \cdots & (\sigma^{n-1})^{k-1} \end{bmatrix}$$

Example 6.4: For a (7, 3) RS code that is defined in F₈, if the message is u
= (u₀, u₁, u₂) = (σ⁴, 1, σ⁵), the message polynomial will be u(x) = σ⁴ + x + σ⁵x², and the codeword can be generated by
c
= (u(1), u(σ), u(σ²), u(σ³), u(σ⁴), u(σ⁵), u(σ⁶)) = (0, σ⁶, σ⁴, σ³, σ⁶, σ³, 0)

•
$$\overline{c} = \overline{u} \cdot \mathbf{G} = (\sigma^4, 1, \sigma^5) \cdot \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & \sigma^1 & \sigma^2 & \sigma^3 & \sigma^4 & \sigma^5 & \sigma^6 \\ 1 & \sigma^2 & \sigma^4 & \sigma^6 & \sigma^1 & \sigma^3 & \sigma^5 \end{bmatrix} = (0, \sigma^6, \sigma^4, \sigma^3, \sigma^6, \sigma^3, 0)$$

- MDS property of RS codes d = n - k + 1

– Singleton bound for an (n, k) linear block code, $d \le n - k + 1$

-u(x) has at most k - 1 roots. Hence, \overline{c} has at most k - 1 zeros and $d = (\overline{c}, \overline{0}) \ge n - k + 1$

 $d_{\text{Ham}} = (\overline{c}, \overline{0}) \ge n - k + 1$

- Parity-check matrix of an (n, k) RS code

$$\mathbf{H} = \begin{bmatrix} (\sigma^{0})^{1} & (\sigma^{1})^{1} & \cdots & (\sigma^{n-1})^{1} \\ (\sigma^{0})^{2} & (\sigma^{1})^{2} & \cdots & (\sigma^{n-1})^{2} \\ \vdots & \vdots & \ddots & \vdots \\ (\sigma^{0})^{n-k} & (\sigma^{1})^{n-k} & \cdots & (\sigma^{n-1})^{n-k} \end{bmatrix}$$

 $\overline{c} \cdot \mathbf{H}^T = \overline{u} \cdot \mathbf{G} \cdot \mathbf{H}^T = \overline{0} \quad \leftarrow \text{ an } n - k \text{ all zero vector}$

- Insight of $\mathbf{G} \cdot \mathbf{H}^T$ $\begin{bmatrix} (\sigma^{0})^{0} & (\sigma^{1})^{0} & \cdots & (\sigma^{n-1})^{0} \\ (\sigma^{0})^{1} & (\sigma^{1})^{1} & \cdots & (\sigma^{n-1})^{1} \\ \vdots & \vdots & \ddots & \vdots \\ (\sigma^{0})^{k-1} & (\sigma^{1})^{k-1} & \cdots & (\sigma^{n-1})^{k-1} \end{bmatrix} \cdot \begin{bmatrix} (\sigma^{0})^{1} & (\sigma^{0})^{2} & \cdots & (\sigma^{0})^{n-k} \\ (\sigma^{1})^{1} & (\sigma^{1})^{2} & \cdots & (\sigma^{1})^{n-k} \\ \vdots & \vdots & \ddots & \vdots \\ (\sigma^{n-1})^{1} & (\sigma^{n-1})^{2} & \cdots & (\sigma^{n-1})^{n-k} \end{bmatrix}$ - Let $i = 0, 1, \dots, k - 1$, $j = 0, 1, \dots, n - 1, v = 1, 2, \dots, n - k$. Entries of **G** can be denoted as $[\mathbf{G}]_{i,j} = (\sigma^j)^i$ Entries of \mathbf{H}^T can be denoted as $[\mathbf{H}^T]_{i,\nu-1} = (\sigma^i)^{\nu}$ Entries of $\mathbf{G} \mathbf{H}^T$ is $[\mathbf{G} \cdot \mathbf{H}^{T}]_{i,\nu-1} = \sum_{j=0}^{n-1} (\sigma^{j})^{i} \cdot (\sigma^{j})^{\nu}$ $= \sum_{j=0}^{n-1} (\sigma^{j})^{i+\nu} = 0$ **Remark 1:** v = 0 is illegitimate since $\sum_{j=1}^{n-1} (\sigma^{j})^{0} \neq 0$

- Perceiving
$$\mathbf{H}^{T}$$
 as in

$$\begin{bmatrix} (\sigma^{1})^{0} & (\sigma^{2})^{0} & \cdots & (\sigma^{n-k})^{0} \\ (\sigma^{1})^{1} & (\sigma^{2})^{1} & \cdots & (\sigma^{n-k})^{1} \\ \vdots & \vdots & \ddots & \vdots \\ (\sigma^{1})^{n-1} & (\sigma^{2})^{n-1} & \cdots & (\sigma^{n-k})^{n-1} \end{bmatrix}$$
- Perceiving codeword $\overline{c} = (c_{0}, c_{1}, \cdots, c_{n-1})$ as in
 $c(x) = c_{0} + c_{1}x + \cdots + c_{n-1}x^{n-1}$

- $\overline{c} \cdot \mathbf{H}^T = \overline{0}$ implies $c(\sigma^1) = c(\sigma^2) = \cdots = c(\sigma^{n-k}) = 0$ $\sigma^1, \sigma^2, \cdots, \sigma^{n-k}$ are roots of RS codeword polynomial c(x).

- An alternatively encoding

- Message polynomial $u(x) = u_0 + u_1 x + \dots + u_{k-1} x^{k-1}$
- Codeword polynomial $c(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1}$

-
$$c(x) = u(x) \cdot g(x)$$
 and $deg(g(x)) = n - k$

- Since
$$\sigma^1, \sigma^2, \dots, \sigma^{n-k}$$
 are roots of $c(x)$
 $g(x) = (x - \sigma^1)(x - \sigma^2) \cdots (x - \sigma^{n-k})$
 \uparrow The generator polynomial of an (n, k) RS code

- Systematic encoding

 $c(x) = x^{n-k}u(x) + (x^{n-k}u(x)) \mod g(x)$

- Example 6.5: For a (7, 3) RS code, its generator polynomial is $g(x) = (x - \sigma^1)(x - \sigma^2)(x - \sigma^3)(x - \sigma^4) = x^4 + \sigma^3 x^3 + x^2 + \sigma x + \sigma^3$ Given message vector $\overline{u} = (u_0, u_1, u_2) = (\sigma^4, 1, \sigma^5)$, the codeword can be generated by $c(x) = u(x) \cdot g(x) = (1, \sigma^2, \sigma^4, \sigma^6, \sigma, \sigma^3, \sigma^5)$ For systematic encoding, $(x^{n-k}u(x)) \mod g(x) = (x^4 \cdot u(x)) \mod g(x) = x^3 + \sigma^4 x + \sigma^5$, and the codeword is $\overline{c} = (\sigma^5, \sigma^4, 0, 1, \sigma^4, 1, \sigma^5)$

- The channel:
$$r(x) = c(x) + e(x)$$

$$c(x) = c_0 + c_1 x + \dots + c_{n-1} x^{n-1} - \text{codeword polynomial}$$

$$e(x) = e_0 + e_1 x + \dots + e_{n-1} x^{n-1} - \text{error polynomial}$$

$$r(x) = r_0 + r_1 x + \dots + r_{n-1} x^{n-1} - \text{received word polynomial}$$

- Let
$$n - k = 2t$$
, $\sigma^1, \sigma^2, \dots, \sigma^{2t}$ are roots of $c(x)$

-2t syndromes can be determined as

$$S_1 = r(\sigma^1), S_2 = r(\sigma^2), \dots, S_{2t} = r(\sigma^{2t})$$

If $S_1 = S_2 = \dots = S_{2t} = 0$, r(x) is a valid codeword. Otherwise, $e(x) \neq 0$, error-correction is needed.

- If $e(x) \neq 0$, we assume there are ω errors with $e_{j_1} \neq 0, e_{j_2} \neq 0, \dots, e_{j_{\omega}} \neq 0$. - Let $v = 1, 2, \dots, 2t$

$$S_{v} = \sum_{j=0}^{n-1} c_{j} \sigma^{jv} + \sum_{j=0}^{n-1} e_{j} \sigma^{jv} = \sum_{j=0}^{n-1} e_{j} \sigma^{jv} = \sum_{\tau=1}^{\infty} e_{j_{\tau}} (\sigma^{j_{\tau}})^{v}$$

– For simplicity, let $X_{\tau} = \sigma^{j_{\tau}}$, we can list the 2*t* syndromes by

$$S_{1} = e_{j_{1}}X_{1}^{1} + e_{j_{2}}X_{2}^{1} + \dots + e_{j_{\omega}}X_{\omega}^{1}$$

$$S_{2} = e_{j_{1}}X_{1}^{2} + e_{j_{2}}X_{2}^{2} + \dots + e_{j_{\omega}}X_{\omega}^{2}$$

$$\vdots$$

$$S_{2t} = e_{j_{1}}X_{1}^{2t} + e_{j_{2}}X_{2}^{2t} + \dots + e_{j_{\omega}}X_{\omega}^{2t}$$

- In the above non-linear equation group, there are 2ω unknowns $X_1, X_2, \dots, X_{\omega}$, $e_{j_1}, e_{j_2}, \dots, e_{j_{\omega}}$. It will be solvable if $2\omega \le 2t$. The number of correctable errors is $\omega \le \frac{n-k}{2}$.

- Since $X_{j_{\tau}}, e_{j_{\tau}} \in \mathbf{F}_q \setminus \{0\}$, an exhaustive search solution will have a complexity of $O(n^{2\omega})$.

- In order to decode an RS code with a polynomial-time complexity, the decoding is decomposed into determining the **error locations** and **error magnitudes**, i.e., $X_1, X_2, \dots, X_{\omega}$ and $e_{j_1}, e_{j_2}, \dots, e_{j_{\omega}}$, respectively.
- Error locator polynomial

$$\Lambda(x) = \prod_{\tau=1}^{\omega} (1 - X_{\tau} x)$$
$$= \Lambda_{\omega} x^{\omega} + \Lambda_{\omega-1} x^{\omega-1} + \dots + \Lambda_1 x + \Lambda_0$$
$$(\Lambda_0 = 1)$$

 $X_1^{-1} = \sigma^{-j_1}, X_2^{-1} = \sigma^{-j_2}, \dots, X_{\omega}^{-1} = \sigma^{-j_{\omega}} \text{ are roots of the polynomial such that}$ $\Lambda(X_1^{-1}) = \Lambda(X_2^{-1}) = \dots = \Lambda(X_{\omega}^{-1}) = 0.$

– Determine $\Lambda(x)$ by finding out $\Lambda_{\omega}, \Lambda_{\omega-1}, \cdots$, and Λ_1 , and its roots tell the error locations.

- How to determine
$$\Lambda_{\omega}, \Lambda_{\omega-1}, \cdots, \text{ and } \Lambda_{1}$$
?
Since $\Lambda(X_{\tau}^{-1}) = \Lambda_{\omega}X_{\tau}^{-\omega} + \Lambda_{\omega-1}X_{\tau}^{1-\omega} + \cdots + \Lambda_{1}X_{\tau}^{-1} + \Lambda_{0} = 0$
 $\sum_{\tau=1}^{\omega} e_{j_{\tau}}X_{\tau}^{\nu}\Lambda(X_{\tau}^{-1}) = 0$, for $\nu = 1, 2, \cdots, 2t$
 \downarrow
 $= e_{j_{1}}\Lambda_{\omega}X_{1}^{\nu-\omega} + e_{j_{1}}\Lambda_{\omega-1}X_{1}^{\nu-\omega+1} + \cdots + e_{j_{1}}\Lambda_{1}X_{1}^{\nu-1} + e_{j_{1}}\Lambda_{0}X_{1}^{\nu}$
 $+ e_{j_{2}}\Lambda_{\omega}X_{2}^{\nu-\omega} + e_{j_{2}}\Lambda_{\omega-1}X_{2}^{\nu-\omega+1} + \cdots + e_{j_{2}}\Lambda_{1}X_{2}^{\nu-1} + e_{j_{2}}\Lambda_{0}X_{2}^{\nu}$
 \vdots
 $+ e_{j_{\omega}}\Lambda_{\omega}X_{\omega}^{\nu-\omega} + e_{j_{\omega}}\Lambda_{\omega-1}X_{\omega}^{\nu-\omega+1} + \cdots + e_{j_{\omega}}\Lambda_{1}X_{\omega}^{\nu-1} + e_{j_{\omega}}\Lambda_{0}X_{\omega}^{\nu}$
 $= \Lambda_{\omega}S_{\nu-\omega} + \Lambda_{\omega-1}S_{\nu-\omega+1} + \cdots + \Lambda_{1}S_{\nu-1} + \Lambda_{0}S_{\nu}$

- Error locator polynomial can be determined using the syndromes.

- Solving the linear system in finding $\Lambda(x)$ has a complexity of $O(\omega^3)$. It can be facilitated by the Berlekamp-Massey algorithm^[2] whose complexity is $O(\omega^2)$.
- The Berlekamp-Massey algorithm can be implemented using the Linear Feedback Shift Register. Its pseudo program is the follows.

The Berlekamp-Massey Algorithm

```
Input: Syndromes S_1, S_2, \ldots, S_{2t}:
Output: \Lambda(x);
Initialization: r = 0, \ell = 0, z = -1, \Lambda(x) = 1, T(x) = x:
      Determine \Delta = \sum_{i=0}^{\ell} \Lambda_i S_{r-i+1};
1:
       If \Delta = 0
2:
             T(x) = xT(x)
3:
             r = r + 1
4:
             If r < 2t
5:
6:
                     Go to 1:
7:
             Else
8:
                     Terminate the algorithm;
9:
       Else
10:
              Update \Lambda^*(x) = \Lambda(x) - \Delta T(x);
11:
              If \ell \ge r-z
12:
                     \Lambda(x) = \Lambda^*(x);
13:
              Else
                      \ell^* = r - z; \quad z = r - \ell; \quad T(x) = \Lambda(x) / \Delta; \quad \ell = \ell^*; \quad \Lambda(x) = \Lambda^*(x);
14:
15:
             T(x) = xT(x):
              r = r + 1 :
16:
17:
             If r < 2t
18:
                     Go to 1:
19:
             Else
20:
                     Terminate the algorithm;
```

[2] J. L. Massey, "Shift register synthesis and BCH decoding," IEEE Trans. Inf. Theory, vol. 15(1), pp. 122-127, 1969.

- Example 6.6: Given the (7, 3) RS codeword generated in Example 6.5, after the channel, the received word is

 $\overline{r} = (\sigma^5, \sigma^4, \sigma^3, \sigma^0, \sigma^4, \sigma^2, \sigma^5).$

With the received word, we can calculate syndromes as

$$S_1 = r(\sigma) = \sigma^0, S_2 = r(\sigma^2) = \sigma^6, S_3 = r(\sigma^3) = \sigma^6, S_4 = r(\sigma^4) = \sigma^0.$$

Running the above Berlekamp-Massey algorithm, we obtain

r	ℓ	z	$\Lambda(x)$	T(x)	Δ
0	0	-1	1	X	σ^{0}
1	1	0	1-x	X	σ^{2}
2	1	0	$1-\sigma^6 x$	x^2	σ
3	2	1	$1 - \sigma^6 x - \sigma x^2$	$\sigma^6 x - \sigma^5 x^2$	σ^{5}
4			$1 - \sigma^3 x - x^2$	$\sigma^6 x^2 - \sigma^5 x^3$	

Therefore, the error locator polynomial is $\Lambda(x) = 1 - \sigma^3 x - x^2$. In **F**₈, σ^5 and σ^2 are its roots. Therefore, r_2 and r_5 are corrupted.

– Determine the error magnitudes $e_{j_1}, e_{j_2}, \dots, e_{j_{\omega}}$, so that the erroneous symbols can be corrected by

$$c_{j_1} = r_{j_1} - e_{j_1}, c_{j_2} = r_{j_2} - e_{j_2}, \dots, c_{j_{\omega}} = r_{j_{\omega}} - e_{j_{\omega}}$$

- The syndromes $S_{\nu} = \sum_{\tau=1}^{\omega} e_{j_{\tau}} X_{\tau}^{\nu}$, $\nu = 1, 2, \dots, 2t$. Knowing $X_1 = \sigma^{j_1}, X_2 = \sigma^{j_2}, \dots, X_{\omega} = \sigma^{j_{\omega}}$ from the error location polynomial $\Lambda(x)$, the above syndrome definition implies

$$\begin{bmatrix} X_{1}^{1} & X_{2}^{1} & \cdots & X_{\omega}^{1} \\ X_{1}^{2} & X_{2}^{2} & \cdots & X_{\omega}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ X_{1}^{2t} & X_{2}^{2t} & \cdots & X_{\omega}^{2t} \end{bmatrix} \begin{bmatrix} e_{j_{1}} \\ e_{j_{2}} \\ \vdots \\ e_{j_{\omega}} \end{bmatrix} = \begin{bmatrix} S_{1} \\ S_{2} \\ \vdots \\ S_{2t} \end{bmatrix}$$

- Error magnitudes can be determined from the above set of linear equations.

- The linear equation set can be efficiently solved using Forney's algorithm.
- Syndrome polynomial $S(x) = S_1 + S_2 x + \dots + S_{2t} x^{2t-1} = \sum_{\nu=1}^{2t} S_{\nu} x^{\nu-1}$
- Error evaluation polynomial (The key equation) $\Omega(x) = S(x) \cdot \Lambda(x) \mod x^{2t}$
- Formal derivative of $\Lambda(x) = \Lambda_{\omega} x^{\omega} + \Lambda_{\omega-1} x^{\omega-1} + \dots + \Lambda_1 x + \Lambda_0$ $\Lambda'(x) = \underbrace{\omega \Lambda_{\omega}}_{\nabla} x^{\omega-1} + \underbrace{(\omega-1)\Lambda_{\omega-1}}_{\nabla} x^{\omega-2} + \dots + \Lambda_1$ $\underbrace{\Lambda_{\omega} + \Lambda_{\omega} + \dots + \Lambda_{\omega}}_{\omega} \quad \underbrace{\Lambda_{\omega-1} + \Lambda_{\omega-1} + \dots + \Lambda_{\omega-1}}_{\omega-1}$ - Error magnitude $e_{j_{\tau}}$ can be determined by $e_{j_{\tau}} = -\frac{\Omega(X_{\tau}^{-1})}{\Lambda'(X_{\tau}^{-1})}$

- Example 6.7: Continue from Example 6.6,

The syndrome polynomial is $S(x) = S_1 + S_2 x + S_3 x^2 + S_4 x^3 = \sigma^0 + \sigma^6 x + \sigma^6 x^2 + \sigma^0 x^3$. The error locator polynomial is $\Lambda(x) = 1 - \sigma^3 x - x^2$. The error evaluation polynomial is $\Omega(x) = S(x) \cdot \Lambda(x) \mod x^4 = \sigma^4 x + \sigma^0$. Formal derivative of $\Lambda(x)$ is $\Lambda'(x) = \sigma^3$.

Error magnitudes are

$$e_{2} = -\frac{\Omega(\sigma^{-2})}{\Lambda'(\sigma^{-2})} = \sigma^{3} ,$$
$$e_{5} = -\frac{\Omega(\sigma^{-5})}{\Lambda'(\sigma^{-5})} = \sigma^{6} .$$

As a result, $c_2 = r_2 - e_2 = 0$, $c_5 = r_5 - e_5 = \sigma^0$.

- BM decoding performances over AWGN channel with BPSK.

