Chapter 4 Channel Coding

* 4.1 An Introduction of Channel Coding
« 4.2 Block Codes

» 4.3 Cyclic Codes

* 4.4 The Parity-Check Matrix



S 4.1 An Introduction of Channel Coding

T
- Channel Coding: map a k-dimensional message vector to an n-dimensional codeword
vector, and k <n.
- Ifitis a binary channel code, there are at most 2Xn-dimensional codewords. The
redundancy of 2" — 2k enables the error-correction capability of the code.
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\\ There are 2Xn-dimensional codeword
vectors filling the space.

- Codebook ¢ collects all codewords with a cardinality of |¢Z] = 2k



S 4.1 An Introduction of Channel Coding

- Code rate (r): A ratio of code dimension (k) to code length (n), i.e., r = % The
redundancy is n — k (bits). It underpins the efficiency in data correction.
- Decoding:

— ! Channel Y,

Aim: with received vector y, we try to estimate ¢. Let ¢ denote the estimation
produced by the decoder. The decoding can be categorized into three cases:
Case I: ¢ = ¢, correct decoding.

Case Il: ¢ € ¢, but ¢ # ¢, decoding error.

Case I11: Decoder does not produce any outcome, decoding failure.



S 4.1 An Introduction of Channel Coding

Shannon’s Channel Coding Theorem: All rates below capacity C are achievable.
For every rate r < C, there exists channel codes of length n and dimension nr, such
that the maximum error probability P, — 0. Inversely, any such codes that realize

P, — 0 must have rate r < C.

- Shannon’s channel coding theorem demonstrates error free transmission is
possible by manipulating rate of the code according to the channel capacity. It is

defined in the mindset of binary transmission, e.g., BPSK.
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T
- The proof of Shannon’s Channel Coding Theorem can be enlightened by the use of

Jointly Typical Sequences.

- Jointly Typical Sequences: Given two sequences X (X": Xy, Xy, ..., X) and Y (Y™ yy, Vs,
..., Y), they are jointly typical if their empirical entropy is e-closed to the true entropy
as

< E.

n
1
_Ezlogp(xllyl) - H(X, Y)
i=1

Note, it is assumed that P(x;, y;) = %,Vi.
- If Xand Y are drawn i.i.d. according to i
P(x",y") = l_lp(xi'yi)'
then -

* Withn —= oo, Pr(Xand Y are jointly typical) — 1.

- IfZ (2" z,, 2, ...,2,) and Y are independent, i.e., P(z") P(y") = P(z", y"), Pr(Z and Y
are jointly typical) < 2 "((ZY)=3€),
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Proof of Shannon’s Channel Coding Theorem
- Generate a code of length n rate r that follows P(c™) = [[i=, P(c;).

- The codebook ¢ is
Ci(1) cx(1) - (D) \\
' ' They are particular

= c(w) c(w) - c (W) —
¢ 1(:) 2(:) ”f ) - codewords.
C Ci(2™) C(2M) e Ch(27M) -
2 n
P@ =] |] [P
w=1 i=1
- It is assumed that codewords are uniformly chosen for transmission, i.e.,

1
P(c"(w)) = l__l[P(ci(W)) = Jnr-
- With received vector y", the decoder estimates codeword c¢™(iw) such that

« ¢™(w) and y" are jointly typical sequences.
« There is no other codeword c™(v) such that ¢™(v) and y" are jointly typical sequences.
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I ——_—T
Continue The Proof

- The error probability is

P(e) = %0 P(D) P.(O)

Prob. of a particular code ¢ Error prob. of the code ¢

- F, (?) _ﬁzznr Pew(@)

7—

Error prob. of a particular codeword c™*(w) € ¢

21’11"

- P(e) = anZ@ZW 1P(¢)Pew(@)
- Due to symmetry of code construction, we know

ﬁz 1Pew(2) = Pe1(0)

21’17"

- Hence,
P(e) = £y P(C) Por(O)

— g1

Average (over all codebooks) error prob. of codeword c™(1)
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I ——_—T
Continue The Proof

- Let E,, denote the event that codeword c™(w) and y™ are jointly typical.

- P(e) = Pe,l
= Pr(Ef UE, UE3 U ---U Epnr)
< Pr(Ef) + X2, Pr(E,)
/
When n is sufficiently Since ¢c"(w),w = 2,3,:-,2™ and y™ are
large, Pr(Ef) <e. independent, Pr(E,,) < 2~ (" W)y™)-3€)

- P(e) < e+ ZZTLT n(I(Cn(W):yn)_36)
=4 (2™ — 1) . 27U W) Y)=3€)
— ¢ 4 23nep-n((c"(w)y™)-1)
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Continue The Proof
- If nis sufficiently large and r < I(c™(w), y™) — 3¢,
P(e) < 2¢,
the error probability can be arbitrarily small.

- Choose P(c;) to be the distribution that maximizes I(c™(w), y™) as

C = g%m)({l(c"(w),y")}, the above conclusion implies if r < C, the error
Ci

probability can be arbitrarily small. The proof is completed.
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- Achannel code is a specific capacity approaching operational strategy.

- Based on the encoder structure, channel codes can be categorized into block codes
and convolutional codes.

1. Block codes:

Enc.
k-symbol message _=ne n-symbol codeword.

« Encoder is memoryless and can be implemented with a
combinatorial logic circuit.

- Linear Block Code: If ¢; and ¢; belong to a block
code, ¢’ = a- ¢; + b - ¢; also belongs to the block code.
(a, b) € F, in which the block code is defined.

« Examples: Reed-Solomon code, algebraic-geometric
code, Hamming code, low-density parity-check (LDPC)
code.
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2. Convolutional codes:

k-symbol message %n-symbol codeword.
m out of k symbols

k-symbol message —> n-symbol codeword.

: m out of k symbols
k-symbol message n-symbol codeword.
« Encoder has a memory of order m and can be implemented
with a sequential logic circuit.

- Examples: Convolutional code, Trellis coded modulation,
Turbo code, Spatially-coupled LDPC code.
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[
Start with Error-Dectection:

The simplest class of block code is the parity-check code, which cannot correct errors but
can detect a single error.

For each binary message, a parity-check bit is added so that there are an even number of 1s
In each codeword.

If k = 3 then there are 8 possible messages. The eight codewords will be:

000 — 0000
001 — 0011

010 — 0101 When there are odd number of 1,
011 — 0110 the decoder (detector) knows error

100 —» 1001 has been introduced.
101 — 1010

110 — 1100
111 —» 1111



§ 4.2 Block Codes

B TG
- All block codes are defined by their codeword length n, their message length (or
dimension) k and their minimum Hamming distance d. A block code is often denoted
as an (n, k, d) code.

- Coderate: r = %

- Encoding of a block code can be written as:
c=m-G.
m — k-dimensional message vector.

G — a generator matrix of size k x n. It defines the legal space among all n-dimensional
vector.

¢ — n-dimensional codeword vector.
Linear block code:

51:77_11‘(;
52:77_12°G

(ﬁll‘l‘ﬁlz)‘G:(El"‘Ez)E@



§ 4.2 Block Codes

Hamming Distance
Codeword n = 11 bits long

I m = message bits
m mimimjimijmjm p = parity-check bits
Message Parlty

k = 7 bits long n —k = 4 bits long

The Hamming distance between any two codewords is the total number of positions
where the two codewords differ.

110|011 |1]0]1 The total number of positions where
these two codewords differ is 4.
I I I I Therefore, the Hamming distance is 4.

o(fof1(1(0|1212|0/(O0

Weight: Given a vector, its weight is the number of nonzero positions.

110|021 1/|0]1 The weight of the vector is 5.




§ 4.2 Block Codes

LSS
Repetition Codes

A repetition encoder takes a single message bit and gives a codeword that is the message bit
repeated n times, where n is an odd number

A message bit O will be encoded to give the codeword 0000...000
A message bit 1 will be encoded to give the codeword 1111...111

 This is the simplest type of error-correcting code as it only has two codewords
« We can easily see that it has a minimum Hamming distance d = n
* Henceitisan (n, 1, n) block code

my The generator matrix of the code is simply

T G=[1111..1]




§ 4.2 Block Codes

EE
Mayjority Decoding

To recover the transmitted codeword of a repetition code, a simple decoder known as a
Majority Decoder is used

1. The number of Os and 1s in the received word are counted
2.  If the number of Os > number of 1s (i.e., a majority) , then the message
bit was a 0. Else if the number of 1s > number of 0s, then the message bit was a 1

Example: Say our message bit was a 1 and it was encoded by the (5, 1, 5) repetition code
then the codeword will be ¢ = 11111.

 |If after transmission we receive the word r = 10011 then the number of 1s > number of Os
and so the majority decoder decides that the original message was 1

* However, if we receive the word r = 00011 then the number of Os > number of 1s and the
Majority decoder incorrectly decides that the original message was 0

.- -1
In general, a (n, 1, n) repetition code can correct up to nT errors.




§ 4.2 Block Codes

LSS
The Minimum Hamming Distance and Error Correction of a Block Code

Take the (3, 1, 3) repetition code with codewords 000 and 111

If we add one error, If we add two errors,
the possible received the possible received
words are words are
Codewords Codewords
000 111 000 111
001 110 011 100
010 101 110 001
100 011 101 010
A majority decoder will be able to Message recovered by the majority

recover the correct message. decoder will not be correct.



§ 4.2 Block Codes

The Minimum Hamming Distance and Error Correction Capability

The minimum Hamming distance: for any two codewords ¢; and ¢; picked up from
the codebook ¢, the minimum Hamming distance d is defined as:
d = min {dHam(Ci' C])}
(cpcp)ed g1
* Ingeneral, a block code can correct up to lTl errors, where |x] means that x is
rounded down to the nearest integer, e.g., |2.5] = 2.
* ADblock code can detect d — 1 errors.

A block code can
detectuptod -1
errors

A block code
can correct
received words
with up to d/2
errors.

»  Fora linear block code, d = min{weight (¢;), ¢; # 0}.



§ 4.2 Block Codes

The (7, 4, 3) Hamming Code The parity bits are calculated by ~ Message Codeword

_ 0000 0000 000
0001 0001 101

This code can correct 1 error.

Notice that only 16 of 128 possible p, =m, &m, ®m, 0010 0010 111
sequences of length 7 bits are used for  p;,=m,®m,®m, 0011 0011 010
transmission. 0100 0100 011
) : 0101 0101 110

m,| m,| my| m, The encodl_ng can be written as 0110 0110 100
\\ c=m-G, 0111 0111 001
§ and i ; 1000 1000 110

D D 1000110 1001 1001 011

| A A A G = 8%282%? 1010 1010 001
1011 1011 100

") Mol Ts| Tl Pu | P2 | Ps 0001101, 1100 1100 101
1101 1101 000

(7, 4, 3) Hamming Code This is a systematic encoding as 1110 1110 010
the message symbols appear in 1111 1111 111

the codeword.



§ 4.3 Cyclic Codes

« Acyclic code is a block code which has the property that cyclically shifting a
codeword results in another codeword

« Cyclic codes have the advantage that simple encoders can be constructed using shift
registers and low complexity decoding algorithms exist to decode them

« Acyclic code is constructed by first choosing a generator polynomial g(x) and
multiplying this by a message polynomial m(x) to generate a codeword polynomial
c(x) as

c(x) = m(x) - g(x)

m(x) = my + myx + -+ my_,x*71

n—=k

g(x) =go+g1x + -+ gn_ix

c(x) =cog+cyx+ -+ cpqx™t



§ 4.3 Cyclic Codes

LSS
Cyclic Hamming Code

» The (7, 4, 3) Hamming code is actually a cyclic code and can be constructed using the
generator polynomial g(x) = x3 + x% + 1.

* For example, to encode the binary message 1010 we first write it as the message polynomial
m(x) = x3 + x and then multiply it with g(x) modulo-2
c(x) =m(x)g(x)
=(x° +x)(x* +x* +1)
= x4+ x* ¢+ xt+x3+x [ +x%) mod 2 =2x*mod 2 = (]
=X+ X°+x" +X
This codeword polynomial correspondsto 1110010

« However, notice that the first four bits of this codeword are not the same as the original
message 1010
* This is an example of a non-systematic code



§ 4.3 Cyclic Codes

Systematic Cyclic Hamming Code

1 X X2 X3
O—O——
Switch 1
1 L@g L—é@ Feedback
__/I\
o AR v,
D & D D D ~D
B
A
Input message symbol sequence v O‘/'_'
Switch 2

1010 >
An encoder for the systematic (7, 4, 3) cyclic Hamming code

1.  For the first k = 4 message bits, switch 1 is closed and switch 2 is in position A

2. After the first 4 message bits have entered, switch 1 is open, switch 2 is in
position B and the contents of memory elements are read out giving the parity-check
bits



§ 4.3 Cyclic Codes

B TG
- This shift register encoding is equivalent to the systematic block code encoding.

Let the input message be m = (m,, m,, ms, my)

Input Registers (left to right)
m, m, 0 m,
m, m,®m, m, m,®m,
mj m,®m,@em, m,®m, m,®m,
m, m,®m;&m, m&m,dm;  m,BAm,Bm,

Hence, p; = m;@®m;bm,
P, = M @m,dmj,
p; = m®&m;®Em,



S 4.4 The Parity-Check Matrix

* We need to know when a codeword is valid.

« A parity-check matrix H is defined as the null space of the generator matrix
G, I.e. the inner product of the two matrices results in an all-zero matrix,
GHT = 0 (T is the transpose of the matrix)

*  When a codeword is multiplied by the parity-check matrix, it should result in
an all-zero vector, i.e.,

c-HT =m-G-HT =0.
A Syndrome vector.

« Ifc-HT =0, itimplies ¢ is a valid codeword.



S 4.4 The Parity-Check Matrix

If the generator matrix is of the form G = [I, | P], where I, is a (k X K) identity matrix
and P is a parity matrix, then the parity-check matrix is of the form H = [PT | I,,_].

Dual code property

Generator matrix

Dual code

Taking the (7, 4, 3) Hamming code

|4\ , /P

, O O
© O o
N
e =)

000 1i1 0 1

G and H define two orthogonal vector spaces (of the same length).

The parity-check
matrix is

—

pT

H=

Hkxn

Parity-check matrix

Code Grexn >< H(‘n—k)Xn

G(n—k)xn
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