
Chapter 3 Source Coding

• 3.1 An Introduction to Source Coding

• 3.2 Optimal Source Codes

• 3.3 Shannon-Fano Code

• 3.4 Huffman Code

§3.1 An Introduction to Source Coding

• Entropy (in bits per symbol) implies in average the number of bits that is

required to represent a source symbol. This indicates a mapping between

source symbol and bits.

• Source coding can be seen as a mapping mechanism between symbols and bits.

• For a string of symbols, how can we use less bits to represent them?

Intuition: Use short description to represent the most frequently occurred

symbols.

Use necessarily long description to represent the less frequently

occurred symbols.

§3.1 An Introduction to Source Coding

Symbols: 1 2 4 4 3 1 4 4

bits: 00 01 11 11 10 00 11 11

Or can that be a shorter string of bits?

• Definition: Let 𝑥 denote a source symbol and 𝐶(𝑥) denote a source codeword of 𝑥.

If the length of 𝐶(𝑥) is 𝑙(𝑥) (in bits) and 𝑥 happens with a probability of 𝑝(𝑥),

then the expected length 𝐿(𝐶) of source code 𝐶 is:

• It implies the average number of bits that is required to represent a symbol in

source coding scheme 𝐶.

𝐿 𝐶 = 𝑥 𝑝(𝑥) ∙ 𝑙(𝑥).

§3.1 An Introduction to Source Coding

Let us look at the following example:

Example 3.1 Let 𝑋 be a random variable with the following distributions:

𝑋 ∈ {1, 2, 3, 4}

𝑃 𝑋 = 1 =
1

2
, 𝑃 𝑋 = 2 =

1

4
, 𝑃 𝑋 = 3 =

1

8
, 𝑃 𝑋 = 4 =

1

8

Entropy of 𝑋 is:

𝐻 𝑋 = 𝑋∈{1,2,3,4}𝑃(𝑋) log2[𝑃 𝑋]
−1

= 1.75 bits/sym.

§3.1 An Introduction to Source Coding

On average, we use 2 bits to denote a symbol.

𝐿 𝐶 > 𝐻(𝑋).

Source Coding 2 (𝐶∗):

𝐶∗ 1 = 0, 𝐶∗ 2 = 10, 𝐶∗ 3 = 110, 𝐶∗ 4 = 111

𝐿 𝐶∗ =
1

2
∙ 1 +

1

4
∙ 2 +

1

8
∙ 3 +

1

8
∙ 3 = 1.75 𝑏𝑖𝑡𝑠

On average, we use 1.75 bits to denote a symbol.

𝐿(𝐶∗) = 𝐻(𝑋).

Remark: 𝐶∗ should be a better source coding scheme than 𝐶.

Source Coding 1 (𝐶):

𝐶 1 = 00, 𝐶 2 = 01, 𝐶 3 = 10, 𝐶 4 = 11

𝐿 𝐶 =
1

2
∙ 2 +

1

4
∙ 2 +

1

8
∙ 2 +

1

8
∙ 2 = 2 𝑏𝑖𝑡𝑠.

§3.1 An Introduction to Source Coding

Theorem 3.1 Shannon’s Source Coding Theorem Given a memoryless

source X whose symbols are chosen from the alphabet {𝑥1, 𝑥2, … , 𝑥𝑚} with

each alphabet symbol probabilities of 𝑃 𝑥1 = 𝑝1, 𝑃 𝑥2 = 𝑝2, … , 𝑃 𝑥𝑚 =

𝑝𝑚, and 𝑖=1
𝑚 𝑝𝑖 = 1. If the source is of length n, when 𝑛 → ∞, it can be

encoded with H(X) bits per symbol. The coded sequence will be of nH(X) bits.

Note: 𝐻 𝑋 = − 𝑖=1
𝑚 𝑝𝑖log2𝑝𝑖 bits/sym.

§3.1 An Introduction to Source Coding

Important features of source coding:

1. Unambiguous representation of source symbols (Non-singularity).

𝑋 𝐶(𝑋)

1 0

2 010

3 01

4 10

Problem: When we try to decode

‘010’, it can be 2 or 14

or 31.

The decoding is NOT unique.

2. Uniquely decodable

𝑋 𝐶(𝑋)

1 10

2 00

3 11

4 110

Problem: When we try to decode

‘001011000’, we have

3 2 . . .

4 2

We will have to wait and see the

end of the bit string. The decoding

is NOT instantaneous.

2 1

3. Instantaneous code

Definition: For an instantaneous code, no codeword is a prefix of

any other codeword.

𝑋 𝐶(𝑋)

1 0

2 10

3 110

4 111

§3.1 An Introduction to Source Coding

Observation: If you try to decode ‘111110101100111’,

you would notice that the puncturing positions are

determined by the instance you have reached a source

codeword. The decoding is instantaneous, and the

decoding output is ‘4 3 2 3 1 4 ’ .

§3.2 Optimal Source Codes

- How can we find an optimal source code?

- An optimal source code :

(1) Instantaneous code (prefix code)

(2) Smallest expected length 𝐿 = 𝑝𝑖𝑙𝑖

Theorem 3.2 Kraft Inequality For an instantaneous code over an alphabet of

size 𝐷 (𝑒. 𝑔. , 𝐷 = 2 for binary codes), the codeword lengths 𝑙1, 𝑙2, ⋯, 𝑙𝑚 must

satisfy

 𝑖𝐷
−𝑙𝑖 ≤ 1.

Remark: An instantaneous code 𝑖𝐷
−𝑙𝑖 ≤ 1

Example 3.2 For the source code 𝐶∗ of Example 3.1.

2−1 + 2−2 + 2−3 + 2−3 = 1.

§3.2 Optimal Source Codes

Proof:

Root
0

0
01

1
1

×
× ×

×

- The above tree illustrates the assignment of source codeword symbols

in a binary way when D = 2. A complete solid path represents a source

codeword.

- Based on property of the instantaneous code, if the first source

codeword goes the ‘0’ path, the next source codeword should not go

the ‘0’ path. Such a source codeword symbol assignment process

repeats as the number of data symbols increases.

§3.2 Optimal Source Codes

- At level lmax of the tree (source codeword length is lmax), there are at most 𝐷𝑙max

codewords. Similarly, at level li of the tree, there are at most 𝐷𝑙𝑖 codewords. All

the codewords at level li have at most 𝐷𝑙max−𝑙𝑖 descendants at level lmax.

Considering all levels li, the total number of descendants should not be greater

than the maximal number of nodes at level lmax as

𝑖

𝐷𝑙max−𝑙𝑖 ≤ 𝐷𝑙max

𝑖

𝐷−𝑙𝑖 ≤ 1.

Root
0

0
01

1
1

×
× ×

×

§3.2 Optimal Source Codes

Root
0

0
01

1
1

×
× ×

×

- The expected length of this tree is

𝔼 𝑙 = 𝑖 𝑙𝑖𝑝𝑖

- li: length of a source codeword for symbol xi

pi: probability of symbol xi

Expected length of the tree is the expected length of the source code.

- The tree represents an instantaneous source code.

§3.2 Optimal Source Codes

- Finding the smallest expected length 𝐿 becomes

minimize: 𝐿 = 𝑖 𝑝𝑖𝑙𝑖
subject to 𝑖𝐷

−𝑙𝑖 ≤ 1.
- The constrained minimization problem can be written as

minimize: 𝐽 = 𝑖 𝑝𝑖𝑙𝑖 + λ(𝑖𝐷
−𝑙𝑖)

- Calculus ∗ :
𝜕𝐽

𝜕𝑙𝑖
= 𝑝𝑖 − λ𝐷

−𝑙𝑖 log𝑒 𝐷.

To enable
𝜕𝐽

𝜕𝑙𝑖
= 0, we need

𝐷−𝑙𝑖 =
𝑝𝑖

λ log𝑒 𝐷
.

To satisfy the Kraft Inequality, we have

λ=
1

log𝑒 𝐷
.

Hence,

𝑝𝑖 = 𝐷
−𝑙𝑖 .

To minimized 𝐿, we need 𝑙𝑖
∗ = − log𝐷 𝑝𝑖.

Lagrange Multipliers

§3.2 Optimal Source Codes

- With 𝑙𝑖
∗ = − log𝐷 𝑃𝑖, we have

𝐿 = 𝑖 𝑝𝑖𝑙𝑖
∗ = − 𝑖 𝑝𝑖 log𝐷 𝑝𝑖 = 𝐻𝐷(𝑋)

Theorem 3.3 Lower Bound of the Expected Length The expected length 𝐿 of

an instantaneous D-ary code for a random variable 𝑋 is lower bounded by

𝐿 ≥ 𝐻𝐷(𝑋).

Entropy of the source symbols

Remark: since 𝑙𝑖 can be only be an integer,

𝐿 = 𝐻𝐷(𝑋), if 𝑙𝑖 = − log𝐷 𝑝𝑖.
𝐿 > 𝐻𝐷(𝑋), if 𝑙𝑖 = ⌈− log𝐷 𝑝𝑖⌉.

§3.2 Optimal Source Codes

Corollary 3.4 Upper Bound of the Expected Length The expected length 𝐿
of an instantaneous D-ary code for a random variable 𝑋 is upper bounded by

𝐿 < 𝐻𝐷 𝑋 + 1.

Proof: Since − log𝐷 𝑝𝑖 ≤ 𝑙𝑖 < − log𝐷 𝑝𝑖 + 1.
By multiplying 𝑝𝑖 to the above inequality and performing summation

over 𝑖 as

𝑖

−𝑝𝑖 log 𝑝𝑖 ≤
𝑖
𝑝𝑖𝑙𝑖 <

𝑖
−𝑝𝑖 log 𝑝𝑖 +

𝑖
𝑝𝑖

𝐻𝐷 𝑋 ≤ 𝐿 < 𝐻𝐷 𝑋 + 1.

§3.2 Shannon-Fano Code

- Given a source that contains symbols 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚 with probabilities of

𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑚, respectively.

- Determine the source codeword length for symbol xi as

𝑙𝑖 = log2
1

𝑝𝑖
bits.

- Further determine 𝑙max = max{𝑙𝑖, ∀𝑖}.

- Shannon-Fano code construction:

Step 1: Construct a binary tree of depth 𝑙max.

Step 2: Choose a node of depth 𝑙𝑖 and delete its following paths and nodes. The

path from root to the node represents the source codeword for symbol xi.

§3.2 Shannon-Fano Code

- Example 3.3 Given a source with symbols 𝑥1, 𝑥2, 𝑥3, 𝑥4, they occur with

probabilities of p1 = 0.4, p2 = 0.3, p3 = 0.2, p4 = 0.1, respectively. Construct

its Shannon-Fano code.

We can determine

𝑙1 = log2
1

𝑝1
= 2, 𝑙2 = log2

1

𝑝2
= 2, 𝑙3 = log2

1

𝑝3
= 3, 𝑙1 = log2

1

𝑝4
= 4,

and 𝑙max = 4.

Construct a binary tree of depth 4.

Root

0

1
1
×

○0

0
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1
0

1

0

1

1

01

×
×
×

×
×

×
×

×
×
×
×
×
×

○

○

○

The source codewords are

x1: 0 0

x2: 0 1

x3: 1 0 0

x4: 1 0 1 0.

§3.4 Huffman Code

- Given a source that contains symbols 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑚 with probabilities of

𝑝1, 𝑝2, 𝑝3, … , 𝑝𝑚, respectively.

- Huffman code construction:

Step 1: Merge the 2 smallest symbol probabilities;

Step 2: Assign the 2 corresponding symbols with 0 and 1, then go back to Step 1;

Repeat the above process until two probabilities are merged into a

probability of 1.

- Huffman code is the shortest prefix code, i.e., an optimal code.

§3.4 Huffman Code

Example 3.4 Consider a random variable set of 𝑋 = {1, 2, 3, 4, 5}. They

have probabilities of 𝑃 𝑋 = 1 = 0.25, 𝑃 𝑋 = 2 = 0.25, 𝑃 𝑋 = 3 = 0.2,

𝑃 𝑋 = 4 = 0.15, 𝑃 𝑋 = 5 = 0.15. Construct a Huffman code to represent

variable 𝑋.

Codeword 𝑋 𝑃(𝑋)
1 0.25 0.3

2 0.25 0.25

3 0.2 0.25

0 4 0.15 0.2

1 5 0.15

§3.4 Huffman Code

Codeword 𝑋 𝑃(𝑋)
1 0.25 0.3 0.45

0 2 0.25 0.25 0.3

1 3 0.2 0.25 0.25

0 4 0.15 0.2

1 5 0.15

Codeword 𝑋 𝑃(𝑋)
1 1 0.25 0.3 0.45 0.55

0 2 0.25 0.25 0.3 0.45

1 3 0.2 0.25 0.25

0 0 4 0.15 0.2

0 1 5 0.15

§3.4 Huffman Code

Codeword 𝑋 𝑃(𝑋)
0 1 1 0.25 0.3 0.45 0.55 1

1 0 2 0.25 0.25 0.3 0.45

1 1 3 0.2 0.25 0.25

0 0 0 4 0.15 0.2

0 0 1 5 0.15

Validations:

𝑙 1 = 2, 𝑙 2 = 2, 𝑙 3 = 2, 𝑙 4 = 3, 𝑙 5 = 3

𝐿 = 𝑋 𝑙(𝑋) ∙ 𝑃(𝑋) = 2.3 bits/symbol

𝐻2 𝑋 = − 𝑋𝑃(𝑋) log2 𝑃 𝑋 = 2.3 bits/symbol.

𝐿 ≥ 𝐻2 𝑋 .

§3.4 Huffman Code

So now, let us look back at the problem proposed at the beginning.

How to represent the source vector {1 2 4 4 3 1 4 4} ?

Codeword 𝑋 𝑃(𝑋)
0 1 1 0.25 0.25 0.5 1

0 0 0 2 0.125 0.25 0.5

0 0 1 3 0.125 0.5

1 4 0.5

It should be represented as {0 1 0 0 0 1 1 0 0 1 0 1 1 1 } and 𝐿 = 1.75 bits/symbol.

Question: How if the source vector becomes {1 2 4 3 4 4 2 1} ?

Remark: the Huffman code and its expected length depends

on the source vector, i.e., entropy of the source.

§3.4 Huffman Code

- Huffman code can also be defined as a D-ary code.

- A D-ary Huffman code can be similarly constructed following the

binary construction.

Step 1: Merge the D smallest symbol probabilities;

Step 2: Assign the corresponding symbols with 0, 1, ..., D – 1, then

go back to Step 1;

Repeat the above process until D probabilities are merged into a

probability of 1.

§3.4 Huffman Code

Example 3.5 Consider a random variable set of X = {1, 2, 3, 4, 5, 6}. They have

probabilities of P(X = 1) = 0.25, P(X = 2) = 0.25, P(X = 3) = 0.2, P(X = 4) = 0.1,

P(X = 5) = 0.1, P(X = 6) = 0.1. Construct a ternary {0, 1, 2} Huffman code.

Codeword 𝑋 𝑃(𝑋)
0 1 0.25 0.25 0.25 1

1 2 0.25 0.25 0.25

2 0 3 0.2 0.2 0.5

2 1 4 0.1 0.1

2 2 0 5 0.1 0.2

2 2 1 6 0.1

2 2 2 Dummy 0

Note: A dummy symbol is created such that 3 probabilities can merge into a

probability of 1 in the end.

§3.4 Huffman Code

Properties on an optimal D-ary source code (Huffman code)

(1) If pj > pk, then lj ≤ lk;

(2) The D longest codewords have the same length;

(3) The D longest codewords differ only in the last symbol and correspond to

the D least likely source symbols.

Theorem 3.5 Optimal Source Code A source code (C*) is optimal if giving

any other source code C’, we have L(C*) ≤ L(C’).

Note: Huffman code is optimal.

References:

[1] Elements of Information Theory, by T. Cover and J. Thomas.

[2] Scriptum for the lectures, Applied Information Theory, by M. Bossert.

