

- 3.1 An Introduction to Source Coding
- 3.2 Optimal Source Codes
- 3.3 Shannon-Fano Code
- 3.4 Huffman Code

- Entropy (in bits per symbol) implies in average the number of bits that is required to represent a source symbol. This indicates a mapping between source symbol and bits.
- Source coding can be seen as a mapping mechanism between symbols and bits.
- For a string of symbols, how can we use less bits to represent them?
 Intuition: Use short description to represent the most frequently occurred symbols.

Use necessarily long description to represent the less frequently occurred symbols.

Or can that be a shorter string of bits?

Definition: Let x denote a source symbol and C(x) denote a source codeword of x.
 If the length of C(x) is l(x) (in bits) and x happens with a probability of p(x),
 then the expected length L(C) of source code C is:

 $L(C) = \sum_{x} p(x) \cdot l(x).$

• It implies the average number of bits that is required to represent a symbol in source coding scheme *C*.

Let us look at the following example:

Example 3.1 Let *X* be a random variable with the following distributions:

 $X \in \{1, 2, 3, 4\}$ $P(X = 1) = \frac{1}{2}, P(X = 2) = \frac{1}{4}, P(X = 3) = \frac{1}{8}, P(X = 4) = \frac{1}{8}$ Entropy of X is:

 $H(X) = \sum_{X \in \{1,2,3,4\}} P(X) \log_2 [P(X)]^{-1}$ = 1.75 bits/sym.

Source Coding 1 (*C*):

$$C(1) = 00, C(2) = 01, C(3) = 10, C(4) = 12$$
$$L(C) = \frac{1}{2} \cdot 2 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 2 + \frac{1}{8} \cdot 2 = 2 \text{ bits.}$$

On average, we use 2 bits to denote a symbol.

$$\Box L(C) > H(X).$$

Source Coding 2 (C^*):

$$C^{*}(1) = 0, C^{*}(2) = 10, C^{*}(3) = 110, C^{*}(4) = 112$$
$$L(C^{*}) = \frac{1}{2} \cdot 1 + \frac{1}{4} \cdot 2 + \frac{1}{8} \cdot 3 + \frac{1}{8} \cdot 3 = 1.75 \text{ bits}$$

On average, we use 1.75 bits to denote a symbol. $\Box \to L(C^*) = H(X).$

Remark: C^* should be a better source coding scheme than C.

Theorem 3.1 Shannon's Source Coding Theorem Given a memoryless source *X* whose symbols are chosen from the alphabet $\{x_1, x_2, ..., x_m\}$ with each alphabet symbol probabilities of $P(x_1) = p_1, P(x_2) = p_2, ..., P(x_m) =$ p_m , and $\sum_{i=1}^m p_i = 1$. If the source is of length *n*, when $n \to \infty$, it can be encoded with H(X) bits per symbol. The coded sequence will be of nH(X) bits.

Note: $H(X) = -\sum_{i=1}^{m} p_i \log_2 p_i$ bits/sym.

Important features of source coding:

1. Unambiguous representation of source symbols (Non-singularity).

Problem: When we try to decode '010', it can be 2 or 14 or 31. <u>The decoding is NOT unique</u>.

2. Uniquely decodable

Problem: When we try to decode '001011000', we have $2 1 < \begin{array}{c} 3 \\ 4 \\ 2 \end{array}$

We will have to wait and see the end of the bit string. <u>The decoding</u> <u>is NOT instantaneous</u>.

3. Instantaneous code

Definition: For an instantaneous code, no codeword is a prefix of any other codeword.

X	$\mathcal{C}(X)$
1	0
2	10
3	110
4	111

Observation: If you try to decode '111110101100111', you would notice that the puncturing positions are determined by the instance you have reached a source codeword. The decoding is instantaneous, and the decoding output is '4 3 2 3 1 4 '.

- How can we find an optimal source code?
- An optimal source code :
 - (1) Instantaneous code (prefix code)
 - (2) Smallest expected length $L = \sum p_i l_i$

Theorem 3.2 Kraft Inequality For an instantaneous code over an alphabet of size D (*e.g.*, D = 2 for binary codes), the codeword lengths l_1, l_2, \dots, l_m must satisfy

$$\sum_i D^{-l_i} \le 1.$$

Remark: An instantaneous code $\rightleftharpoons \sum_i D^{-l_i} \leq 1$

Example 3.2 For the source code C^* of Example 3.1.

$$2^{-1} + 2^{-2} + 2^{-3} + 2^{-3} = 1.$$

- Proof: The above tree illustrates the assignment of source codeword symbols in a binary way when D = 2. A complete solid path represents a source codeword.
 - Based on property of the instantaneous code, if the first source codeword goes the '0' path, the next source codeword should not go the '0' path. Such a source codeword symbol assignment process repeats as the number of data symbols increases.

At level l_{max} of the tree (source codeword length is l_{max}), there are at most D<sup>l_{max} codewords. Similarly, at level l_i of the tree, there are at most D^{l_i} codewords. All the codewords at level l_i have at most D<sup>l_{max}-l_i descendants at level l_{max}. Considering all levels l_i, the total number of descendants should not be greater than the maximal number of nodes at level l_{max} as
</sup></sup>

$$\sum_{i} D^{l_{\max}-l_{i}} \leq D^{l_{\max}}$$

$$\downarrow$$

$$\sum_{i} D^{-l_{i}} \leq 1.$$

- The expected length of this tree is

$$\mathbb{E}[l] = \sum_i l_i p_i$$

- l_i : length of a source codeword for symbol x_i

 p_i : probability of symbol x_i

Expected length of the tree is the expected length of the source code.

- The tree represents an instantaneous source code.

Finding the smallest expected length L becomes minimize: $L = \sum_{i} p_{i} l_{i}$ subject to $\sum_{i} D^{-l_i} \leq 1$. The constrained minimization problem can be written as minimize: $J = \sum_{i} p_{i} l_{i} + \lambda(\sum_{i} D^{-l_{i}})$ Lagrange Multipliers Calculus (*): $\frac{\partial J}{\partial l_i} = p_i - \lambda D^{-l_i} \log_e D$. To enable $\frac{\partial J}{\partial l_i} = 0$, we need $D^{-l_i} = \frac{p_i}{\lambda \log_2 D} \,.$ To satisfy the Kraft Inequality, we have $\lambda = \frac{1}{\log_{e} D}$. Hence, $p_i = D^{-l_i} .$

To minimized L, we need $l_i^* = -\log_D p_i$.

- With
$$l_i^* = -\log_D P_i$$
, we have
 $L = \sum_i p_i l_i^* = -\sum_i p_i \log_D p_i = \frac{H_D(X)}{\sqrt{2}}$
Entropy of the source symbols

Theorem 3.3 Lower Bound of the Expected Length The expected length *L* of an instantaneous *D*-ary code for a random variable *X* is lower bounded by $L \ge H_D(X)$.

Remark: since l_i can be only be an integer, $L = H_D(X)$, if $l_i = -\log_D p_i$. $L > H_D(X)$, if $l_i = [-\log_D p_i]$.

Corollary 3.4 Upper Bound of the Expected Length The expected length *L* of an instantaneous *D*-ary code for a random variable *X* is upper bounded by $L < H_D(X) + 1$.

Proof: Since $-\log_D p_i \le l_i < -\log_D p_i + 1$. By multiplying p_i to the above inequality and performing summation over *i* as

$$\sum_{i} -p_i \log p_i \le \sum_{i} p_i l_i < \sum_{i} -p_i \log p_i + \sum_{i} p_i$$
$$H_D(X) \le L < H_D(X) + 1.$$

§ 3.2 Shannon-Fano Code

- Given a source that contains symbols $x_1, x_2, x_3, ..., x_m$ with probabilities of $p_1, p_2, p_3, ..., p_m$, respectively.
- Determine the source codeword length for symbol x_i as

$$l_i = \left[\log_2 \frac{1}{p_i}\right]$$
 bits.

- Further determine $l_{\max} = \max\{l_i, \forall i\}$.
- Shannon-Fano code construction:

Step 1: Construct a binary tree of depth l_{max} .

Step 2: Choose a node of depth l_i and delete its following paths and nodes. The path from root to the node represents the source codeword for symbol x_i .

§ 3.2 Shannon-Fano Code

- **Example 3.3** Given a source with symbols x_1, x_2, x_3, x_4 , they occur with probabilities of $p_1 = 0.4$, $p_2 = 0.3$, $p_3 = 0.2$, $p_4 = 0.1$, respectively. Construct its Shannon-Fano code.

We can determine

$$l_1 = \left[\log_2 \frac{1}{p_1}\right] = 2, l_2 = \left[\log_2 \frac{1}{p_2}\right] = 2, l_3 = \left[\log_2 \frac{1}{p_3}\right] = 3, l_1 = \left[\log_2 \frac{1}{p_4}\right] = 4,$$

and $l_{\text{max}} = 4$.

Construct a binary tree of depth 4.

The source codewords are

$$x_{1}: 0 0$$

$$x_{2}: 0 1$$

$$x_{3}: 1 0 0$$

$$x_{4}: 1 0 1 0.$$

- Given a source that contains symbols x₁, x₂, x₃, ..., x_m with probabilities of p₁, p₂, p₃, ..., p_m, respectively.
- Huffman code construction:

Step 1: Merge the 2 smallest symbol probabilities;

Step 2: Assign the 2 corresponding symbols with 0 and 1, then go back to Step 1;
Repeat the above process until two probabilities are merged into a
probability of 1.

- Huffman code is the shortest prefix code, i.e., an optimal code.

Example 3.4 Consider a random variable set of $X = \{1, 2, 3, 4, 5\}$. They have probabilities of P(X = 1) = 0.25, P(X = 2) = 0.25, P(X = 3) = 0.2, P(X = 4) = 0.15, P(X = 5) = 0.15. Construct a Huffman code to represent variable *X*.

Codeword	X	P(X)
	1	0.250.3
	2	0.25 -0.25
	3	0.20.25
0	4	0.15 0.2
1	5	0.15

Codeword	X	P(X)
0 1	1	0.25 0.3 0.45 0.55 -71
1 0	2	0.25 0.25 0.3 0.45
1 1	3	0.2 0.25 0.25
0 0 0	4	0.15 0.2
0 0 1	5	0.15

Validations:

$$l(1) = 2, l(2) = 2, l(3) = 2, l(4) = 3, l(5) = 3$$

 $L = \sum_{X} l(X) \cdot P(X) = 2.3$ bits/symbol
 $H_2(X) = -\sum_{X} P(X) \log_2 P(X) = 2.3$ bits/symbol.

 $L \ge H_2(X).$

So now, let us look back at the problem proposed at the beginning. How to represent the source vector $\{1 \ 2 \ 4 \ 3 \ 1 \ 4 \ 4\}$?

Codeword	X	P(X)
0 1	1	0.25 - 0.25 - 0.5 - 1
0 0 0	2	0.125 0.25 0.5 10.125 0.25 0.5 1
0 0 1	3	0.125 0.5
1	4	0.5

Question: How if the source vector becomes {1 2 4 3 4 4 2 1}?

Remark: the Huffman code and its expected length depends on the source vector, i.e., entropy of the source.

- Huffman code can also be defined as a *D*-ary code.
- A *D*-ary Huffman code can be similarly constructed following the binary construction.
 - **Step 1:** Merge the *D* smallest symbol probabilities;
 - **Step 2:** Assign the corresponding symbols with 0, 1, ..., D 1, then go back to **Step 1**;

Repeat the above process until *D* probabilities are merged into a probability of 1.

Example 3.5 Consider a random variable set of $X = \{1, 2, 3, 4, 5, 6\}$. They have probabilities of P(X = 1) = 0.25, P(X = 2) = 0.25, P(X = 3) = 0.2, P(X = 4) = 0.1, P(X = 5) = 0.1, P(X = 6) = 0.1. Construct a ternary $\{0, 1, 2\}$ Huffman code.

Codeword	X	P(X)
0	1	0.25 - 0.25 - 0.25 - 1
1	2	0.25 - 0.25 - 0.25
2 0	3	0.2 - 0.2 - 0.5 /
2 1	4	0.1 - 0.1
2 2 0	5	0.1 - 0.2
2 2 1	6	0.1
2 2 2	Dummy	0 /

Note: A dummy symbol is created such that 3 probabilities can merge into a probability of 1 in the end.

Properties on an optimal *D***-ary source code (Huffman code)**

- (1) If $p_j > p_k$, then $l_j \le l_k$;
- (2) The *D* longest codewords have the same length;

(3) The *D* longest codewords differ only in the last symbol and correspond to the *D* least likely source symbols.

Theorem 3.5 Optimal Source Code A source code (C^*) is optimal if giving any other source code C', we have $L(C^*) \le L(C')$.

Note: Huffman code is optimal.

References:

- [1] Elements of Information Theory, by T. Cover and J. Thomas.
- [2] Scriptum for the lectures, Applied Information Theory, by M. Bossert.