
Chapter 6 Reed-Solomon Codes

• 6.1 Finite Field Algebra

• 6.2 Reed-Solomon Codes

• 6.3 Syndrome Based Decoding



§6.1 Finite Field Algebra

– Nonbinary codes: message and codeword symbols are represented in a finite field of  

size q, and q>2. 

–Advantage of presenting a code in a nonbinary image.  

A binary codeword sequence in {0,1}

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16 b17

b18 b19 b20

A nonbinary codeword sequence in {0, 1, 2, 3, 4, 5, 6, 7}

c0 c1 c2 c3 c4 c5 c6 c7

: where the channel error occurs

8 bit errors are treated as 3 symbol errors in a nonbinary image 



– Finite field (Galois field)  Fq: a set of q elements that perform “ + ” “ - ” “ × ” “ / ” 

without leaving the set. 

– Let p denote a prime, e.g., 2, 3, 5, 7, 11, ···, it is required q = p or q = pθ (θ is a  

positive integer greater than 1). If q = pθ, Fq is an extension field of Fp.

– Example 6.1: “ + ” and “ × ” in Fq. 

F2 = { 0, 1 } 

F5 = { 0, 1, 2, 3, 4 }
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+ 0 1

0 0 1

1 1 0

× 0 1

0 0 0

1 0 1

all in 

modulo-2

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

× 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2          1

all in 

modulo-5



– “ - ” and “ / ” can be performed as “ + ” and “ × ” with additive inverse and   

multiplicative inverse, respectively. 

Additive inverse of a a': a' + a = 0 and  a' = -a

Multiplicative inverse of a a': a' • a = 1 and a' = 1 / a

– “ - ” operation:

Let h, a Fq .

h - a = h + (-a) = h + a'.

E.g., in F5, 1 - 3 = 1 + (-3) = 1 + 2 = 3;

– “ / ” operation:

Let h, a Fq .

h / a = h × a'.

E.g., in F5, 2 / 3 = 2 × (1 / 3) = 2 × 2 = 4.
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– Nonzero elements of Fq can be represented using a primitive element σ such that  

Fq={ 0, 1, σ, σ2, ···, σq-2 }.

– Primitive element σ of Fq: σ Fq and unity can be produced by at least

, or σq-1 = 1.             all in modulo-q

E.g., in F5, 2
4 = 1 and 34 = 1. Here, 2 and 3 are the primitive elements of F5. 

– Example 6.2: In F5, 

If 2 is chosen as the primitive element, then 

F5 = { 0, 1, 2, 3, 4 } = {0, 24, 21, 23, 22 }= {0, 1, 21, 23, 22 }

If 3 is chosen as the primitive element, then 

F5 = { 0, 1, 2, 3, 4 } = {0, 34, 33, 31, 32 } = {0, 1, 33, 31, 32 }
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– If Fq is an extension field of Fp such as q = pθ, elements of Fq can also be represented 

by θ-dimensional vectors in Fp.

– Primitive polynomial p(x) of Fq (q = pθ): an irreducible polynomial of degree θ that 

divides               but not other polynomials xΦ - 1 with Φ < pθ - 1.

E.g., in F8, the primitive polynomial p(x) = x3 + x + 1 divides x7-1, but not x6-1, x5-1, 

x4-1, x3-1.

– If a primitive element σ is a root of p(x) such that p(σ) = 0, elements of Fq can be 

represented in the form of 

wθ-1σ
θ-1 + wθ-2σ

θ-2 + ... + w1σ
1 + w0σ

0

where w0, w1, ... ,wθ-2, wθ-1 Fp, or alteratively in 

( wθ-1, wθ-2, ···, w1, w0 )
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– Example 6.3: If p(x) = x3 + x + 1 is the primitive polynomial of F8, and its primitive 

element σ satisfies σ3 + σ + 1 = 0, then
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F8 w2σ
2 + w1σ

1 + w0σ
0 w2    w1  w0

0 0 0    0    0

1 1 0    0    1

σ σ 0    1    0

σ2 σ2 1    0    0

σ3 σ + 1 0    1    1

σ4 σ2 + σ 1    1    0

σ5 σ2 + σ + 1 1    1    1

σ6 σ2 + 1 1    0    1



– Representing Fq = { 0, 1, σ, ···, σq-2 }, “ × ” “ / ” “ + ” “ - ” operations become

“ × ”: σi × σj = σ(i + j) % (q - 1)

E.g., in F8, σ
4× σ5 = σ(4 + 5) % 7 = σ2

“ / ”: σi / σj = σ(i - j) % (q - 1)

E.g., in F8, σ4 / σ5 = σ(4 - 5) % 7 = σ6

“ + ”: if σi = wθ-1σ
θ-1 + wθ-2σ

θ-2 + ···+ w0σ
0

(&“ - ”) σj = w'θ-1σ
θ-1 + w'θ-2σ

θ-2 + ···+ w'0σ
0

σi + σj = (wθ-1 + w'θ-1)σ
θ-1 + (wθ-2 + w'θ-2)σ

θ-2 + ···+ (w0 + w'0)σ
0

E.g., in F8, σ
4 + σ5 = σ2  + σ + σ2 + σ + 1 = 1

§6.1 Finite Field Algebra



– An RS code[1] defined over Fq is characterized by its codeword length n = q - 1,   

dimension k < n and the minimum Hamming distance d. It is often denoted as an 

(n, k) (or (n, k, d) ) RS code. 

– It is a maximum distance separable (MDS) code such that 

d = n - k + 1

– It is a linear block code and also cyclic.

– The widely used RS codes include the (255, 239) and the (255, 223) codes both of 

which are defined in F256.

[1] I. Reed and G. Solomon, “Polynomial codes over certain finite fields,” J. Soc. Indust. Appl. Math, vol. 8, pp. 300-304, 1960.
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– Notations 

Fq [x], a univariate polynomial ring over Fq, i.e.,                       and             . 

Fq [x, y], a bivariate polynomial ring over Fq, i.e.,                               and             . 

, • - dimensional vector over Fq. 

– Encoding of an (n, k) RS code.

Message vector  

Message polynomial 

Codeword 

are the q - 1 nonzero elements of Fq. They are often called code 

locators. 
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– Encoding of an (n, k) RS code in a linear block code fashion

– Example 6.4: For a (7, 3) RS code that is defined in     , if the

message is                                            , 

the message polynomial will be                                , and

the codeword can be generated by

•

•
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– MDS property of RS codes d = n - k + 1

– Singleton bound for an (n, k) linear block code, d ≤ n - k + 1

– u(x) has at most k - 1 roots. Hence,     has at most k - 1 zeros and

– Parity-check matrix of an (n, k) RS code

← an n - k all zero vector 

§6.2 Reed-Solomon Codes
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– Insight of 

– Let                             ,  j = 0, 1, ···, n - 1, v = 1, 2, ···, n - k.

Entries of G can be denoted as [ G ]i,j = ( σj )i

Entries of HT can be denoted as [ HT ]j,v-1 = ( σj )v

Entries of G·HT is

Remark 1: v = 0 is illegitimate since 
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– Perceiving HT as in

– Perceiving codeword                                  as in

– implies

are roots of RS codeword polynomial c(x).

§6.2 Reed-Solomon Codes
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– An alternatively encoding

– Message polynomial 

– Codeword polynomial

– and deg(g(x)) = n - k

– Since                          are roots of c(x)

The  generator polynomial of an (n, k) RS code

– Systematic encoding 

– Example 6.5: For a (7, 3) RS code, its generator polynomial is

Given message vector                                              ,                    

the codeword can be generated by 

For systematic encoding,                                                                                           ,

and the codeword is
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– The channel:

– codeword polynomial

– error polynomial

– received word polynomial

– Let n - k = 2t,                        are roots of c(x)

– 2t syndromes can be determined as 

If                                 , r(x) is a valid codeword. Otherwise,              , error-correction 

is needed.

§6.3 Syndrome Based Decoding
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– If              , we assume there are ω errors with                                        .

– Let v = 1, 2, ··· ,2t

– For simplicity, let              , we can list the 2t syndromes by

– In the above non-linear equation group, there are 2ω unknowns                      ,

. It will be solvable if              . The number of correctable errors is

.

– Since                          , an exhaustive search solution will have a complexity of            .   

§6.3 Syndrome Based Decoding
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– In order to decode an RS code with a polynomial-time complexity, the decoding is   

decomposed into determining the error locations and error magnitudes, i.e., 

and                    , respectively.

– Error locator polynomial

are roots of the polynomial such that 

.

– Determine         by finding out                               , and its roots tell the error 
locations.

§6.3 Syndrome Based Decoding
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– How to determine                               ?

Since                                                                              

, for v = 1, 2, ···, 2t

– Error locator polynomial can be determined using the syndromes.
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– List all 

v = 1:

v = 2: 

v = 3: 

v = ω:

v = ω + 1:

v = ω + 2:

v = 2t:

§6.3 Syndrome Based Decoding
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Remark 2:

S0 is not one of the 

n - k syndromes.



– Solving the linear system in finding         has a complexity of           . It can be 

facilitated by the Berlekamp-Massey algorithm[2] whose complexity is            .

– The Berlekamp-Massey algorithm can be implemented using the Linear Feedback

Shift Register. Its pseudo program is the follows.

§6.3 Syndrome Based Decoding

( )x
3( )O 

2( )O 

The Berlekamp-Massey Algorithm

Input: Syndromes                      ;

Output: ;                     

Initialization: ;

1: Determine                               ;                         

2: If

3: ;

4: ;

5: If

6: Go to 1;

7: Else

8: Terminate the algorithm;

9: Else

10: Update                                    ;

11: If

12: ;

13: Else

14: ;                 ;                           ;            ;                      ;

15: ;          

16: ;

17: If

18: Go to 1;

19: Else

20: Terminate the algorithm;

1 2 2, , , tS S S

( )x
0, 0, 1, ( ) 1, ( )r z x T x x      

10 i r ii
S  

  
0 
( ) ( )T x xT x

1r r 
2r t

( ) ( ) ( )x x T x   

r z 

( ) ( )x x  

r z   z r  ( ) ( ) /T x x    ( ) ( )x x  

( ) ( )T x xT x
1r r 
2r t

[2] J. L. Massey, “Shift register synthesis and BCH decoding,” IEEE Trans. Inf. Theory, vol. 15(1), pp. 122-127, 1969.



– Example 6.6: Given the (7, 3) RS codeword generated in Example 6.5, after the 

channel, the received word is

.

With the received word, we can calculate syndromes as 

.

Running the above Berlekamp-Massey algorithm,we obtain

Therefore, the error locator polynomial is                             .  In    ,     and      are its  

roots. Therefore,     and     are corrupted.              

5 4 3 0 4 2 5( , , , , , , )r       
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– Determine the error magnitudes                    , so that the erroneous symbols can be 

corrected by 

,                   , ···,

– The syndromes                      , v = 1, 2, ···, 2t. Knowing                                                   

from the error location polynomial         , the above syndrome definition implies 

– Error magnitudes can be determined from the above set of linear equations.
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– The linear equation set can be efficiently solved using Forney's algorithm.

– Syndrome polynomial 

– Error evaluation polynomial (The key equation)

– Formal derivative of 

– Error magnitude      can be determined by                         .
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– Example 6.7: Continue from Example 6.6, 

The syndrome polynomial is                                                                               .

The error locator polynomial is                           . 

The error evaluation polynomial is                                                      . 

Formal derivative of          is                  .           

Error magnitudes are

,                                 

.   

As a result,                         ,                           .  
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– BM decoding performances over AWGN channel with BPSK.

§6.3 Syndrome Based Decoding

RS(127, 93)

RS(63, 47)

RS(255, 239) RS(15, 9)↑

RS(7, 3)↑

Uncoded↑


