Chapter 3 Source Coding

- 3.1 An Introduction to Source Coding
- 3.2 Optimal Source Codes
- 3.3 Shannon-Fano Code
- 3.4 Huffman Code

§ 3.1 An Introduction to Source Coding

- Entropy (in bits per symbol) implies in average the number of bits that is required to represent a source symbol. This indicates a mapping between source symbol and bits.
- Source coding can be seen as a mapping mechanism between symbols and bits.
- For a string of symbols, how can we use less bits to represent them?

Intuition: Use short description to represent the most frequently occurred symbols.

Use necessarily long description to represent the less frequently occurred symbols.

§ 3.1 An Introduction to Source Coding

Or can that be a shorter string of bits?

- Definition: Let x denote a source symbol and $C(x)$ denote a source codeword of x. If the length of $C(x)$ is $l(x)$ (in bits) and x happens with a probability of $p(x)$, then the expected length $L(C)$ of source code C is:

$$
L(C)=\sum_{x} p(x) \cdot l(x) .
$$

- It implies the average number of bits that is required to represent a symbol in source coding scheme C.

§ 3.1 An Introduction to Source Coding

Let us look at the following example:
Example 3.1 Let X be a random variable with the following distributions:

$$
\begin{aligned}
& X \in\{1,2,3,4\} \\
& P(X=1)=\frac{1}{2}, P(X=2)=\frac{1}{4}, P(X=3)=\frac{1}{8}, P(X=4)=\frac{1}{8}
\end{aligned}
$$

Entropy of X is:

$$
\begin{aligned}
H(X) & =\sum_{X \in\{1,2,3,4\}} P(X) \log _{2}[P(X)]^{-1} \\
& =1.75 \mathrm{bits} / \mathrm{sym} .
\end{aligned}
$$

§ 3.1 An Introduction to Source Coding

Source Coding 1 (C):

$$
\begin{aligned}
& C(1)=00, C(2)=01, C(3)=10, C(4)=11 \\
& L(C)=\frac{1}{2} \cdot 2+\frac{1}{4} \cdot 2+\frac{1}{8} \cdot 2+\frac{1}{8} \cdot 2=2 \text { bits }
\end{aligned}
$$

On average, we use 2 bits to denote a symbol.
$\longrightarrow L(C)>H(X)$.
Source Coding $2\left(C^{*}\right)$:

$$
\begin{aligned}
& C^{*}(1)=0, C^{*}(2)=10, C^{*}(3)=110, C^{*}(4)=111 \\
& L\left(C^{*}\right)=\frac{1}{2} \cdot 1+\frac{1}{4} \cdot 2+\frac{1}{8} \cdot 3+\frac{1}{8} \cdot 3=1.75 \text { bits }
\end{aligned}
$$

On average, we use 1.75 bits to denote a symbol.
$\square L\left(C^{*}\right)=H(X)$.

Remark: C^{*} should be a better source coding scheme than C.

§ 3.1 An Introduction to Source Coding

Theorem 3.1 Shannon's Source Coding Theorem Given a memoryless source X whose symbols are chosen from the alphabet $\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ with each alphabet symbol probabilities of $P\left(x_{1}\right)=p_{1}, P\left(x_{2}\right)=p_{2}, \ldots, P\left(x_{m}\right)=$ p_{m}, and $\sum_{i=1}^{m} p_{i}=1$. If the source is of length n, when $n \rightarrow \infty$, it can be encoded with $H(X)$ bits per symbol. The coded sequence will be of $n H(X)$ bits.

Note: $H(X)=-\sum_{i=1}^{m} p_{i} \log _{2} p_{i}$ bits/sym.

§ 3.1 An Introduction to Source Coding

Important features of source coding:

1. Unambiguous representation of source symbols (Non-singularity).

X	$C(X)$
1	0
2	010
3	01
4	10

Problem: When we try to decode ' 010 ', it can be 2 or 14 or 31 .
The decoding is NOT unique.
2. Uniquely decodable

X	$C(X)$
1	10
2	00
3	11
4	110

Problem: When we try to decode '001011000', we have 21 § $32 \ldots$
We will have to wait and see the end of the bit string. The decoding is NOT instantaneous.

§ 3.1 An Introduction to Source Coding

3. Instantaneous code

Definition: For an instantaneous code, no codeword is a prefix of any other codeword.

X	$C(X)$
1	0
2	10
3	110
4	111

Observation: If you try to decode ' 111110101100111 ', you would notice that the puncturing positions are determined by the instance you have reached a source codeword. The decoding is instantaneous, and the decoding output is '432314'.

§ 3.2 Optimal Source Codes

- How can we find an optimal source code?
- An optimal source code :
(1) Instantaneous code (prefix code)
(2) Smallest expected length $L=\sum p_{i} l_{i}$

Theorem 3.2 Kraft Inequality For an instantaneous code over an alphabet of size D (e.g., $D=2$ for binary codes), the codeword lengths $l_{1}, l_{2}, \cdots, l_{m}$ must satisfy

$$
\sum_{i} D^{-l_{i}} \leq 1 .
$$

Remark: An instantaneous code $\rightleftarrows \sum_{i} D^{-l_{i}} \leq 1$

Example 3.2 For the source code C^{*} of Example 3.1.

$$
2^{-1}+2^{-2}+2^{-3}+2^{-3}=1
$$

§ 3.2 Optimal Source Codes

Proof: - The above tree illustrates the assignment of source codeword symbols in a binary way when $D=2$. A complete solid path represents a source codeword.

- Based on property of the instantaneous code, if the first source codeword goes the ' 0 ' path, the next source codeword should not go the ' 0 ' path. Such a source codeword symbol assignment process repeats as the number of data symbols increases.

§ 3.2 Optimal Source Codes

- At level $l_{\max }$ of the tree (source codeword length is $l_{\max }$), there are at most $D^{l_{\text {max }}}$ codewords. Similarly, at level l_{i} of the tree, there are at most $D^{l_{i}}$ codewords. All the codewords at level l_{i} have at most $D^{l_{\max }-l_{i}}$ descendants at level $l_{\max }$.

Considering all levels l_{i}, the total number of descendants should not be greater than the maximal number of nodes at level $l_{\text {max }}$ as

$$
\begin{gathered}
\sum_{i} D^{l_{\max }-l_{i}} \leq D^{l_{\max }} \\
\downarrow \\
\sum_{i} D^{-l_{i}} \leq 1
\end{gathered}
$$

§ 3.2 Optimal Source Codes

- The expected length of this tree is

$$
\mathbb{E}[l]=\sum_{i} l_{i} p_{i}
$$

- l_{i} : length of a source codeword for symbol x_{i}
p_{i} : probability of symbol x_{i}
Expected length of the tree is the expected length of the source code.
- The tree represents an instantaneous source code.

§ 3.2 Optimal Source Codes

- Finding the smallest expected length L becomes

$$
\begin{array}{rc}
\operatorname{minimize}: & L=\sum_{i} p_{i} l_{i} \\
\text { subject to } & \sum_{i} D^{-l_{i}} \leq 1
\end{array}
$$

- The constrained minimization problem can be written as

$$
\text { minimize: } \quad J=\sum_{i} p_{i} l_{i}+\lambda\left(\sum_{i} D^{-l_{i}}\right) \quad \text { Lagrange Multipliers }
$$

- Calculus (*): $\frac{\partial J}{\partial l_{i}}=p_{i}-\lambda D^{-l_{i}} \log _{e} D$.

To enable $\frac{\partial J}{\partial \iota_{i}}=0$, we need

$$
D^{-l_{i}}=\frac{p_{i}}{\lambda \log _{e} D}
$$

To satisfy the Kraft Inequality, we have

$$
\lambda=\frac{1}{\log _{e} D}
$$

Hence,

$$
p_{i}=D^{-l_{i}}
$$

To minimized L, we need $l_{i}^{*}=-\log _{D} p_{i}$.

§ 3.2 Optimal Source Codes

- With $l_{i}^{*}=-\log _{D} P_{i}$, we have

$$
L=\sum_{i} p_{i} l_{i}^{*}=-\sum_{i} p_{i} \log _{D} p_{i}=\frac{H_{D}(X)}{\Lambda}
$$

Entropy of the source symbols

Theorem 3.3 Lower Bound of the Expected Length The expected length L of an instantaneous D-ary code for a random variable X is lower bounded by

$$
L \geq H_{D}(X) .
$$

Remark: since l_{i} can be only be an integer,

$$
\begin{aligned}
& L=H_{D}(X), \text { if } l_{i}=-\log _{D} p_{i} . \\
& L>H_{D}(X), \text { if } l_{i}=\left\lceil-\log _{D} p_{i}\right\rceil .
\end{aligned}
$$

§ 3.2 Optimal Source Codes

Corollary 3.4 Upper Bound of the Expected Length The expected length L of an instantaneous D-ary code for a random variable X is upper bounded by

$$
L<H_{D}(X)+1 .
$$

Proof: Since $-\log _{D} p_{i} \leq l_{i}<-\log _{D} p_{i}+1$.
By multiplying p_{i} to the above inequality and performing summation over i as

$$
\begin{gathered}
\sum_{i}-p_{i} \log p_{i} \leq \sum_{i} p_{i} l_{i}<\sum_{i}-p_{i} \log p_{i}+\sum_{i} p_{i} \\
H_{D}(X) \leq L<H_{D}(X)+1 .
\end{gathered}
$$

§ 3.2 Shannon-Fano Code

- Given a source that contains symbols $x_{1}, x_{2}, x_{3}, \ldots, x_{m}$ with probabilities of $p_{1}, p_{2}, p_{3}, \ldots, p_{m}$, respectively.
- Determine the source codeword length for symbol x_{i} as

$$
l_{i}=\left\lceil\log _{2} \frac{1}{p_{i}}\right\rceil \text { bits. }
$$

- Further determine $l_{\text {max }}=\max \left\{l_{i}, \forall i\right\}$.
- Shannon-Fano code construction:

Step 1: Construct a binary tree of depth $l_{\text {max }}$.
Step 2: Choose a node of depth l_{i} and delete its following paths and nodes. The path from root to the node represents the source codeword for symbol x_{i}.

§ 3.2 Shannon-Fano Code

- Example 3.3 Given a source with symbols $x_{1}, x_{2}, x_{3}, x_{4}$, they occur with probabilities of $p_{1}=0.4, p_{2}=0.3, p_{3}=0.2, p_{4}=0.1$, respectively. Construct its Shannon-Fano code.
We can determine

$$
\begin{aligned}
& \quad l_{1}=\left\lceil\log _{2} \frac{1}{p_{1}}\right\rceil=2, l_{2}=\left\lceil\log _{2} \frac{1}{p_{2}}\right\rceil=2, l_{3}=\left\lceil\log _{2} \frac{1}{p_{3}}\right\rceil=3, l_{1}=\left\lceil\log _{2} \frac{1}{p_{4}}\right\rceil=4, \\
& \text { and } l_{\max }=4
\end{aligned}
$$

Construct a binary tree of depth 4.

The source codewords are

$$
\begin{aligned}
& x_{1}: 00 \\
& x_{2}: 01 \\
& x_{3}: 100 \\
& x_{4}: 1010 .
\end{aligned}
$$

§ 3.4 Huffman Code

- Given a source that contains symbols $x_{1}, x_{2}, x_{3}, \ldots, x_{m}$ with probabilities of $p_{1}, p_{2}, p_{3}, \ldots, p_{m}$, respectively.
- Huffman code construction:

Step 1: Merge the 2 smallest symbol probabilities;
Step 2: Assign the 2 corresponding symbols with 0 and 1, then go back to Step 1;
Repeat the above process until two probabilities are merged into a probability of 1.

- Huffman code is the shortest prefix code, i.e., an optimal code.

§ 3.4 Huffman Code

Example 3.4 Consider a random variable set of $X=\{1,2,3,4,5\}$. They have probabilities of $P(X=1)=0.25, P(X=2)=0.25, P(X=3)=0.2$, $P(X=4)=0.15, P(X=5)=0.15$. Construct a Huffman code to represent variable X.

Codeword	X	$P(X)$	
	1	0.25	0.2
	2	0.25	0.2
0	3	0.2	0.15
1	5	0.15	0.25

§ 3.4 Huffman Code

Codeword	X	$P(X)$		
	1	0.25	0.3	0.45
0	2	0.25	0.25	0.3
1	3	0.2	0.25	0.25
0	4	0.15	0.2	
1	5	0.15		

Codeword	X	$P(X)$	
1	1	0.25	0.3
	0	2	0.25
	1	3	0.2
0	0	4	0.15
0	1	5	0.15

§ 3.4 Huffman Code

Codeword				X	$P(X)$		
0	1	1	0.25	0.3	0.45		
	1	0	2	0.25	0.25		
	1	1	3	0.2	0.3		
0	0	0	4	0.15	0.25		
0	0	1	5	0.15			
0.0 .45							

Validations:
$l(1)=2, l(2)=2, l(3)=2, l(4)=3, l(5)=3$
$L=\sum_{X} l(X) \cdot P(X)=2.3$ bits/symbol
$H_{2}(X)=-\sum_{X} P(X) \log _{2} P(X)=2.3$ bits/symbol.

$$
L \geq H_{2}(X) .
$$

§ 3.4 Huffman Code

So now, let us look back at the problem proposed at the beginning. How to represent the source vector $\left\{\begin{array}{lllllll}1 & 2 & 4 & 4 & 3 & 1 & 4\end{array}\right\}$?

Codeword	X	$P(X)$
01	1	$0.25>{ }^{0.25}>^{0.5} 7^{1}$
000	2	0.125 - 0.25
$0 \quad 0 \quad 1$	3	0.1250 .5
1	4	0.5

It should be represented as $\{01000110010111\}$ and $L=1.75$ bits/symbol.

Question: How if the source vector becomes $\{12434421\}$?
Remark: the Huffman code and its expected length depends on the source vector, i.e., entropy of the source.

§ 3.4 Huffman Code

- Huffman code can also be defined as a D-ary code.
- A D-ary Huffman code can be similarly constructed following the binary construction.

Step 1: Merge the D smallest symbol probabilities;
Step 2: Assign the corresponding symbols with $0,1, \ldots, D-1$, then go back to Step 1;

Repeat the above process until D probabilities are merged into a probability of 1 .

§ 3.4 Huffman Code

Example 3.5 Consider a random variable set of $X=\{1,2,3,4,5,6\}$. They have probabilities of $P(X=1)=0.25, P(X=2)=0.25, P(X=3)=0.2, P(X=4)=0.1$, $P(X=5)=0.1, P(X=6)=0.1$. Construct a ternary $\{0,1,2\}$ Huffman code.

Codeword	X	$P(X)$
0	1	0.25-0.25-0.25-7 ${ }^{1}$
1	2	$0.25-0.25-0.25$
20	3	$0.2-0.2-0.5$
21	4	$0.1-0.1$
220	5	$0.1 \square^{0.2}$
$\begin{array}{lll}2 & 2 & 1\end{array}$	6	0.1
222	Dummy	0

Note: A dummy symbol is created such that 3 probabilities can merge into a probability of 1 in the end.

§ 3.4 Huffman Code

Properties on an optimal \boldsymbol{D}-ary source code (Huffman code)

(1) If $p_{j}>p_{k}$, then $l_{j} \leq l_{k}$;
(2) The D longest codewords have the same length;
(3) The D longest codewords differ only in the last symbol and correspond to the D least likely source symbols.

Theorem 3.5 Optimal Source Code A source code (C^{*}) is optimal if giving any other source code C^{\prime}, we have $L\left(C^{*}\right) \leq L\left(C^{\prime}\right)$.

Note: Huffman code is optimal.

References:
[1] Elements of Information Theory, by T. Cover and J. Thomas.
[2] Scriptum for the lectures, Applied Information Theory, by M. Bossert.

