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§4.1  An Introduction of Channel Coding

- Channel Coding: map a k-dimensional message vector to an n-dimensional codeword 

vector, and k < n.

- If it is a binary channel code, there are at most 2k n-dimensional codewords. The 

redundancy of 2n – 2k enables the error-correction capability of the code.

The n-dimensional binary space that can 

accommodate at most 2n binary vectors.

There are 2k n-dimensional codeword

vectors filling the space.

- Codebook Ȼ collects all codewords with a cardinality of |Ȼ| = 2k.



§4.1  An Introduction of Channel Coding

- Code rate (r): A ratio of code dimension (k) to code length (n), i.e., 𝑟 =
𝑘

𝑛
. The 

redundancy is n – k (bits). It underpins the efficiency in data correction.

- Decoding:

Channel
 𝑐  𝑦

Aim: with received vector  𝑦, we try to estimate  𝑐. Let   𝑐 denote the estimation 

produced by the decoder. The decoding can be categorized into three cases:

Case I:   𝑐 =  𝑐, correct decoding.

Case II:   𝑐 ∈ Ȼ, but   𝑐 ≠  𝑐, decoding error.

Case III: Decoder does not produce any outcome, decoding failure.



§4.1  An Introduction of Channel Coding

- Shannon’s channel coding theorem demonstrates error free transmission is 

possible by manipulating rate of the code according to the channel capacity. It is 

defined in the mindset of binary transmission, e.g., BPSK.

Shannon’s Channel Coding Theorem: All rates below capacity C are achievable. 

For every rate r < C, there exists channel codes of length n and dimension nr, such 

that the maximum error probability Pe → 0. Inversely, any such codes that realize 

Pe → 0 must have rate r < C.



§4.1  An Introduction of Channel Coding

- The proof of Shannon’s Channel Coding Theorem can be enlightened by the use of 

Jointly Typical Sequences.

- Jointly Typical Sequences: Given two sequences X (xn: x1, x2, ..., xn) and Y (yn: y1, y2, 

..., yn), they are jointly typical if their empirical entropy is 𝜖-closed to the true entropy 

as

−
1

𝑛
 

𝑖=1

𝑛

log 𝑃 𝑥𝑖 , 𝑦𝑖 − 𝐻(𝑋, 𝑌) < 𝜖.

Note, it is assumed that 𝑃 𝑥𝑖 , 𝑦𝑖 =
1

𝑛
, ∀𝑖.

- If X and Y are drawn i.i.d. according to

𝑃 𝑥𝑛, 𝑦𝑛 =  

𝑖=1

𝑛

𝑃(𝑥𝑖 , 𝑦𝑖) ,

then

• With 𝑛 → ∞, Pr(X and Y are jointly typical) → 1.

• If Z (zn: z1, z2, ..., zn) and Y are independent, i.e., P(zn) P(yn) = P(zn, yn), Pr(Z and Y

are jointly typical) ≤ 2−𝑛(𝐼 𝑍,𝑌 −3𝜖).



§4.1  An Introduction of Channel Coding

Proof of Shannon’s Channel Coding Theorem

- Generate a code of length n rate r that follows 𝑃 𝑐𝑛 =  𝑖=1
𝑛 𝑃(𝑐𝑖).

- The codebook Ȼ is

c1(1)      c2(1)     ⋯ cn(1)

c1(w)     c2(w)     ⋯ cn(w)

c1(2
nr)   c2(2

nr)    ⋯ cn(2
nr)

⋮ ⋮ ⋯ ⋮

⋮ ⋮ ⋯ ⋮
Ȼ = 

𝑃 Ȼ =  

𝑤=1

2𝑛𝑟

 

𝑖=1

𝑛

𝑃(𝑐𝑖(𝑤))

- It is assumed that codewords are uniformly chosen for transmission, i.e.,

𝑃 𝑐𝑛 𝑤 =  

𝑖=1

𝑛

𝑃(𝑐𝑖(𝑤)) =
1

2𝑛𝑟
.

- With received vector yn, the decoder estimates codeword 𝑐𝑛  𝑤 such that 

• 𝑐𝑛  𝑤 and yn are jointly typical sequences.

• There is no other codeword 𝑐𝑛 𝑣 such that 𝑐𝑛 𝑣 and yn are jointly typical sequences. 

They are particular 

codewords.



§4.1  An Introduction of Channel Coding

Continue The Proof

- The error probability is
𝑃 𝜀 =  Ȼ 𝑃 Ȼ 𝑃𝑒(Ȼ)

- 𝑃𝑒 Ȼ =
1

2𝑛𝑟
 𝑤=1

2𝑛𝑟
𝑃𝑒,𝑤(Ȼ)

Prob. of a particular code Ȼ Error prob. of the code Ȼ

Error prob. of a particular codeword 𝑐𝑛(𝑤) ∈ Ȼ

- 𝑃 𝜀 =
1

2𝑛𝑟
 

Ȼ
 𝑤=1

2𝑛𝑟
𝑃 Ȼ 𝑃𝑒,𝑤(Ȼ)

- Due to symmetry of code construction, we know
1

2𝑛𝑟
 𝑤=1

2𝑛𝑟
𝑃𝑒,𝑤(Ȼ) = 𝑃𝑒,1(Ȼ)

- Hence,
𝑃 𝜀 =  

Ȼ 𝑃 Ȼ 𝑃𝑒,1(Ȼ)

= 𝑃𝑒,1

Average (over all codebooks) error prob. of codeword 𝑐𝑛(1)



§4.1  An Introduction of Channel Coding

Continue The Proof

- Let 𝐸𝑤 denote the event that codeword 𝑐𝑛(𝑤) and 𝑦𝑛 are jointly typical.

- 𝑃 𝜀 = 𝑃𝑒,1

= Pr(𝐸1
𝐶 ∪ 𝐸2 ∪ 𝐸3 ∪ ⋯ ∪ 𝐸2𝑛𝑟)

≤ Pr 𝐸1
𝐶 +  𝑤=2

2𝑛𝑟
Pr(𝐸𝑤)

When n is sufficiently 

large, Pr 𝐸1
𝐶 ≤ 𝜖.

Since 𝑐𝑛 𝑤 , 𝑤 = 2,3, ⋯ , 2𝑛𝑟 and 𝑦𝑛 are 

independent, Pr(𝐸𝑤) ≤ 2−𝑛(𝐼 𝑐𝑛 𝑤 ,𝑦𝑛 −3𝜖).

- 𝑃 𝜀 ≤ 𝜖 +  𝑤=2
2𝑛𝑟

2−𝑛(𝐼 𝑐𝑛 𝑤 ,𝑦𝑛 −3𝜖)

= 𝜖 + (2𝑛𝑟 − 1) ∙ 2−𝑛(𝐼 𝑐𝑛 𝑤 ,𝑦𝑛 −3𝜖)

= 𝜖 + 23𝑛𝜖2−𝑛(𝐼 𝑐𝑛 𝑤 ,𝑦𝑛 −𝑟)



§4.1  An Introduction of Channel Coding

Continue The Proof

- If n is sufficiently large and 𝑟 < 𝐼 𝑐𝑛 𝑤 , 𝑦𝑛 − 3𝜖,

𝑃 𝜀 ≤ 2𝜖,

the error probability can be arbitrarily small.

- Choose 𝑃(𝑐𝑖) to be the distribution that maximizes 𝐼 𝑐𝑛 𝑤 , 𝑦𝑛 as                 

𝐶 = max
𝑃(𝑐𝑖)

𝐼 𝑐𝑛 𝑤 , 𝑦𝑛 , the above conclusion implies if 𝑟 < 𝐶, the error 

probability can be arbitrarily small. The proof is completed.



§4.1  An Introduction of Channel Coding

- A channel code is a specific capacity approaching operational strategy.

- Based on the encoder structure, channel codes can be categorized into block codes 

and convolutional codes.

1. Block codes:

k-symbol message                n-symbol codeword.
Enc.

• Encoder is memoryless and can be implemented with a 

combinatorial logic circuit.

• Linear Block Code: If  𝑐𝑖 and  𝑐𝑗 belong to a block 

code,  𝑐′ = 𝑎 ∙  𝑐𝑖 + 𝑏 ∙  𝑐𝑗 also belongs to the block code. 

(𝑎, 𝑏) ∈ F𝑞 in which the block code is defined.

• Examples: Reed-Solomon code, algebraic-geometric 

code, Hamming code, low-density parity-check (LDPC) 

code.



§4.1  An Introduction of Channel Coding

Enc.

• Encoder has a memory of order m and can be implemented 

with a sequential logic circuit.

• Examples: Convolutional code, Trellis coded modulation, 

Turbo code, Spatially-coupled LDPC code.



The simplest class of block code is the parity-check code, which cannot correct errors but 

can detect a single error. 

For each binary message, a parity-check bit is added so that there are an even number of 1s 

in each codeword.

000  0000

001  0011

010  0101

011  0110

100  1001

101  1010

110  1100

111  1111

If k = 3 then there are 8 possible messages. The eight codewords will be:

When there are odd number of 1, 

the decoder (detector) knows error 

has been introduced.

§4.1  An Introduction of Channel Coding

Start with Error-Dectection:



§4.2  Block Codes

- All block codes are defined by their codeword length n, their message length (or 

dimension) k and their minimum Hamming distance d. A block code is often denoted 

as an (n, k, d) code.

- Code rate: 𝑟 =
𝑘

𝑛
.

- Encoding of a block code can be written as:

 𝑐 =  𝑚 ∙ 𝐆.

 𝑚 — k-dimensional message vector.

𝐆 — a generator matrix of size k × n. It defines the legal space among all n-dimensional 

vector.

 𝑐 — n-dimensional codeword vector.

Linear block code:

 𝑐1 =  𝑚1 ∙ 𝐆

 𝑐2 =  𝑚2 ∙ 𝐆

(  𝑚1 +  𝑚2) ∙ 𝐆 = (  𝑐1 +  𝑐2) ∈ Ȼ



m m m m m m p p p pm

Message

k = 7 bits long

Parity

n – k = 4 bits long

Codeword n = 11 bits long

m = message bits

p = parity-check bits

The Hamming distance between any two codewords is the total number of positions

where the two codewords differ.

1 0 0 1 1 1 0 1

0 0 1 1 0 1 0 0

The total number of positions where

these two codewords differ is 4.

Therefore, the Hamming distance is 4.

§4.2  Block Codes

Hamming Distance

Weight: Given a vector, its weight is the number of nonzero positions.

1 0 0 1 1 1 0 1 The weight of the vector is 5.



m1

c1 c2 c3 cn

A repetition encoder takes a single message bit and gives a codeword that is the message bit

repeated n times, where n is an odd number

A message bit 0 will be encoded to give the codeword 0000...000

A message bit 1 will be encoded to give the codeword 1111...111

• This is the simplest type of error-correcting code as it only has two codewords

• We can easily see that it has a minimum Hamming distance d = n

• Hence it is an (n, 1, n) block code

The generator matrix of the code is simply

G = [1 1 1 1 ... 1]

Repetition Codes

§4.2  Block Codes



To recover the transmitted codeword of a repetition code, a simple decoder known as a

Majority Decoder is used

1. The number of 0s and 1s in the received word are counted

2. If the number of 0s > number of 1s (i.e., a majority) , then the message 

bit was a 0. Else if the number of 1s > number of 0s, then the message bit was a 1 

Example: Say our message bit was a 1 and it was encoded by the (5, 1, 5) repetition code

then the codeword will be c = 11111.

• If after transmission we receive the word r = 10011 then the number of 1s > number of 0s

and so the majority decoder decides that the original message was 1

• However, if we receive the word r = 00011 then the number of 0s > number of 1s and the

Majority decoder incorrectly decides that the original message was 0

In general, a (n, 1, n) repetition code can correct up to 
𝑛−1

2
errors.

§4.2  Block Codes

Majority Decoding



Take the (3, 1, 3) repetition code with codewords 000 and 111

Codewords

000 111

001 110

010 101

100 011

Codewords

000 111

011 100

110 001

101 010

If we add one error, 

the possible received

words are

If we add two errors,

the possible received

words are

A majority decoder will be able to 

recover the correct message.

Message recovered by the majority 

decoder will not be correct.

§4.2  Block Codes

The Minimum Hamming Distance and Error Correction of a Block Code



• In general, a block code can correct up to 
𝑑−1

2
errors, where 𝑥 means that x is 

rounded down to the nearest integer, e.g.,  2.5 = 2.

• A block code can detect d – 1 errors.

A block code

can correct

received words

with up to d/2 

errors.

A block code can

detect up to d – 1 

errors

§4.2  Block Codes

The Minimum Hamming Distance and Error Correction Capability

The minimum Hamming distance: for any two codewords 𝑐𝑖 and 𝑐𝑗 picked up from 

the codebook Ȼ, the minimum Hamming distance d is defined as:

𝑑 = min
(𝑐𝑖,𝑐𝑗)∈Ȼ

𝑑Ham(𝑐𝑖 , 𝑐𝑗) .

• For a linear block code, 𝑑 = min{weight  𝑐𝑗 ,  𝑐𝑗 ≠ 0}.



Notice that only 16 of 128 possible 

sequences of length 7 bits are used for 

transmission.

CodewordThe parity bits are calculated by

(7, 4, 3) Hamming Code

This code can correct 1 error. 1 1 3 4

2 1 2 3

3 2 3 4

p = m m m

p = m m m

p = m m m

 

 

 

Message

This is a systematic encoding as 

the message symbols appear in 

the codeword.

The (7, 4, 3) Hamming Code

§4.2  Block Codes

11111111111

01011101110

00011011101

10111001100

10010111011

00110101010

01110011001

11010001000

00101110111

10001100110

11001010101

01101000100

01000110011

10100100010

10100010001

00000000000

111

m1 m2 m4m3

m1 m2 m4m3 p1 p2 p3

The encoding can be written as

 𝑐 =  𝑚 ∙ 𝐆,

and

𝐆 =

1 0 0 0 1 1 0
0 1 0 0 0 1 1
0 0 1 0 1 1 1
0 0 0 1 1 0 1

.



• A cyclic code is a block code which has the property that cyclically shifting a 

codeword results in another codeword 

• Cyclic codes have the advantage that simple encoders can be constructed using shift 

registers and low complexity decoding algorithms exist to decode them 

• A cyclic code is constructed by first choosing a generator polynomial g(x) and 

multiplying this by a message polynomial m(x) to generate a codeword polynomial 

c(x) as

𝑐 𝑥 = 𝑚(𝑥) ∙ 𝑔(𝑥)

𝑚 𝑥 = 𝑚0 + 𝑚1𝑥 + ⋯ + 𝑚𝑘−1𝑥𝑘−1

𝑔 𝑥 = 𝑔0 + 𝑔1𝑥 + ⋯ + 𝑔𝑛−𝑘𝑥𝑛−𝑘

𝑐 𝑥 = 𝑐0 + 𝑐1𝑥 + ⋯ + 𝑐𝑛−1𝑥𝑛−1

§4.3  Cyclic Codes



• The (7, 4, 3) Hamming code is actually a cyclic code and can be constructed using the 

generator polynomial g(x) = x3 + x2 + 1.

• For example, to encode the binary message 1010 we first write it as the message polynomial

m(x) = x3 + x and then multiply it with g(x) modulo-2

xxxx

xxxxxx

xxxx

xgxmxc









456

34356

233 )1)((

)()()(

This codeword polynomial corresponds to 1 1 1 0 0 1 0 

• However, notice that the first four bits of this codeword are not the same as the original 

message 1010

• This is an example of a non-systematic code

[(x3 + x3) mod 2 = 2x3 mod 2 = 0]

§4.3  Cyclic Codes

Cyclic Hamming Code



Switch 1

Switch 2

x x21

 

x3

Feedback

Input message symbol sequence



1010

An encoder for the systematic (7, 4, 3) cyclic Hamming code

1. For the first k = 4 message bits, switch 1 is closed and switch 2 is in position A

2. After the first 4 message bits have entered, switch 1 is open, switch 2 is in 

position B and the contents of memory elements are read out giving the parity-check

bits

A

B

D D D

§4.3  Cyclic Codes

Systematic Cyclic Hamming Code



§4.3  Cyclic Codes

- This shift register encoding is equivalent to the systematic block code encoding.

Let the input message be  𝑚 = (𝑚1, 𝑚2, 𝑚3, 𝑚4)

Hence, p1 = m1⨁m3⨁m4

p2 = m1⨁m2⨁m3

p3 = m2⨁m3⨁m4

Input Registers (left to right)

m1 m1 0 m1

m2 m1⨁m2 m1 m1⨁m2

m3 m1⨁m2⨁m3 m1⨁m2 m2⨁m3

m4 m2⨁m3⨁m4 m1⨁m2⨁m3 m1⨁m3⨁m4



§4.4  The Parity-Check Matrix

• We need to know when a codeword is valid.

• A parity-check matrix H is defined as the null space of the generator matrix 

G, i.e. the inner product of the two matrices results in an all-zero matrix, 

GHT = 0 (T is the transpose of the matrix)

• When a codeword is multiplied by the parity-check matrix, it should result in 

an all-zero vector, i.e.,

 𝑐 ∙ 𝐇𝑇 =  𝑚 ∙ 𝐆 ∙ 𝐇𝑇 = 0.

• If   𝑐 ∙ 𝐇𝑇 = 0, it implies   𝑐 is a valid codeword.

Syndrome vector.



• If the generator matrix is of the form 𝐆 = 𝐈𝑘 𝐏], where Ik is a (k × k) identity matrix 

and P is a parity matrix, then the parity-check matrix is of the form 𝐇 = 𝐏𝑇 𝐈𝒏−𝑘].

• Dual code property

Taking the (7, 4, 3) Hamming code





















1011000

1110100

1100010

0110001

G

I4
P



















1001110

0100111

0011101

H

PT
In-k = I7-4 = I3

The parity-check

matrix is

§4.4  The Parity-Check Matrix

Code

Dual code

Generator matrix

𝐆𝑘×𝑛

𝐆(𝑛−𝑘)×𝑛

Parity-check matrix

𝐇(𝑛−𝑘)×𝑛

𝐇𝑘×𝑛

• G and H define two orthogonal vector spaces (of the same length).
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