Chapter 3 Source Coding

» 3.1 An Introduction to Source Coding
3.2 Optimal Source Codes

3.3 Shannon-Fano Code

» 3.4 Huffman Code

% 3.1 An Introduction to Source Coding

* Entropy (in bits per symbol) implies in average the number of bits that is
required to represent a source symbol. This indicates a mapping between
source symbol and bits.

« Source coding can be seen as a mapping mechanism between symbols and bits.

 For astring of symbols, how can we use less bits to represent them?
Intuition: Use short description to represent the most frequently occurred

symbols.
Use necessarily long description to represent the less frequently

occurred symbols.

% 3.1 An Introduction to Source Coding

S
Symbols: 1 2 4 4 3 1 4 4

4

bits: 00 01 11 11 10 00 11 11

4

Or can that be a shorter string of bits?

« Definition: Let x denote a source symbol and C(x) denote a source codeword of x.
If the length of C(x) is I(x) (in bits) and x happens with a probability of p(x),
then the expected length L(C) of source code C is:

L(C) = Xxp(x) - 1(x).

* It implies the average number of bits that is required to represent a symbol in

source coding scheme C.

% 3.1 An Introduction to Source Coding

]
Let us look at the following example:

Example 3.1 Let X be a random variable with the following distributions:
X €e{l, 2, 3, 4}

P(X=1)=§,P(X=2)=§,P(X=3)=%,p(xz4)=%

Entropy of X is:

H(X) = Xxeq1,2,3,4) P(X) log,[P(X)]~*
= 1.75 bits/sym.

% 3.1 An Introduction to Source Coding

Source Coding 1 (C):
C(1)=00,C(2)=01,c3)=10,C(4) =11
L(C) =§-2+i-2+§-2+%-2 = 2 bits.
On average, we use 2 bits to denote a symbol.
> L(C) > H(X).
Source Coding 2 (C*):
c*(1)=0,C*(2) =10,Cc*(3) =110,C*(4) = 111
L(C) =2-147-2 +§.3+%-3 = 1.75 bits

On average, we use 1.75 bits to denote a symbol.

) L(C*) = HX).

Remark: C* should be a better source coding scheme than C.

% 3.1 An Introduction to Source Coding

Theorem 3.1 Shannon’s Source Coding Theorem Given a memoryless
source X whose symbols are chosen from the alphabet {x;, x,, ..., x,,;} with
each alphabet symbol probabilities of P(x;) = p1, P(x5) = py, ..., P(x,,) =
Pm, and Y1t p; = 1. If the source is of length n, when n — oo, it can be

encoded with H(X) bits per symbol. The coded sequence will be of nH(X) bits.

Note: H(X) = — X1, p;log,p; bits/sym.

% 3.1 An Introduction to Source Coding

Important features of source coding:
1. Unambiguous representation of source symbols (Non-singularity).

X C(X)
1 0
2 010
3 01
4 10

2. Uniquely decodable

X C(X)
1 10
2 00
3 11
4 110

Problem: When we try to decode
‘010, it can be 2 or 14
or 31.

The decoding is NOT unique.

Problem: When we try to decode
‘001011000°, we have
32...
21 49
We will have to wait and see the
end of the bit string. The decoding
IS NOT instantaneous.

% 3.1 An Introduction to Source Coding

3. Instantaneous code

Definition: For an instantaneous code, no codeword is a prefix of
any other codeword.

X C(X)
1 0

2 10
3 110
4 111

Observation: If you try to decode ‘111110101100111°,
you would notice that the puncturing positions are
determined by the instance you have reached a source
codeword. The decoding is instantaneous, and the
decoding outputis ‘432314°.

§ 3.2 Optimal Source Codes

- How can we find an optimal source code?
- An optimal source code :
(1) Instantaneous code (prefix code)
(2) Smallest expected length L =), p;l;

Theorem 3.2 Kraft Inequality For an instantaneous code over an alphabet of
size D (e.g., D = 2 for binary codes), the codeword lengths [, L5, -+, L,,, must
satisfy

>.D7h<1.

Remark: An instantaneous code = ;D% < 1

Example 3.2 For the source code C* of Example 3.1.

2714272 42734273 =1,

§ 3.2 Optimal Source Codes

Proof:

The above tree illustrates the assignment of source codeword symbols
in a binary way when D = 2. A complete solid path represents a source
codeword.

Based on property of the instantaneous code, if the first source
codeword goes the ‘0’ path, the next source codeword should not go
the ‘0’ path. Such a source codeword symbol assignment process

repeats as the number of data symbols increases.

§ 3.2 Optimal Source Codes

Root 0X <]
1 < =
1 O<
1
- Atlevel |, of the tree (source codeword length is | ..), there are at most D!max

codewords. Similarly, at level I. of the tree, there are at most D' codewords. All
the codewords at level . have at most D'max~l descendants at level | ...
Considering all levels [;, the total number of descendants should not be greater

than the maximal number of nodes at level |, as

Z Dlmax—li < plmax
| |

l
ZD—li <1.
i

§ 3.2 Optimal Source Codes

0 <L -
Root< Q<X
1 < Q-
T

- The expected length of this tree is
E[l] = X; Lip;
- |2 length of a source codeword for symbol x;
p;: probability of symbol x;
Expected length of the tree is the expected length of the source code.

- The tree represents an instantaneous source code.

§ 3.2 Optimal Source Codes

- Finding the smallest expected length L becomes
minimize: L =), p;l;
subjectto Y, D7l < 1.

- The constrained minimization problem can be written as
minimize:] = ¥, pil; + A2; DY) | Lagrange Multipliers

- Calculus (*): 2—] p; — ADlilog, D.

li_

9
To enable a_]- = 0, we need

l

=1 — Pi
D Alog. D’
To satisfy the Kraft Inequality, we have
1
" log,D’

Hence,
p;=D74.

To minimized L, we need [; = —logp p;.

§ 3.2 Optimal Source Codes

- With [; = —logp P;, we have
L=Y;pli =—-2X;pilogpp; = Hp(X)
7

Entropy of the source symbols

Theorem 3.3 Lower Bound of the Expected Length The expected length L of
an instantaneous D-ary code for a random variable X is lower bounded by
L > Hp(X).

Remark: since [; can be only be an integer,
L = Hp(X), ifl; = —logp p;.
L > Hp(X), Ifl; = [—logp p;].

§ 3.2 Optimal Source Codes

Corollary 3.4 Upper Bound of the Expected Length The expected length L
of an instantaneous D-ary code for a random variable X is upper bounded by
L<Hp(X)+1.

Proof: Since —logpp; < l; < —logp p; + 1.
By multiplying p; to the above inequality and performing summation
over ias

z —p;logp; < Z_pili < z —p;logp; + z_pi
r l l l

l

Hy(X) <L < Hpy(X) + 1.

§ 3.2 Shannon-Fano Code

- Given a source that contains symbols x4, x,, x3, ..., x,,, With probabilities of

D1, 02,03, ---» Pm, FeSpectively.

- Determine the source codeword length for symbol x; as

1 .
l; = [logzp—i bits.
- Further determine l,,,x = max{l;, Vi}.

- Shannon-Fano code construction:
Step 1: Construct a binary tree of depth [«

Step 2: Choose a node of depth [; and delete its following paths and nodes. The

path from root to the node represents the source codeword for symbol x;.

§ 3.2 Shannon-Fano Code

S
- Example 3.3 Given a source with symbols x, x,, x3, x,, they occur with

probabilities of p, = 0.4, p, = 0.3, p; = 0.2, p, = 0.1, respectively. Construct
Its Shannon-Fano code.
We can determine

l—[l 1‘—2l—[1 1‘—2l—[l 1}—3l—[1 1‘—4
= |log,—| = 2,1, = |log,—| = 2,13 = |log,—| = 3,l; = [log,—| =4,
1 82 D, 2 82) 3 82 Dy 1 82 D2

and . = 4.

Construct a binary tree of depth 4.
0

. 0 1 The source codewords are
X;:00
1 0 1
1 X,:01
Root X3:100

X,:1010.

—\o

§ 3.4 Huffman Code

- Given a source that contains symbols x4, x5, x, ..., x,,, With probabilities of
P1, P2, P3, ---» Pm, FESpectively.
- Huffman code construction:
Step 1: Merge the 2 smallest symbol probabilities;
Step 2: Assign the 2 corresponding symbols with 0 and 1, then go back to Step 1;
Repeat the above process until two probabilities are merged into a
probability of 1.

- Huffman code is the shortest prefix code, i.e., an optimal code.

§ 3.4 Huffman Code

Example 3.4 Consider a random variable set of X = {1, 2, 3, 4, 5}. They
have probabilities of P(X = 1) = 0.25, P(X =2) = 0.25,P(X =3) = 0.2,
P(X =4) =0.15, P(X =5) = 0.15. Construct a Huffman code to represent

variable X.
Codeword | X P(X)
11 0.25 0.3
2| 0.25 0.25
3| 0.2 0.25
0 4| 0.15 0.2
1 5| 0.15

§ 3.4 Huffman Code

Codeword | X P(X)
1| 0.25 0.3 0.45
0 2 | 0.25 0.2 0.3
1 3] 02 0.25/ ~0.25
0 4 | 0.15 0.2
1 51 015
Codeword | X P(X)
1 1| 0.25 0.3 45_~0.55
0 2| 0.25 0.2 0.35%0.45
1 3| 0.2 0.2 0.2
0 0 41 0.15 0.2
0 1 5| 0.15

§ 3.4 Huffman Code

Codeword | X P(X)
01 1 0.2 0.3 45 0.55 1
1 0 2 0.2 0.2 .3%0.457
1 1 3 0.2 0.2 25
0 0 O 4 0.1 0.2
0 0 1 5 0.1
Validations:

(1) =2,1(2) =2,13) =2,1(4) =3,l(5) =3
L=)yIl(X) P(X)= 2.3 bits/symbol
H,(X) = —-YxP(X)log, P(X) = 2.3 bits/symbol.

L > H,(X).

§ 3.4 Huffman Code

So now, let us look back at the problem proposed at the beginning.
How to represent the source vector {1 2 4 4 3 1 4 4}?

Codeword | X P(X)

01 1| 0.25~_,025—05—1
000 2 0.12570.25/ 0.57
001 3| 0.125°_05

1 4 0.5/

It should be representedas {0 1000110010111 }andL = 1.75 bits/symbol.

Question: How if the source vector becomes {12434421}?

Remark: the Huffman code and its expected length depends
on the source vector, i.e., entropy of the source.

§ 3.4 Huffman Code
[]

- Huffman code can also be defined as a D-ary code.

- A D-ary Huffman code can be similarly constructed following the
binary construction.
Step 1: Merge the D smallest symbol probabilities;
Step 2: Assign the corresponding symbols with 0, 1, ..., D — 1, then
go back to Step 1;

Repeat the above process until D probabilities are merged into a

probability of 1.

§ 3.4 Huffman Code

Example 3.5 Consider a random variable set of X = {1, 2, 3, 4, 5, 6}. They have
probabilities of P(X =1) =0.25, P(X=2) =0.25, P(X=3)=0.2, P(X=4) = 0.1,
P(X=5)=0.1, P(X=6) =0.1. Construct a ternary {0, 1, 2} Huffman code.

Codeword| X P(X)
0 1 0.25—0.25—0.25—1
1 2 0.25—0.25—0.257
2 0 3 02 —0.2 0.5
2 1 4 0.1 —0.1 7
2 20 5 0.1 0.2
2 21 6 0.1 7
2 2 2 |Dummy| O

Note: A dummy symbol is created such that 3 probabilities can merge into a

probability of 1 in the end.

§ 3.4 Huffman Code

Properties on an optimal D-ary source code (Huffman code)

(1) If p; > py, then |, < |,;

(2) The D longest codewords have the same length;

(3) The D longest codewords differ only in the last symbol and correspond to
the D least likely source symbols.

Theorem 3.5 Optimal Source Code A source code (C*) is optimal if giving
any other source code C’, we have L(C*) < L(C").

Note: Huffman code is optimal.

References:
[1] Elements of Information Theory, by T. Cover and J. Thomas.
[2] Scriptum for the lectures, Applied Information Theory, by M. Bossert.

